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Abstract The parallel performance of several classical Algebraic Multigrid (AMG)
methods applied to linear elasticity problems is investigated. These methods include
standardAMG approachesfor systems of partial differential equationssuch as the
unknownandhybrid approaches, as well the more recent global matrix (GM) and
local neighborhood (LN) approaches, whichincorporaterigid body modes (RBMs)
into theAMG interpolationoperator. Numerical experimentsare presentedfor both
two- and three-dimensional elasticity problemsonup to 131 072 cores(and262 144
MPI processes) on the Vulcan supercomputer (LLNL, USA) and up to 262 144 cores
(and 524 288 MPI processes) on the JUQUEEN supercomputer (JSC, Jülich, Ger-
many). It is demonstrated that incorporating all RBMs into the interpolation leads
generally tofasterconvergence andimprovedscalability.

1 Introduction

Classical Algebraic Multigrid (AMG) methods were originally designed for scalar
partial differential equations (PDEs) and usually assume that the nullspace of the
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operator is one-dimensional and constant. This assumptiondoes not hold for many
systems of PDEs.For elasticity problems in particular,the nullspace consists of
three (in 2D) or six (in 3D) rigid bodymodes(RBMs), which comprise translations
and rotations. Classical AMG methods, including standard approaches modified to
handle systems of PDEs,e.g., the unknown approach [23],interpolatetranslations
but not rotations. Thislimitation will typically result in a loss of optimality and
scalability for these approaches when applied to systems problems.

Different approaches to handle linear elasticity problemswith AMG methods
have been suggested in the last decades, e.g., smoothed aggregation [26, 7], un-
smoothed aggregation [8, 19, 4, 20, 21, 3], AMGe [6], element-free AMGe [15],
local optimization problems to incorporate theRBMs in the interpolation [13], or
the global matrix (GM)andlocal neighborhood (LN) approaches [2].

In this paper, we provide a brief overview of AMG methods and AMG for sys-
tems inSect.2 and 3.In Sect. 4 and Sect. 5, we describe the GMand LN ap-
proaches, which werefirst introduced in [2].These twoapproaches explicitly incor-
porate given smooth error vectors into the AMG interpolation in order to handle the
correction of these error components in the coarse grid correction.We note that the
descriptions of the AMG methods and interpolations in this paper are based on both
[2] (which only considered sequential AMG) and on Chap. 4 of the dissertation [18].
In Sect. 6, we compare the performance of AMG approaches for systems of PDEs
and show that the GM and LN approaches can improve convergence and scalability
for elasticity problems.The parallel numerical results on up tohalf a million MPI
processespresented inSect.6 are new and have not been published elsewhere(as
[2] contained only serial results for small problems).

2 Algebraic Multigrid

We first give a brief overview of AMG.Consider the linear systemAu = f , which
is often generated from the discretization of a scalar PDE. We denote withui the
i-th entry ofu. As in geometric multigrid, one needs to define a hierarchy ofcoarser
grids or levels, adequate smoothers or relaxation schemes for each level and restric-
tion, and interpolation operators to move between levels. However, unlike geometric
multigrid, algebraic multigrid methods are applied to the linear system without any
geometrical or mesh-related information.

Because grid information is not given, one needs to use the linear system to
define a “grid”. The variablesui are now the grid points and the non-zero entriesai j

of matrixA define the connections between the grid points. Because not all variables
are equally important, one defines the concept ofstrong dependence. For a threshold
0 < θ ≤ 1, a variableui strongly depends on the variableu j if

−ai j ≥ θ max
k 6=i

(−aik) (1)
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To determine the coarse-grid variables, which are a subset of the variablesui, one
first eliminates all connections that do not fulfill (1). Thenone applies a coarsening
algorithm to the remaining “grid”. For brevity, we do not describe any coarsening
algorithms here, but note that descriptions of several common coarsening strategies
and an investigation of their parallel performance can be found in [27] (e.g., Ruge-
Stüben [23, 25], HMIS [12] and Falgout [16]).

