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Abstract. This paper presents a new combinatorial approach towards constructing a sparse
basis for the null space of a sparse, under-determined, full rank matrix, A. Such a null space basis
is suitable for solving solving many saddle point problems. Our approach is to form a column space
basis of A that has a sparse inverse, by selecting suitable columns of A. This basis could then be
used to form a sparse null space basis in fundamental form. We investigate three different algorithms
for computing the column space basis: two greedy approaches that rely on matching, and a third
employing a divide and conquer strategy implemented with hypergraph partitioning followed by the
greedy approach. We also discuss the complexity of selecting a column space basis when it is known
that such a basis exists in block diagonal form with a given small block size.

1. Introduction. Many applications require a basis, Z, for the null space of a
large, sparse, under-determined matrix, A. We describe new approaches for obtaining
a sparse null space basis by first computing a basis for the column space of A. The
column space basis is required to have a sparse inverse. The algorithms for computing
bases of the column space are based on the combinatorial concepts of matchings and
hypergraph partitioning.

One context in which a null space basis is required is constrained optimization
when the Karush-Kuhn-Tucker (KKT) system
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is solved by the null space method, also called the force method in structural me-
chanics. Here G is n × n, A is m × n with m < n, and the vectors are partitioned
to conform with G and A. For discussion purposes, we assume that A has full row
rank m. The null space method involves solving systems with the reduced-Hessian,
ZT GZ, and thus the method is often advantageous when n − m is small.

One approach for computing a null space basis, Z, is the following. Let P be a
permutation matrix such that AP can be partitioned as [B N ] where B is nonsingular.
Then, a basis Z is

Z = P

[

−B−1N
In−m

]

,(1.2)

which embeds within the basis an n−m-dimensional identity matrix. A basis Z of this
form is called a variable elimination basis or a fundamental null basis [19]. This basis
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is usually not explicitly formed since B−1 is believed to be dense in general. Instead,
B is factored as B = LU , while Z and ZT GZ are treated implicitly as operators.
This approach is often used for general problems when A is large and sparse, since
a sparse Gaussian elimination procedure with pivoting applied to A can be used to
both generate P and maintain sparsity in the L and U factors. Other choices of bases
may be costly for the sparse case, for example, those involving the QR factorization
of A.

The motivation for our work is to compute explicit null space bases that are sparse.
In this case, the reduced-Hessian ZT GZ will generally also be sparse and inexpensive
to form. Assuming Z is well-conditioned, this opens, for example, many precondi-
tioning options for solving reduced-Hessian systems when they are ill-conditioned.

In structural mechanics, specialized techniques exist for computing sparse null
space bases [18, 20]. For banded A, the Turnback method has been developed [3, 13,
15, 21]. Algorithms for general problems were designed in the mid-eighties [7, 12], but
here we describe new approaches and offer results on larger problems. Ashcraft [1] is
also currently developing techniques based on bipartite graph matching.

Our approach in this paper is to select a basis B that has block angular form
for the column space of the matrix A. Such a basis has the advantage that the
inverse matrix B−1 can be computed and stored explicitly, with nonzeros limited
to the diagonal blocks and the coupling columns, from which a null space basis in
fundamental form can be readily computed.

In some applications, a sparse inverse for the column space basis, B−1, is natural.
For example, in structural analysis, multi-point constraints express a set of variables
xs called slaves in terms of an independent set of variables xm called masters. Alge-
braically, this can be written as

xs = B−1(b − Nxm)

where B is a diagonal matrix. When the constraints cannot be expressed this way,
there are situations when the columns and rows of A can be permuted to obtain
a block diagonal matrix B with small block sizes. This is the case when contact
interfaces intersect, where each contact interface is described by a set of constraints
[5]. When the slave and master variables have been identified, a Gaussian elimination
procedure called the transformation method (equivalent to the null space method) is
then used to eliminate the constraint equations.

It is clear that in many other applications there is no choice of P that will give an
inverse matrix B−1 that is sparse. In incompressible fluid dynamics, A is a discrete di-
vergence operator, and generally, no set of m columns of A has any special properties.
In PDE-constrained optimization the most natural choice of P gives B−1 correspond-
ing to a PDE solve [4], generally a dense operator. Thus our work is targeted at
problems whose constraints are sparse and not PDE-based.

We take two different approaches to design algorithms for computing bases with
sparse inverses for the column space. One approach is to use matchings in bipartite
graphs to select columns of A to belong to such a basis. Each column is assigned
a weight, which is dynamically updated during the algorithm, that reflects how its
inclusion in the current partial basis would perturb the block angular structure of the
partial basis. A greedy strategy is used to choose the column to augment the partial
basis at each step. Two different algorithms result from this approach, depending on
whether we choose to match a particular row to some column, or choose to match a
column of lowest current weight irrespective of the new row that becomes matched.
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The second approach is to model the matrix A as a hypergraph, and then to use
hypergraph partitioning to obtain a block angular form of A from which a basis B
could be obtained.

Throughout this paper, we assume that the numerical rank of a submatrix formed
by a set of columns of the matrix A is equal to its structural rank, the cardinality
of a maximum matching in the bipartite graph of the submatrix. These concepts are
described in detail in the next section of the paper.

This paper is organized as follows. Section 2 briefly reviews some preliminary
concepts necessary in this paper. In Section 3, we discuss the following complexity
issues. In some cases it is known that a column space basis B exists with block size
bounded by a given K, e.g., by using information from the physical problem [5]. In
other cases, it would be useful to be able to check if a column space basis B with
block size bounded by some small K exists. For K ≤ 2, there are fast algorithms
for checking the existence of such bases; for larger K, we show that the problem of
finding the block diagonal column basis is NP-complete. We note that computing the
sparsest null space basis is NP-complete, whether or not the basis is constrained to
embed an identity matrix [6]. In Section 4, we describe heuristic greedy algorithms
for computing column space bases with sparse inverses by means of matchings in
bipartite graphs. In Section 5, we discuss a top-down algorithm for computing these
bases by means of hypergraph partitioning to put A into a block angular form as a
first step, before applying a matching-based algorithm to the subproblems. Section 6
presents the results of numerical tests with our algorithms. We compute the number
of nonzeros in the inverse of a basis for the column space B−1; the structure of the
inverse matrix is computed using the transitive closure of the basis matrix, as discussed
in the next section. We compare our results to a weighted matching algorithm that
constructs a sparsest basis B for column space of A, without attempting to control
the number of nonzeros in B−1.

2. Background.

2.1. Previous Work on Null Space Bases. We now briefly discuss earlier ap-
proaches for computing sparse null space bases, a problem that motivates our current
work.