In AMG, errors are reduced by two separate operations: the smoothing or relax-
ation steps and the coarse grid correction. For an optimal AMG method, the coarse
grid correction and the relaxation strategy must be chosen carefully to complement
each other. While simple point-wise relaxation methods such as Jacobi or Gauß-
Seidel rapidly reduce errors in the directions of eigenvectors associated with large
eigenvalues, the reduction in directions of eigenvectors associated with small eigen-
values is less optimal; see [6] for details. Errors which arepoorly reduced by the
smoothing steps are referred to assmooth errors. More precisely,algebraic smooth
errors can be characterized byAe ≈ 0, wheree is an eigenvector associated with a
small eigenvalue. For an effective AMG method, the smooth error must be reduced
by the coarse grid correction. Therefore, an interpolationoperatorP needs to be de-
fined in such a way that the smooth errors are approximately inthe range ofP [6].
For additional details on interpolation operators, we refer the reader to various pub-
lications, e.g. [23, 25, 11, 28]. The restriction operatorR is often defined to be the
transposed operatorPT , since in the case of a symmetric positive definite matrixA,
the coarse grid operatorRAP is also symmetric positive definite. After interpolation,
restriction, and coarse grid operators have been defined anda relaxation strategy has
been determined, the solve phase can be performed.

For simplicity,consider the two-level case with one finegrid and one coarse grid.
For an approximate solutionu and the exact solutionu∗ of the systemAu∗ = f on the
fine grid, we have the relationshipAe = r, wheree := u∗−u is theerror vector and
r := f −Au is the residual. One AMG cycle to correct (or update)u is as follows:

1) Smoothν1 times on:Au = f
2) Compute the residual:r = f −Au
3) Solve on the coarse grid:RAPec = Rr
4) Correct u: u = u + Pec

5) Smoothν2 times on:Au = f .

To obtain afull multi-level AMG V-cycle, one needs to apply this algorithmre-
cursively, asdepicted in Fig. 1. For more details on classical AMG methods, see,
e.g., [25, 23].

3 Algebraic Multigrid for Systems of PDEs

We now consider a linear system of equationsAu = f derived from the discretiza-
tion of a system of PDEs withp scalar functions or unknowns. Now, each variable
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Fig. 1 One AMG V-cycle: Smoothing on the fine grid→Restricting to the coarsest grid→Solving
on coarsest grid→ Interpolating to the finest grid. (Figurefrom [18])

or degree of freedom (dof) of the linear system describes onephysical quantity in
a grid point or node. For example, in linear or nonlinear elasticity, we have one dof
describing one spatial direction in each node. For simplicity, we restrict our pre-
sentation here to the two dimensional case and consider an elasticity problem with
two unknowns,x and y, representing the two spatial directions. A detailed three
dimensional description can be found in [2].

For algebraic multigrid methods,the two common approaches totreatingsys-
tems of PDEssuch asAu = f arethe unknown approach (U-AMG) and the nodal
approach,e.g., [25, 23, 22, 10, 14, 1]. While U-AMG completely separates the dif-
ferent physical quantities, the nodal approach considers all unknowns belonging to
the same node at once and thus acts on a nodal basis.

We first take a brief look at theU-AMG. Here, we assume an unknown-related
ordering of the system matrix (i.e., first all dofs related to the unknownx followed
by those associated withy):

A =

[
Axx Axy

Ayx Ayy

]
. (2)

One now applies classical AMG coarsening and interpolationstrategies to the dif-
ferent variables separately, i.e., only to the diagonal blocksAxx andAyy. Note that
this strategy ignores couplings betweenunknownsx andy, which are contained in
Axy andAyx, and leads to an AMG interpolationmatrixP that has the diagonal block
structure

P =

[
Px 0
0 Py

]
. (3)

In general,U-AMG is often used to handle systems of PDEs andis quite effective
for problems with weak coupling between the different unknowns. Of course, per-
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formance also strongly depends on the general quality of thechosen coarsening,
interpolation, and smoothing techniques for the diagonal blocksAxx andAyy.

We now describe the nodal approach, which is often a more effective approach
for problems with a stronger coupling between the different physical quantities.
If we block all unknowns thatsharethe same nodeand considera node-related
ordering,then the system matrixA can be written as

A =




A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 . . . ANN


 , (4)

where the2× 2 blocksAi j connectnodesi and j. Note that if we defineN as the
number of nodes or grid points, thenA is a N ×N block matrix. With the nodal
approach, we consider strong dependencebetween two nodesi and j, instead of be-
tween two variables.Therefore, wenow have to compare block entries, such asA ji

or A j j. This comparison typically involvesan appropriate norm such as the Frobe-
nius norm|| · ||F or the row-sum norm|| · ||∞. Applying the norm to the blocks of the
system matrixA results ina condensedN ×N matrix with scalar entries

C =




c11 c12 · · · c1N

c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 . . . cNN


 :=




||A11|| ||A12|| · · · ||A1N ||
||A21|| ||A22|| · · · ||A2N ||

...
...