Recall that the choice of a column space basis B immediately determines a fun-
damental null space basis Z in terms of B and the submatrix N formed by columns
of A outside the basis. A null space basis with a more general form has also been
proposed in earlier work. A triangular null space basis has the form

Z = P

[

−B−1N
I

]

Un−m,(2.1)

where Un−m denotes an upper triangular matrix of order n−m. Since a triangular null
space basis could be represented in terms of a fundamental basis by post-multiplication
with the matrix Un−m, at first sight it could be surprising that triangular bases could
be sparser than fundamental null space bases. However, each null vector in a null
basis (i.e., a column in the basis) is obtained from a linearly dependent set of columns
chosen from A. In a triangular basis, the ith null vector is computed from a subset
of columns in B and a subset of the first i columns in N ; in a fundamental basis, the
ith null vector is computed from a subset of columns in B and the ith column of N .
Since the set of columns of A available to construct a null vector in a triangular basis
is a superset of the those available in a fundamental basis, one should expect that a
triangular basis could be potentially sparser than a fundamental null space basis.
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An early approach for constructing sparse null space bases is called the Turnback
method [3, 12, 13, 15, 21]. The Turnback method generally constructs triangular
bases, and identifies linear dependences among columns of A numerically. An initial
QR factorization is first used to identify n − m columns of A, called start columns,
each one of which is linearly dependent on previously factored columns in A. The start
columns form the submatrix N , and the remaining columns form B. From each start
column, another numerical factorization (usually LU) is then used to find a linearly
dependent subset of columns of A, so that the ith dependent subset includes the ith
column of N , some subset of columns in B, and some subset of the first i−1 columns in
N . Hence the ith linearly dependent subset leads to the ith null vector in a triangular
basis. This numerical approach is costly, both in storage and computational time, due
to the initial QR factorization on the matrix A, and the n − m LU factorizations on
subsets of columns of B and N . However, for many problems in structural mechanics,
the equilibrium matrix A has a natural profile nonzero structure, and these costs are
reasonable.

One of us has shown in his thesis [19] and subsequent publications [6, 7] that
structural linear dependence among the columns of a sparse matrix A can be identified
using matchings in bipartite graphs, and that matching based methods are faster than
numerical methods based on matrix factorizations. Graph matching can be used in
both phases of the algorithm to compute null vectors: first, to identify the linearly
dependent subsets of columns of A from which null vectors could be computed; and
second, to ensure linear independence of the computed null vectors. A numerical
factorization (LU factorization suffices) of each linearly dependent set of columns of
A is needed to compute the numerical values in the null vectors. Both triangular and
fundamental null space bases have been computed this way. Gilbert and Heath [12]
designed and implemented a null space basis algorithm in which the start columns are
identified numerically using the Turnback method, but the null vectors are computed
using a matching approach.

A different approach for constructing sparse null space bases utilizes graph par-
titioning to reorder A as

QAP =











A1 S1

A2 S2

. . .
...

Ak Sk











(2.2)

where P and Q are permutation matrices, the Ai are rectangular submatrices with
fewer rows than columns, and the block of columns with Si as submatrices has as
few columns as possible. The partitioning has the additional requirement that the
rectangular submatrices Ai have full row rank. A basis for the column space of each
submatrix Ai can then be used to assemble a sparse fundamental null space basis for
A. The requirement that the Ai submatrices have full row rank, however, is difficult
to satisfy. Thus, researchers have looked at the simpler case where A is an equilibrium
matrix, that is, a matrix having the structure of the node-edge adjacency matrix of
an undirected graph. In this case, either physical data from the problem or purely
algebraic schemes can be used to find a partitioning that satisfies all the requirements
[18, 20].

Our work differs from earlier work on computing null space bases in several re-
spects. It differs from earlier matching based approaches for computing null bases
since we use matching based methods to compute bases with sparse inverses for the
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column space. We also employ a divide and conquer approach based on hypergraph
partitioning for this problem. Finally, the results reported in earlier work, from the
mid 1980s, are on relatively small matrices with hundreds of columns; we report
results on much larger matrices.

2.2. Graph-theoretic Concepts. In this subsection we provide some basic
definitions of graph concepts used in the rest of the paper. A more detailed review of
relevant graph theory can be found in [8].

A graph G is denoted by a pair of sets (V, E), where V is a finite set of vertices
and E, the set of edges, consists of tuples (u, v) of distinct vertices, u, v ∈ V . If we
assign weights to the edges, then w(u, v) will denote the weight of the edge (u, v).

A path in a graph G = (V, E) from a vertex u to a vertex u′ is a sequence of vertices
p = 〈v0, v1, v2, . . . , vk〉, where v0 = u, vk = u′, and (vi, vi+1) ∈ E for 0 ≤ i < k. We
say a vertex u′ is reachable from a vertex u, if there is a path from u to u′ in the
graph.

A matching M in an undirected graph G = (V, E) is a subset of edges M ⊆ E such
that for all vertices v ∈ V at most one edge in M is incident on v. A vertex v is matched
in a matching M if some edge in M is incident on v and it is unmatched otherwise. A
matching is perfect if all the vertices in the graph are matched. If the edge (u, v) ∈ M
is in the matching, then vertices u and v are mates. The maximum (cardinality)
matching problem is the problem of finding a matching of maximum cardinality in
a given graph. The maximum weight matching problem is the problem of finding a
matching that maximizes the total weight of its edges; such a matching need not
be a matching with maximum cardinality in the graph. A third variant problem is a
maximum cardinality matching with maximum weight , which is the problem of finding
among all maximum cardinality matchings the one of maximum weight. All of these
matching problems are well-studied in the literature, and polynomial-time algorithms
have been designed for all of them.

Matching problems and algorithms are easier on bipartite graphs. A graph G =
(V, E) is bipartite if the vertex set V can be partitioned into two sets V1 and V2 such
that any edge (u, v) has one vertex in V1 and one vertex in V2. Hopcroft and Karp [14]
designed an O(|E|

√

|V |) time algorithm for maximum cardinality bipartite matching,
which is asymptotically the fastest known algorithm for this problem.

2.3. Structural Rank of a Matrix. The structural rank of a matrix is the
maximum rank among all matrices with the same nonzero structure but different
numerical values. Thus the structural rank of a matrix is an upper bound on its
numerical rank, and if the numerical values are chosen to avoid numerical cancellation,
the two ranks are equal.

The structural rank of a matrix is equal to the cardinality of a maximum matching
in the bipartite graph associated with the matrix. The bipartite graph G = (R, C, E)
of a matrix A = (aij) has a vertex ri ∈ R for the ith row and a vertex cj ∈ C for the jth
column. Each nonzero aij in the matrix corresponds to an edge (ri, cj) in the bipartite
graph. Every edge in E has one column vertex and one row vertex for its endpoints,
and thus the row vertices R and column vertices C form the bipartition of the vertex
set of G. Since the structural rank of the matrix is equal to the cardinality of the
maximum matching in the bipartite graph, and is an upper bound on the numerical
rank, every nonsingular matrix has a perfect matching in its bipartite graph.

A row-perfect matching M in the bipartite graph G of a matrix A (i.e., a matching
in which every row vertex is matched) can be used to permute columns (or rows) A
to bring nonzeros to the diagonal. Let A be a matrix with m rows and n columns, as
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Fig. 2.1. A square matrix, its bipartite graph, and the permuted matrix with a nonzero diagonal.

in Section 1, and let the rows of A be ordered as r1, r2, . . . , rm. When we order the
columns of the matrix as the 〈 mate of row vertex r1, mate of r2, . . ., mate of rm〉,
with respect to some row-perfect matching, we place m nonzeros on a “diagonal” of
A, corresponding to the m edges in the matching. For a square matrix, this is indeed
the diagonal of the matrix, as illustrated in Figure 2.1.

Throughout this paper we assume that the structural rank of a matrix is equal
to its numerical rank, an assumption that has been called the weak Haar property
(wHP) [19]. If numerical values are assigned to the nonzeros of the matrix A randomly,
then with high probability this assumption will be satisfied. Another approach is to
assign algebraically independent values to the nonzeros (i.e., numbers that are not
the roots of any multivariate polynomials with integer coefficients, since such roots
form a set of measure zero); see Gilbert [11].

In practice, matrices from applications do not satisfy the wHP; one cause is
duplicate columns in the matrix A. In null basis computations, failure of the wHP
leads to even more sparsity than predicted by a matching based method in the null
basis. In both null basis and column space basis computations, the numerical rank of
a basis with full structural rank needs to be computed using a numerical factorization.

2.4. Structure of the Inverse of a Matrix. The sparsity structure of the
inverse of a square, non-singular matrix is determined by the path structure of the
directed graph of the matrix. The directed graph G = (V, E) of a square matrix
F = (fij) of order m has the vertex set {v1, v2, . . . vm}, (where both the ith row and
column are represented by the vertex vi); and the edge set

E = {(vi, vj) : i 6= j and fij 6= 0}.

We assume all diagonal entries of F are nonzero. Note that the existence of the inverse
relies on the nonsingularity of F , which implies the existence of a perfect matching
in the bipartite graph of F ; thus the columns of F could be permuted to place m
nonzeros on the diagonal.
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Fig. 2.2. A matrix F (top left), the directed graph G of its transpose F T (top right), the
transitive closure of G (bottom left), and the structure of its inverse matrix F −1 (bottom right).

The transitive closure of a directed graph G = (V, E) is the directed graph G∗ =
(V, E∗), which has an edge corresponding to every directed path in G. That is,

E∗ = {(vi, vj) : if and only if i 6= j and a directed path joins vi to vj in G}.

Gilbert [11] discusses the equivalence between the graph of F−1 and the transitive
closure of the graph of F T (the latter graph is equivalent to the directed graph of F
with the edge directions reversed); this equivalence again assumes that the numerical
values of the nonzeros in F are algebraically independent. An example is illustrated
in Figure 2.2.

3. Complexity. In this section, we investigate the complexity of selecting a
column basis B with block diagonal structure. We investigate the complexity for
different values of the maximum block size K. When K = 1, the problem reduces to
finding a diagonal submatrix and can be solved by an optimal algorithm that requires
time linear in the number of nonzeros in A, nnz(A). Notice that columns of such a
submatrix should have exactly one nonzero. Thus the problem reduces to finding a
column with a single nonzero for each row, which requires one pass over all columns
to find candidate columns, and a pass over rows to verify. For K = 2, the problem is
harder, but it still can be solved by a polynomial time algorithm as we show in the
next section. However, the problem becomes NP-complete for K > 2, the proof of
which is presented in the subsequent section.

3.1. Basis with 2 × 2 Blocks. In this section we show that the problem of
finding a block diagonal basis where the block sizes are bounded by 2 can be reduced
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Fig. 3.1. A matrix and the graph defined in Theorem 3.1.

to the problem of finding a matching in a graph. A basis with 2 × 2 blocks requires
matching pairs of rows with pairs of columns, so that column (row) pairs have nonzeros
only at the rows (columns) they are matched to. Observe that if the pairing of rows
is fixed, it will be easy to detect if there exists a column-pair that can be matched
to each row-pair. However, pairing rows is nontrivial. Our algorithm has two phases.
The first phase identifies all candidate row-pairs that might form the rows of a 2× 2
block diagonal basis. The outcome of this phase is a graph where each row in the
matrix is represented by a vertex, and candidate row-pairs are connected by edges.
The second phase chooses a maximum number of row-pairs among all the candidates.
Notice that each row can be part of multiple candidate row-pairs, and thus we need
to choose a maximum set of mutually disjoint pairs of rows, which corresponds to a
maximum matching in the graph. The following theorem formalizes the construction
and the result. For clarity of presentation, we assume the number of rows in matrix
is even. We will later relax this assumption.

Theorem 3.1. Given an m × n matrix A = (aij), where m is an even integer,
define a graph G = (V, E) so that

• Each row ri in A is represented by a vertex vi;
• The edge (vi, vj) ∈ E if and only if there are two columns k and t, with

nonzeros only in rows i and j, such that the submatrix

(

aik ait

ajk ajt

)

is non-

singular.

Then the matrix A has a block-diagonal basis with block size at most 2 if and only if
G has a perfect matching.

Note that the non-singularity of the 2 × 2 submatrix in the Theorem would still
permit one or two (in the latter case, one from each column) of the four submatrix
elements to be zero. Figure 3.1 illustrates the construction of this graph.

Proof. Sufficiency: A perfect matching gives N/2 vertex disjoint edges in G. By
construction, an edge in G is defined by two columns in A, with nonzeros only in two
rows such that the two columns and rows form a non-singular 2×2 submatrix. Thus a
perfect matching provides m columns to form a block diagonal basis with block sizes
at most 2 × 2.

Necessity: If there is a block diagonal basis for A with block sizes at most 2 × 2,
then the columns of each 2×2 block will contribute an edge to G; columns with single
nonzeros could be arbitrarily paired, and by the construction of G, there is an edge in
G corresponding to each such pair of columns. Hence G has a matching of size m/2,
since these edges need to be vertex-disjoint.

Corollary 3.2. The problem of finding a 2 × 2 block diagonal basis can be
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reduced to the maximum matching problem.

Proof. Theorem 3.1 shows the reduction when the number of rows is even. If the
number of rows is odd, we can add a pseudo-row, a pseudo-column, and a pseudo-
nonzero at their intersection. This new matrix has an even number of rows, and has a
block diagonal basis with blocks of size at most 2×2 if and only if the original matrix
has such a basis.

In some situations we might wish to construct a block diagonal basis with block
sizes bounded by two, which has the maximum number of 1 × 1 blocks. This can be
achieved by solving a weighted maximum matching problem, which gives a maximum
cardinality matching with maximum sum of weights of edges in the matching. We
can assign weights to edges of the graph described in Theorem 3.1 so that an edge
has a higher weight if it is defined by two columns, each having only a single nonzero.

3.2. Complexity for Larger Block Sizes. The reduction in the previous sec-
tion does not yield polynomial solutions when K > 2. Remember that the first phase
identifies candidate blocks for the basis, and the second phase chooses a mutually
disjoint subset of these blocks. Even though the candidate blocks (K × K or smaller
blocks that are nonsingular) can be identified in O(NK)-time, finding a mutually dis-
joint subset corresponds to the hypergraph matching problem when K ≥ 3, which
is known to be NP-complete [9]. In this section, we will show that the hypergraph
matching problem can be reduced to the problem of finding a block diagonal basis, to
prove the NP-hardness of our problem. The hypergraph matching problem is defined
as follows.

Given a collection HE of subsets of V , and a positive integer K ≤ |HE|, decide
if HE contains K mutually disjoint sets.

The hypergraph matching problem is known to be NP-complete, even when all
sets in HE have no more than 3 vertices [9]. For simplicity of presentation, our NP-
completeness proof will use a reduction from finding a perfect matching in a 3-regular
hypergraph. A matching is perfect if every vertex is adjacent to a hyperedge in the
matching. Below we first show how to transform a matching problem in a hypergraph
to a perfect matching problem in a related hypergraph. Without loss of generality,
we assume there are no hyperedges that cover the same vertex sets (i.e., duplicated
hyperedges).

Definition 3.3. Given a hypergraph HG = (V, HE) and a positive integer k,
the extended hypergraph HG′(k) = (V ′, HE′) is defined as follows.

• Vertex set V ′ contains the original vertices in V and (|V | − 3k) pairs of
auxiliary vertices, i.e.,

V ′ = V ∪ (

|V |−3k
⋃

i=1

{ui, vi}).