. . .
...

||AN1|| ||AN2|| . . . ||ANN ||


 . (5)

The definition of strong dependence in Eq. (1) is based onA orC being anM-matrix,
i.e., a matrix whose off-diagonal elements have the opposite sign of the diagonal
elements. Therefore, we change the diagonal elementscii of C to cii = −||Aii|| or

cii = −
N

∑
j=1, j 6=i

||Ai j||. (6)

This approach as well as additional options for definingC are further discussed in
[10]. In our experiments, we found the latter approach(i.e., the row-sum norm)to
give better convergence, and we are usingEq.(6) in the numerical results presented
in Sect.6. The AMG coarse grids are now obtained by applying classical AMG
coarsening techniques to the condensed matrixC. In the nodal coarsening approach,
all unknownsonone grid point share the same set of coarse grids.Note the contrast
with the unknown approach,which canresult incompletely different coarse meshes
for eachunknown. The interpolationmatrix in the nodal approachcan be obtained
by applying scalar AMG interpolation techniques to the blocks(e.g., [14]). Another
option, used in our experiments in Sect. 6, is to combine nodal coarsening with
unknown-based interpolation. We call this approach thehybrid approach (H-AMG).
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4 The Global Matrix Approach

As mentioned in Sect. 2, smooth error vectors should be in therange of the in-
terpolation operator. In the case of linear elasticity, thenullspace of the matrixA
consists of the rigid body modes (RBMs), i.e., all rotationsand translations of the
domain. Since classical AMG interpolationP already interpolates constant vectors
exactly, we only have to take care of rotations (i.e., in two dimensions, the single ro-
tations(x,y) := [y,−x]). A possible approach to incorporate an exact interpolation of
smooth error vectors in the AMG interpolation is, as alreadymentioned, theglobal
matrix (GM) approach, introduced in [2]. The following description is restricted to
two levels. A generalization to the multilevel-case can be found in [2].

TheGM approach is based on the idea of augmenting a given global AMGin-
terpolationmatrix P with several matricesQ j. Each matrixQ j is chosen to exactly
interpolate a specifiedsmooth error vectors j. We designatethe rotations := [y,−x]
in two dimensions asthe smooth errorvector. We definesC as the restriction ofs
onto the coarse grid anddefine a new interpolation matrix̃P by augmentingP:

P̃ := [P Q], such thats ∈ range(P̃). (7)

There are several possibilities to define a matrixQ fulfilling Eq. (7) and alsoretain
the sparsity ofP. We will consider both variants suggested in [2]. ForVariant 1 or
GM1 we defineP̃ such that

P̃

[
0
1

]
= s, (8)

whereas forVariant 2 or GM2, P̃ is definedsuch that

P̃

[
sC

1

]
= s. (9)

For GM1, the coefficientsQi j of Q, wherei is the index of a fine grid point andj
the index of a coarse grid point, are then defined as

Qi j := Pi j

( si

∑
k∈Ci

Pik

)
, (10)

whereCi is the set of coarse points in the direct neighborhood ofi, i.e., the indices
of the columns with nonzero entries in rowi of the interpolationP. For GM2, the
entriesQi j, are given by

Qi j := Pi j

( si

( ∑
k∈Ci

Pik)
− (sC) j

)
. (11)

The unknown-based GM interpolation in two dimensions can then be written as
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P̃ =

[
Px 0 Qx

0 Py Qy

]
,

whereQx andQy can be computed independently and have the same sparsity asPx

andPy. Note that this leads to a coarse grid space with a larger number of degrees of
freedom than the coarse grid space generated by the unknown-based or the hybrid
approach.The increase in degrees of freedomis even further exacerbated in three
dimensions, where one needs to add three rigid body modes. So, while we expect
improved convergence, the new method is potentiallysignificantlymore expensive,
andtheincreased complexities could prevent better performance.Therefore, to mit-
igate the increase in complexities,we also truncate theQ matrices (see also our
numerical results in Sect. 6). Truncation ofQ needs to be done independently from
truncation ofP, becauseP-truncation is normalized to interpolate constants whereas
the truncatedQ matrices need to interpolate the rotations. When truncating Q to Q̃,
we adjust the weights of̃Q so that the row sums of̃Q equal those ofQ.