• The hyperedge set HE ′ contains the original hyperedges in HE and V hyper-
edges for every pair of auxiliary vertices that connects the pair to every other
vertex in V . The formal definition follows.

HE′ = HE ∪ (

|V |−3k
⋃

i=1

∪w∈V {ui, vi, w}).

Figure 3.2 illustrates an example of the extended hypergraph construction.
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Fig. 3.2. A hypergraph HG and its extended hypergraph HG′(1). Hyperedges are represented
by dark circles, vertices by open circles, and lines connect each hyperedge to vertices belonging to
it. In this example, K = 1; the extended hypergraph HG′(1) has |V | − 3K = 4 − 3 = 1 pair of
auxiliary vertices, and four hyperedges (marked with dashed lines) connecting the auxiliary vertices
to all other vertices.

Lemma 3.4. The hypergraph HG has a matching of size K if and only if the
extended hypergraph HG′(K) has a perfect matching.

Proof. The main observation in the proof is that each one of |V | − 3K auxiliary
pairs can be matched with any vertex in V .

• Sufficiency: A matching of size K in HG covers 3K vertices in V . Each of
the remaining |V | − 3K vertices can be matched through a hyperedge that
connects it to an unmatched auxiliary vertex pair.

• Necessity: The auxiliary pairs cover at most |V | − 3K vertices in V , thus the
remaining 3K vertices must be matched through hyperedges in HE.

Theorem 3.5. It is NP-complete to determine if a matrix has a block-diagonal
basis with block sizes bounded by three.

Proof. We will use a reduction from the 3-regular hypergraph matching problem.
As shown in Lemma 3.4 a matching problem on HG can be reduced to a perfect
matching problem on its extended hypergraph HG′. Observe that if HG is 3-regular,
then HG′ is 3-regular as well. For simplicity of presentation we will describe the
reduction from the extended graph.

Given a hypergraph HG and a bound on the size of the matching, let HG′(K) =
(V, HE) be its extended hypergraph. Define a |V | × 3|HE| matrix A so that each
vertex in V is represented by a row in A, and each hyperedge is represented by three
columns with the same nonzero structure, with nonzeros in rows corresponding to the
vertices of the hyperedge. This gives a 3× 3 dense submatrix in A, and we can assign
numerical values to make this submatrix nonsingular (e.g., assign them algebraically
independent values).

We claim that the extended hypergraph HG′(K) has a perfect matching if and
only if A has a block diagonal basis with 3|V | nonzeros.

• Sufficiency: A perfect matching in HG′(K) gives |V |/3 vertex disjoint hyper-
edges, and each hyperedge is represented by three columns that form a 3× 3
nonsingular block with the rows corresponding to vertices of the hyperedge.
By definition of a matching, the hyperedges are vertex disjoint, and thus the
blocks are non-overlapping, which gives us a basis of |V |/3 blocks, each of
size 3 × 3.

• Necessity: Notice that all columns of A have three nonzeros, which forces
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blocks of the basis of size at least three. A basis with 3|V | nonzeros is achieved
only when the basis consists of 3 × 3 blocks. Such a solution requires |V |/3
row disjoint columns in A, which define |V |/3 vertex-disjoint hyperedges in
HG′(K).

This proves the NP-hardness of the problem. Since the correctness of a solution can
be verified in polynomial time, the problem is NP-complete.

4. Greedy approaches for finding a basis with a sparse inverse. The
problem of selecting m columns from an m × n matrix A to form a structurally
nonsingular matrix B is equivalent to finding a row-perfect matching in the bipartite
graph of A. However, we need a basis that preserves its sparsity after inversion. We
could try to obtain a sparse B−1 by making B as sparse as possible. This can be
achieved by solving a weighted bipartite matching problem, with the weight of each
edge equal to the degree of the column vertex it is incident on. A perfect matching in
this bipartite graph finds a submatrix of m columns with the fewest nonzeros, which
is structurally nonsingular. However, sparsity in B does not guarantee sparsity in its
inverse. A well-known example of this is a tridiagonal matrix, which has a completely
dense inverse. As discussed in Section 2.3, the structure of the inverse of a matrix
F is given by the transitive closure of the directed graph of the transposed matrix
F T , and thus what is important is not the sparsity but the path structure in the
directed graph of BT . Each edge in the transitive closure of a graph corresponds to a
directed path in the graph, and thus we need to choose B to minimize the number of
vertices reachable by a directed path from a given vertex in the directed graph of BT .
Since a block diagonal matrix B is composed of decoupled blocks, the directed graph
of BT consists of several connected components, one for each block; this structure
limits the number and lengths of directed paths in the directed graph of BT . Thus a
block diagonal matrix is one effective method to limit reachabilities and the number
of nonzeros in B−1. However, many matrices might not possess a block diagonal basis
with small block sizes; such matrices might nonetheless have a block angular basis, in
which a group of coupling columns is present in addition to the diagonal blocks. We
discuss block angular bases later in this section.

In this section, we present greedy techniques that find block angular bases for the
column space. Our techniques rely on adding columns to a partial basis one by one.
When choosing a column to add, we require that it should increase the structural
rank of the partial basis by one; the column should also minimize a cost function
that attempts to keep the block sizes small and the number of blocks in the partial
basis large. The proposed methods call for efficient techniques for detecting whether
a column increases the structural rank, for updating the block structure of the matrix
as new columns are added, and for searching the space of candidate columns to add
to the basis.

4.1. Feasibility. For structural nonsingularity of a basis B, it is necessary and
sufficient that B should have a perfect matching in its bipartite graph. While con-
structing the basis, we choose columns so that each column increases the size of the
matching in the bipartite graph, and hence the structural rank of the matrix by one.
We use an augmenting path to determine if a column increases the structural rank, a
technique that has been used earlier in null basis computations [7].

Consider a bipartite graph G = (R, C, E) and a matching M in this graph. We
will use ci to denote a column vertex belonging to the set C, and ri to denote a row
vertex belonging to the set R. An augmenting path 〈c0, r0, c1, r1, . . . ck, rk〉, is a path
between two unmatched vertices c0 and rk, whose edges alternate between matched
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Fig. 4.1. Checking the feasibility of a column. We check if column c3 can be added to the
current basis consisting of columns c0, c1, and c2. An augmenting path that starts with c3 and ends
at r3 is shown in the graph in the middle of the Figure. The matrix with column c3 added to the
basis is shown on the right.

and unmatched edges. The set of matched edges in the augmenting path, M0, is
M0 = {(ri, ci+1) : 0 ≤ i < k}, with M0 ⊆ M . The set of unmatched edges in the
augmenting path, M1, is M1 = {(ci, ri) : 0 ≤ i ≤ k}. Note that by the definition of an
augmenting path, the cardinality of M1 is one more than that of M0. If an augmenting
path exists, then the size of the matching M can be increased by interchanging the
matched and unmatched edges along the path. Hence M ′ = (M \ M0) ∪ M1 is a
matching whose cardinality is one greater than that of M . To determine if a column
increases the size of the matching, we search for an augmenting path starting with
this column. If one exists, then this column increases the size of the matching and
thus is feasible. A more detailed discussion on augmenting paths can be found in [8].
Figure 4.1 illustrates an example.

4.2. Cost Function. Among the feasible columns, we want to choose one that
perturbs minimally the block diagonal structure of the partial basis. Initially each
row is a block by itself. When the first column is included in the basis, all of the rows
in which it has nonzeros are merged into a single block.

Given a partial block diagonal basis, consider the addition of a new column to the
basis. The set of rows in which the new column has nonzeros can be organized into
blocks induced by the block structure of the current basis. The addition of the new
column to the basis will cause these blocks to be merged into a single new block. We
define the current cost of a column as the difference between the square of the new
block size and the sum of squares of the sizes of the blocks it merges. More precisely,
let a candidate column c have nonzeros in the current blocks m1, m2, . . . , mk; then the
addition of the column c to the current basis will cause these k blocks to be merged
into a single block. Thus the current cost of the column c is

(

k
∑

i=1

mi

)2

−

k
∑

i=1

m2
i .(4.1)

At each step, we choose a column that has the least cost among all columns not yet
in the basis. The first term of the cost function in Eq. 4.1 is an upper bound on the
number of nonzeros in the inverse of the merged block, and thus the cost of a column
corresponds to the increase in this upper bound.

However, a basis B computed by using this cost function will not in general be
block diagonal (with small block sizes), since the cost function does not look ahead
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Fig. 4.2. Three block angular forms of matrices.
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of the current step in order to ensure small diagonal blocks. A more global view of
the nonzero structure of the matrix A is required to identify diagonal blocks of small
size in a basis B. However, the cost function creates disjoint blocks of small sizes
in the partial basis and delays the merger of such blocks as long as possible until
such merger becomes necessary to obtain a basis. Hence we expect to obtain a block
angular structure for the basis B rather than a block diagonal structure.

Three block angular forms of a sparse matrix are shown in Fig. 4.2. The form
that applies to our situation is the column bordered block angular form. In this form,
the diagonal blocks are coupled by the submatrices in the last block of columns.

The block angular structure of the basis leads to short directed path lengths for
most vertices, while a few vertices corresponding to the coupling columns are involved
in longer directed paths. The transitive closure of the directed graph of such a basis
leads to few ‘fill edges’ for the many vertices in the first set, and to greater ‘fill’ for
the few vertices in the second set. Thus this approach leads rather to sparse inverses
in the column basis B.

Computing the cost of a column only requires identifying the blocks its rows
belong to, and this can be implemented efficiently. However, adding a column to
the basis could change its block structure, and consequently the costs of many other
columns. Specifically, adding a column to the basis changes the costs of all columns
that have a nonzero in a row of a block that the column is incident on. Recall that
we work on matrices in which the number of columns is much larger than the number
of rows, and thus updating costs of columns after each time we add a column could
be time consuming.

The block structure of the basis changes dynamically as new columns are added.
The efficiency of our heuristics in this section rely on effective data structures to
maintain the block structure of the basis. Combinatorially this problem is equivalent
to implementing disjoint set operations. Each block can be considered as a set of rows,
and each column added to the basis is equivalent to a sequence of union operations
on the sets of its rows. A detailed discussion on data structures for disjoint sets can
be found in [8].

4.3. Searching the Space of Candidate Columns. In the previous two sub-
sections we discussed first how to find a feasible column, and next our greedy strategy
to choose a column. In this subsection, we will discuss our techniques to efficiently
search for a column to add to the basis. A brute-force approach will search all columns
to find a feasible column with minimum cost, and will not be efficient. Here we pro-
pose two algorithms to search for candidate columns. The first method is column
based and maintains a priority queue of columns with respect to their costs, whereas
the second method is row based and chooses the next column among those that can be
matched to a given row. In the next two subsections we discuss these two heuristics.
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4.3.1. Column-based Search. Our column-based search algorithm, as illus-
trated in Algorithm 1, maintains a priority queue of columns with respect to their
costs. The feasibility of a column with the minimum cost is tested, and if feasible, it
is added to the basis. To determine the feasibility of a column we look for an aug-
menting path that starts with it. If we reach an unmatched row, then the column is
feasible, since it increases the structural rank by one. If there is no augmenting path
that starts with this column, then it is infeasible, and it is discarded for the rest of
the algorithm.

For the priority queue, we used a bucket data structure, since the cost of each
column is an integer, and most columns have very small costs. Recall that our main
motivation is to find a basis B that can be easily inverted, which requires small blocks
in the block diagonal structure. This means when the best column already has a very
high cost that falls out of the range maintained in the buckets, it is highly likely that
the inversion will not be feasible, thus we can abort the algorithm.

The critical part of this heuristic is updating the costs of columns after adding
a column to the basis, and the consequent update to the block structure. Initially,
we consider each row as a separate block; thus the cost of column ci, from Eq. 4.1,
is deg(ci)

2 − deg(ci), where deg(ci) is the number of nonzeros in column ci. After
a column is added, the new block structure changes the costs of some columns. Re-
computing the costs of all columns will not be efficient, and we have to restrict the
updates to only those columns whose costs are changed.

The cost of a column changes only if one of the blocks it is adjacent to is merged
into a bigger block. These are exactly the columns at a distance two (edges) from
the column ci in a bipartite graph representation in which each diagonal block in
the current basis is represented by a block row vertex and a block column vertex.
Equivalently, these columns are at a distance two from the columns in the current
basis in the bipartite graph that represents the original matrix A. Based on this
observation, after adding a column ci to the basis, we generate a list of columns
adjacent to rows in the new block generated by the column ci and update their costs.
Our algorithm is presented below.

1: Set B = I and assign a cost to each column of A
2: for i = 1 to m do

3: repeat

4: Choose an unmatched column vertex c with the minimum cost
5: Search for an augmenting path beginning at vertex c
6: If no augmenting path can be found, then remove c from further consideration
7: until an augmenting path is found
8: Denote the final vertex on this path by r
9: Replace the r-th column of B by the c-th column of A, and add r and c to the

set of matched vertices
10: Update the cost of each unmatched column of A at a distance of two from

columns in the same block as c
11: end for

Algorithm 1: Column algorithm for computing a basis that has a sparse inverse.

The most time-consuming part of the Column algorithm is updating the costs
of columns after adding a column to the basis. Moreover, since we are working on
matrices that have many more columns than rows, the column based heuristic has a
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a huge search space, and this leads to slow runtimes.

The time complexity of this algorithm is not easy to compute since the block sizes
grow through the union of smaller blocks as columns are added to the basis during
the algorithm. However, a worst-case bound (that is not realistic for sparse problems)
is as follows. The dominant computation is updating the costs of the columns at a
distance two from the columns in the current basis. The costs of all these columns
can be updated in time proportional to nnz(A), the number of nonzeros in A, after a
new column is added to the basis. Since there are m such column additions, the total
cost of the column updates is O(m nnz(A)) time. This is equal to the complexity of
computing a maximum weighted matching in the bipartite graph of A.

4.3.2. Row-based Search. The row-based algorithm restricts the search space
of columns whose costs need to be updated at each step to only those columns that
can be reached by an augmenting path from a given row. We compute the cost of
each unmatched column we reach, and choose one with minimum cost. This avoids
the burden of updating column costs after each step. The row-based algorithm is
presented as Algorithm 2.

1: Set B = I and assign a cost to each column of A
2: for i = 1 to m do

3: Select an unmatched row vertex r
4: Search for all augmenting paths beginning at vertex r, and denote the set of

final vertices on these paths by Cr

5: Compute the cost of every column in Cr, and select a column c of minimum
cost

6: Replace column r of B by the cth column of A, and add r and c to the set of
matched vertices

7: end for

Algorithm 2: Row algorithm for computing a basis that has a sparse inverse

In this algorithm, the order in which the rows are considered is not specified (line
3 of Algorithm 2). However, the quality of the solutions depends on the order in
which the rows are processed. In our experiments we used ascending and descending
number of nonzeros per row, as well as random orderings.

As in the column algorithm, the time complexity of the row algorithm can be
bounded by O(m nnz(A)). However, we expect the row algorithm to be faster than
the column algorithm, since the costs of only the columns in the set Cr needs to be
computed when the row r is matched to some column.

5. A Top-down Approach. The greedy heuristics described in the previous
sections work in a bottom up fashion, in which columns are added to a partial basis
one by one, while trying to preserve a block angular form in the basis (and thereby
sparsity in the inverse of the basis) as far as possible. In this section, we describe a top-
down approach, where we remove columns from A in order to decompose the resulting
matrix into multiple diagonal blocks. The idea is analogous to the nested dissection
algorithm used to order sparse matrices to preserve sparsity during factorization. In
this section, we discuss how to remove a small set of columns to decompose the residual
matrix into two block diagonal submatrices. Then we propose a divide-and-conquer
method that recursively applies this idea to choose a basis with small diagonal blocks.
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Fig. 5.1. Permuting a matrix to block angular form with hypergraph partitioning.
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5.1. Permuting Matrices to Block Angular Form. A block angular matrix
is composed of independent blocks on the diagonal along with coupling rows and
columns, as was illustrated in Figure 4.2. The block angular forms of a matrix can be
exploited for parallel computation of LU and QR factorizations, and in decomposition
algorithms to solve linear programming problems. Pinar et al. studied the problem
of permuting a matrix to block angular form [17, 16]. A thorough discussion on
methods to permute matrices to block angular form can be found in [2]. Here we
consider hypergraph models for the problem of computing a column bordered block
angular form.

The nonzero structure of a matrix can be represented by a hypergraph, where
each row is represented by a vertex, and each column is represented by a hyperedge.
Each hyperedge representing a column is the subset of row vertices in which the
column has nonzero elements. An example is illustrated in Figure 5.1. We call this
a column hypergraph representation, since the hyperedges correspond to columns.
An alternative row hypergraph representation for a matrix would represent columns
by vertices and rows by hyperedges. However, in this context, a column hypergraph
representation is the appropriate one.

The hypergraph partitioning problem is the problem of decomposing the vertices
of the hypergraph into two or more parts, so as to minimize the number of hyper-
edges with vertices in different parts, while keeping the numbers of vertices in the
parts roughly equal. A hyperedge whose vertices belong to more than one part is
a cut hyperedge; a hyperedge whose vertices belong to only one part is an internal
hyperedge. Hypergraph partitioning can be used to identify a permutation of the
matrix to a block angular form. Given a partitioning of the hypergraph, we can per-
mute the matrix so that vertices in the first (second) part define the rows in the first
(second) block, and columns corresponding to internal hyperedges define the columns
of the two blocks. Cut hyperedges constitute the coupling columns. By definition of
hypergraph partitioning the blocks of the matrix will be block diagonal. Minimiz-
ing the cut size while partitioning the hypergraph minimizes the number of coupling
columns in the block angular form of the matrix, and the size balance among parts of
the hypergraph translates to balance among blocks of the matrix. Fig. 5.1 illustrates
these concepts.

5.2. A Divide-and-Conquer Algorithm. The technique presented in the pre-
vious section can be used to find a block angular basis. We can partition the hyper-
graph so that the number of rows in each block is below a prescribed threshold. This
can be done either by determining the minimum number of parts that guarantee
that the number of rows in each block is below the threshold, or by partitioning the

16



hypergraph recursively until each block is smaller than the threshold.

Merely finding a block angular submatrix is not sufficient for our purposes. We
need to extract a subset of a basis from each diagonal block, so each such submatrix
should have at least as many columns as rows, and further it should be structurally
non-singular. There is no guarantee that hypergraph partitioning will preserve full row
rank (either structural or numerical) in the decomposed submatrices. It is impractical
to enhance the hypergraph partitioner to enforce the full row rank in the blocks. We
postpone handling the structural nonsingularity constraint to a post-processing phase.

We first compute the block angular form of the matrix, and then run the column
algorithm from the previous section to find a block diagonal sub-basis in each diagonal
block. At the end of this step, some rows in each submatrix might remain unmatched,
which means the number of columns chosen for the basis is smaller than the number
of rows. In a post-processing phase, we run the row-based greedy algorithm to add
columns to the basis from the set of coupling columns for structural nonsingularity.
In our experiments, we have observed that only a few rows remain to be processed in
the post processing phase.

The time complexity of computing the block angular form is dominated by the
complexity of the hypergraph partitioning algorithm, which needs to be recursively
applied until the block sizes are small enough. Each partitioning step in the recursion
can be implemented using the multilevel partitioning algorithm in time linear in the
size of the hypergraph, which is nnz(A). Thus the complexity of the hypergraph
partitioning needed to compute the block angular form is bounded by log m nnz(A).
(Currently available multilevel hypergraph partitioners use a few heuristics in the
coarsening and refinement steps, which require more than linear time, in order to
improve the quality of the partitions.)

6. Experimental Results. The Row, Column, and Top-down algorithms dis-
cussed earlier were implemented in C and experiments were performed on a Sun Blade
100. The processor was a SPARC V9 operating at 502 MHz, with 128 MB of memory,
running Solaris; the Gnu C compiler was used.

Initially we experimented with more than 105 problems from the Netlib LP test
set [10]. We report results for every problem that has at least 1, 000 rows, 38 problems
in all. Of these, Table 6.1 lists 26 problems. Eight of the other problems are multi-
commodity flow problems from the ‘ken’ and ‘pds’ families, on which we perform
scalability studies that will be discussed later. Results on four additional problems
from the LP test set, ‘truss’, ‘cre-b’, ‘gosh’ and ‘d2q06c’, are reported later as well.

We report the number of rows, columns, and average number of nonzeros in a
column for the matrices in Table 6.1, and also the average number of nonzeros in a
column of the column basis B and its inverse B−1. The problems are ordered by
the average number of nonzeros in a column of the basis inverse. The bases were
computed by the Top-down algorithm for the first 20 problems, and for the last 6
problems, the results reported were computed by the Column algorithm. (For the
latter problems, the Column algorithm performed better.) We see that 17 of the 26
matrices have fewer than 5 nonzeros in an average column of the inverse basis of the
column space. For 9 of these problems, a diagonal basis B was found.

We emphasize that we did not try to optimize the choice of parameters or options
for the results reported above. It is possible that better choices of these values and
better algorithms could lead to sparser bases for the five problems where the average
number of nonzeros in a column is greater than ten. These results should help dispel
the folk wisdom that most optimization problems do not have sparse inverses for their
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Table 6.1

Sparsity in the bases and their inverses for LP matrices with at least 1000 rows from the Netlib
LP collection. Here m is the number of rows, n is the number of columns, the number of nonzeros
is |A|, and the average number of nonzeros in a column is |A|/n. The results show the average
number of nonzeros in a column of the basis B and in its inverse B−1. The results are reported for
bases computed by the Top-down algorithm for most of the problems, except for the last six. For the
latter, the Column algorithm was employed.

m n |A|/n |B|/m |B−1|/m

80bau3b 2,262 11,934 1.95 1.0 1.0
fit2p 3,000 13,525 3.71 1.0 1.0
maros-r7 3,136 9,408 15.4 1.0 1.0
osa-07 1,118 25,067 5.78 1.0 1.0
osa-14 2,337 54,797 5.79 1.0 1.0
osa-30 4,350 104,374 5.79 1.0 1.0
osa-60 10,280 243,246 5.79 1.0 1.0
sctap2 1,090 2,500 2.92 1.0 1.0
sctap3 1,480 3,340 2.92 1.0 1.0
pilot87 2,030 6,680 11.2 1.2 1.5
cre-a 3,428 7,248 2.51 1.3 1.7
pilot 1,441 4,860 9.13 1.3 1.7
cre-c 2,986 6,411 3.16 1.3 1.8
cre-d 6,476 73,948 3.33 2.0 2.5
sierra 1,227 2,735 2.93 1.9 3.6
bnl2 2,324 4,486 3.34 2.2 3.8
ship12s 1,042 2,869 2.89 2.8 4.8
ship12l 1,042 5,533 2.94 2.8 6.1
greenbea 2,389 5,598 5.55 4.3 8.0
greenbeb 2,389 5,598 5.55 4.3 8.0
ganges 1,309 1,706 4.07 2.7 9.3
woodw 1,098 8,418 4.45 3.5 11
stocfor2 2,157 3,045 3.07 2.3 21
degen3 1,503 2,604 9.77 6.9 28
stocfor3 16,675 23,541 3.09 2.3 35
dfl001 6,071 12,230 2.91 2.1 48

column space bases.
We choose to report more detailed results on matrices from a subset of Netlib

linear programs (LPs) shown in Table 6.2. Problems from the ‘ken’ and ‘pds’ families,
which are multi-commodity flow problems, permit us to study how the results scale
as the problem sizes increase. Two problems in Table 6.2 were selected from outside
the Netlib set of LPs. X135 is a matrix from structural analysis that has a block
diagonal basis B with block size bounded by four [5]. The ‘pigs’ matrices are least
squares problems (transposed) from problems in animal breeding.

In the following tables, the results are reported as the average number of nonzeros
per column of B, denoted by |B|/m; and the average number of nonzeros per column
of its structural inverse, denoted by |B−1|/m.

Table 6.3 shows the influence of row orderings on the Row algorithm for three
problems. Four different orderings were used: the original ordering, ascending order in
the number of nonzeros in a row, descending order in the number of nonzeros in a row,

18



Table 6.2

Matrices used in the experiments, showing the number of rows, m; the number of columns, n;
the number of nonzeros, |A|; and the average number of nonzeros in a column, |A|/n.

m n |A| |A|/n

truss 1,000 8,806 27,836 3.2
d2q06c 2,171 5,831 33,081 5.7
X135 4,182 26,346 61,064 2.3
gosh 3,790 13,455 99,953 7.4
cre-b 7,240 77,137 260,785 3.4

ken07 2,426 3,602 8,404 2.3
ken11 14,694 21,349 49,058 2.3
ken13 28,632 42,659 97,246 2.3
ken18 105,127 154,699 358,171 2.3

pds02 2,953 7,716 16,571 2.1
pds06 9,881 29,351 63,220 2.2
pds10 16,558 49,932 107,605 2.2
pds20 33,798 108,175 232,647 2.2

pigs-m 6,119 9,397 25,013 2.7
pigs-l 17,264 28,254 75,018 2.7
pigs-v 105,882 174,193 463,303 2.7

and random ordering. For random orderings, ten trials were used, and the average,
minimum, and standard deviation of the results are reported. For problem X135, the
Row algorithm computes bases with sparse inverses, while they are progressively less
sparse for the ‘ken18’ and ‘pigs-v’ problems. We will see that other algorithms are
capable of computing sparser bases for the latter two problems. For the ‘ken’ matrices,
the original ordering was best. For the ‘pigs’ matrices, the results were quite sensitive
to the ordering, but none of the orderings computed a basis with a sparse inverse. For
the other matrices, the results were not very sensitive to the ordering. Note, however,
that computations with ascending orderings are faster than the computations with
descending orderings for large problems, as is to be expected.

Table 6.4 shows the influence of block size on the sparsity of the basis inverse
for the Top-down method for three problems. Five different maximum block sizes
were used: 50, 100, 200, 400, and 800. Ten trials were used for each block size, with
each trial generating a different matrix decomposition. Note that the sparsities in the
inverses are comparable to those obtained by the row method for ‘X135’; better for
‘ken18’; and better by an order of magnitude for the ‘pigs-v’ problem. When larger
block sizes are allowed, the computation is faster and generally the sparsity varies less,
as expected. Except for the ‘pigs’ matrices, the results are generally not too sensitive
to the maximum block size. For the ‘pigs’ matrices, block sizes 50 and 100 gave poor
results; a block size of 200 generally gave the best results.

Table 6.5 compares the sparsity of the bases and their inverses for the three
algorithms we have discussed thus far, the Row and Column algorithms and the Top-
down algorithm. We include a fourth algorithm in the comparison, the Weighted
matching algorithm (WM), which weights each column with the number of nonzeros
in the column, and finds a row-perfect matching of minimum weight. This algorithm
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Table 6.3

The influence of row orderings on the row method for three problems. Ten trials were used for
the random ordering.

|B−1|/m
order average min. std. time (s)

X135 original 1.04 0.03
ascend 1.04 0.03
descend 1.04 0.03
random 1.04 1.04 0.00 0.03

ken18 original 16.1 64.7
ascend 28.2 42.9
descend 25.5 137
random 23.8 23.3 0.43 171

pigs-v original 352 15.3
ascend 588 14.1
descend 154 52.0
random 671 292 342 89.6

Table 6.4

The influence of block size on the Top-down method for three problems.

block |B−1|/m
size mean min. std. time (s)

X135 50 1.04 1.04 0.00 1.07
100 1.04 1.04 0.00 0.91
200 1.04 1.04 0.00 0.72
400 1.04 1.04 0.00 0.56
800 1.04 1.04 0.00 0.42

ken18 50 12.8 12.6 0.15 32.6
100 13.3 13.1 0.13 30.4
200 13.8 13.6 0.17 26.4
400 13.9 13.8 0.09 22.8
800 14.1 13.8 0.16 19.3

pigs-v 50 55.6 35.9 11.0 41.4
100 20.6 18.1 1.64 38.0
200 14.2 13.8 0.33 33.6
400 16.0 15.6 0.18 28.7
800 20.6 19.7 0.57 25.3

finds the sparsest column space basis B, although it does not directly control the
number of nonzeros in the inverse of the basis.

The results in Table 6.5 indeed show that the Weighted matching algorithm pro-
duces the sparsest bases B, but with inverses that could be much denser than those
of other methods. Note that for all methods, the average number of nonzeros in a
column of the column space basis B compares favorably with the average number of
nonzeros in a column of the matrix A, shown in Table 6.2.
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Ranking the methods from worst to best in terms of the size of |B−1|, we have
the Weighted matching algorithm, the Row algorithm, the Top-down algorithm, and
the Column algorithm. For the ‘ken’ and ‘pds’ families of problems, we note that
there is a very slow degradation in the results as problem sizes increase. For the ‘pigs’
family of problems, the average number of nonzeros per column of the basis inverse
decreases with problem size for the Top-down method.

It is important to note that if viewed as a block diagonal basis, the actual block
sizes in the bases B computed by our algorithms can be large. Instead, we compute
block angular bases, in which each of the diagonal blocks exhibits a block angular
structure recursively. The recursive block angular structure prevents the creation of
many long directed paths in the directed graph of the partially computed basis (since
such paths would case diagonal blocks of large order to merge), and thus controls the
number of nonzeros in the inverse basis. Hence the sparsity in the inverse bases for
the column space is a direct result of the objective function that we have employed.

Table 6.6 shows the run time requirements of the algorithms. The results show
that the Column algorithm can be slow, especially for problems with large num-
bers of columns. The Top-down algorithm is much faster, and produces solutions of
comparable sparsity in most cases. The runtimes for the Top-down algorithm are
dominated by the time for hypergraph partitioning. The hypergraph partitioner Pa-
ToH [22], which we used for the experiments, has been designed to generate partitions
with precise definitions of balance and metrics of partition quality. However, in this
application, we need a decomposition of the matrix into smaller submatrices, with
block sizes bounded for each submatrix. There is no precise definition of balance, and
minimizing the cut-size is pursued only to increase the chance of obtaining diagonal
blocks with full structural rank. Thus a faster hypergraph partitioner could be used
in our application at the cost of increased cut sizes, such as methods based on net
intersection graphs [16].

We summarize our results as follows. For generating bases that have sparse in-
verses, the Column algorithm and the Top-down algorithm are the best performers,
especially for the larger problems in the test set. The run times of the Weighted
matching algorithm are the lowest, but unfortunately, while it controls the sparsity of
the column space basis, it does not control the sparsity in the inverse. The run times
of the Column algorithm are high for larger problems. The Top-down algorithm com-
bines sparse inverses in the column space bases with low run time requirements. For
many of the linear programs and structural analysis problems, the inverse of a column
space basis is sufficiently sparse that computing it explicitly would be a viable option.
Even for the multicommodity flow problems, ‘ken’ and ‘pds’, and the animal breed-
ing problems, where the basis inverses are not as sparse as the remaining problems
considered, we believe that this approach yields computationally useful results.

Numerical Considerations. We have thus far focused on constructing struc-
turally nonsingular bases, whereas numerical nonsingularity is essential to construct
null space bases. While the structural rank is equal to the numerical rank for many
sparse matrices, this equality depends on the application that generates the matri-
ces. For instance, in our experiments we observed that in structural mechanics, the
structurally nonsingular bases we generated were numerically nonsingular as well. On
the other hand, among the LP matrices from the Netlib collection, it is common to
find pairs of columns that are multiples of each other, which causes the structurally
nonsingular bases to become numerically rank-deficient.

Choosing a basis for a sparse matrix is a problem that has both combinatorial
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Table 6.5

Number of nonzeros per column of the bases, B; and their structural inverses, denoted by B−1;
computed by four algorithms: Weighted matching (WM), Column algorithm (COL), Row algorithm
with original ordering (ROW), and Top-down algorithm with blocksize 200 (TD). Each result is the
average of ten runs.

|B|/m |B−1|/m

WM COL ROW TD WM COL ROW TD

truss 2.00 2.00 2.00 2.00 8.50 2.13 2.04 2.09
d2q06c 1.82 1.88 1.99 1.94 2.52 2.24 2.60 2.74
X135 1.04 1.04 1.04 1.04 1.60 1.04 1.04 1.04
gosh 1.53 1.55 1.76 1.92 1.94 1.93 2.22 2.47
cre-b 1.88 1.94 1.94 1.95 2.16 2.27 2.31 2.38

ken07 2.17 2.18 2.25 2.20 7.50 6.37 7.45 6.52
ken11 2.15 2.16 2.19 2.16 10.98 7.98 8.54 8.18
ken13 2.12 2.12 2.15 2.12 13.94 9.60 8.47 9.80
ken18 2.15 2.15 2.19 2.16 20.22 13.64 16.12 13.84

pds02 2.00 2.03 2.06 2.09 13.74 7.81 8.11 7.57
pds06 2.03 2.05 2.12 2.13 17.14 8.37 11.12 8.24
pds10 2.03 2.06 2.13 2.13 19.46 8.53 14.96 8.61
pds20 2.03 2.06 2.13 2.13 21.33 8.51 20.60 8.59

pigs-m 2.48 2.50 2.52 2.51 229.3 29.5 127.3 35.9
pigs-l 2.44 2.45 2.47 2.46 525.2 27.9 235.2 20.2
pigs-v 2.44 2.47 2.48 2.48 65.7 15.1 352.2 14.2

Table 6.6

The run times of the four algorithms in seconds.

WM COL ROW TD

truss 0.004 0.151 0.030 0.263
d2q06c 0.007 0.246 0.030 0.362
X135 0.019 1.121 0.030 0.715
gosh 0.016 1.083 0.070 1.242
cre-b 0.140 46.47 0.380 7.997

ken07 0.002 0.364 0.010 0.302
ken11 0.031 19.52 0.220 2.420
ken13 0.222 70.51 0.770 5.156
ken18 9.488 1643 64.73 26.44

pds02 0.001 0.562 0.030 0.570
pds06 0.034 7.291 0.420 2.806
pds10 0.114 19.14 1.260 5.390
pds20 0.813 77.68 5.660 14.23

pigs-m 0.009 3.846 0.120 1.085
pigs-l 0.252 39.65 0.810 3.973
pigs-v 5.319 899.6 15.26 33.60
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and numerical aspects. However, it is mostly the nonzero structure of the basis that
determines the computational costs of operating with this matrix.

In applications where the structural rank is close to the numerical rank, a struc-
turally nonsingular basis can be used as an initial basis, and then it could be aug-
mented by exchanging a few columns to achieve numerical nonsingularity. In appli-
cations where the structural rank is a poor approximation to numerical rank, the
combinatorial phase and the numerical phase should be interleaved. The algorithms
in this paper can be enhanced to achieve numerical nonsingularity in the computed
bases. The Row and Column algorithms add a column to the basis if it increases
the structural rank. It is easy to have the structural independence test be followed
by a numerical independence test, and accept a column to add to the basis only if it
increases the numerical rank also. For example, if the LU factorizations (with piv-
oting) of the partial bases are computed on-the-fly, these may be used for checking
linear dependence. Strictly speaking, we would need rank-revealing factorizations for
this purpose. However, in optimization contexts, especially at a point far from an
optimum solution, LU factorization with pivoting should suffice. Such an approach
has been implemented for null basis computations [7].

The Top-down algorithm decomposes the matrix A into a smaller, disconnected
submatrices by removing columns, and seeks a basis within each block. The Column
algorithm is used to obtain partial bases from each diagonal block, and thus in this
approach too, a numerically nonsingular subset of columns can be computed from
each block; if needed, additional columns could be chosen from the coupling columns
to augment the partial bases to a basis of the matrix A.

7. Conclusions and Future Work. We have obtained results on the complex-
ity of computing block diagonal bases for the column space. We have also designed
and implemented three heuristic algorithms for constructing bases with sparse inverses
for the column space. Our results from extensive tests with the NETLIB LP test set
show that bases with sparse inverses for the column space are more common than
what is generally believed. Thus it would be worthwhile to invest additional effort
in designing algorithms that will deliver sparse null space bases via the approaches
considered here. The sparse null space bases may be used in the construction of sparse
reduced Hessians in solving constrained optimization problems. Algorithms that are
designed to optimize the sparsity of the reduced Hessians would be more complex,
but could be the topic of further work.
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