Interestingly enough, the application of both variants beyond the first level leads
to very different algorithms.GM1 needs to only interpolate constants after the first
level, whereas GM2 needs to continue to interpolate coarserversions of the rigid
body modes, thus requiring the storage of coarse grid versions of the rigid body
modes as well as additional computations. More details are available in [2]. How-
ever,note thatGM2 leads to coefficients of similar size, which is not the case for
GM1. It is therefore much more difficult to effectively truncate theQ matrices gen-
erated in GM1. Thisdifficulty will become evident inSect.6.

5 The Local Neighborhood Approach

We nowconsider an approach where the rigid body modes are incorporated locally.
Becauseexact local interpolation leads to exact global interpolation, this approach
shouldwork at least as well as the global matrix approach. This approach requires
looking at interpolation from a different angle.Assumethat the error at the fine
points,eF , is interpolated by the error at the coarse points,eC, such that

eF = WFCeC. (12)

Let C̃ be the set of new coarse points that have been introducedby adding new
degrees of freedom to the coarse nodes.Further,s is a rigid body mode,sC is s at the
original coarse grid points, andsF is s at the fine grid points. The idea for the local
neighborhood approach is then to exactly interpolate the rigid body mode using an
extension operator

eF = WFCeC +WFC̃eC̃ s.t. sF = WFCsC +WFC̃sC̃, (13)

wheresC̃ = 1 at the new degrees of freedom inC̃. The LN interpolation matrix needs
to be defined by harmonic extension based on the local extensionW̃FC = [WFC,WFC̃].
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Let Ds be the matrix with diagonals. BecauseWFC interpolates constants, the fol-
lowing definition, which is similar to GM2, satisfies Eq. (13):

WFC̃ = [DF
s WFC −WFCDC

s ]. (14)

To allow for an arbitrary interpolation matrixP, the implementation of this ap-
proach performs a preprocessing step (cf. ”iterative weight refinement” [9]) that
results inP̄ where

P̄i j = −
1
aii

(
ai j + ∑

k∈Fi

aikwk j

)
, (15)

whereFi is the fine neighborhood of pointi and

wk j =
Pk j

∑n∈Ci
Pkn

. (16)

Now thatP̄ is based on harmonic extension,Q can be determined using the following
formula

Qi j = −
1
aii

∑
k∈Fi

aikwk j(sk − s j). (17)

For k rigid body modess1, ...,sk, the new LN interpolation operator is given by

P̃ = [ P̄ Q1
... Qk ]. (18)

Note that this approach assumes thatAs = 0.However,the unknown-based inter-
polation is not generated fromA, but from the block diagonal matrixAD with block
diagonalsAxx andAyy in 2D (as well asAzz in 3D). In this situation it is important to
modify Eq. (17) by incorporating thenon-zero residual. We refer to [2] for further
details.In addition, likeGM2, the LN approach requiresthe generation ofQ on all
coarse levels.

6 Numerical Results

In this section, wepresentnumerical results that compare the performance ofthe
previously described AMG approaches. AMG is here used as a preconditioner to
eitherGMRESor CG. The parallel experiments were conducted on the Vulcan su-
percomputer (LLNL),except for those presented in Table 6, which were computed
on the JUQUEEN supercomputer (JSC) [24].JUQUEEN and Vulcanwere ranked
11th and 12th respectively on the TOP500 list of the world’s fastest supercomputers
of November 2015. JUQUEEN is a 28 672 node 6-petaflops Blue Gene/Q system
at Jülich Supercomputing Center (JSC, Germany), with a total number of 458752
processor cores. Vulcan is a 24576 node 5 Petaflop Blue Gene/Qproduction system
at Lawrence Livermore National Laboratory (USA) with a total number of 393216
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processor cores. Both Blue Gene/Q systems use a Power BQC 16C1.6GHz proces-
sor with 16 cores and 16 GB memory per node.

We use BoomerAMG [16], the unstructured algebraic multigrid solver in hypre
version 2.10.0b [17], whichnow provides an efficient parallel implementation of
the GM and the LN approaches.In hypre version 2.10.0b, the user nowsimply
has to provide the smooth error vectors on the fine gridin addition to the linear
system. In our case, we provide the rotationss j , one in 2D, three in 3D. In order to
make efficient use of the hardware threadsfor the 3D results in Tables 3 and 6, we
use oversubscriptionwith 2 MPI ranks for each core of the Power BQC processor.
Note thatno parallel results are given in[2], as a parallel implementation was not
available at that time.To ensurea fair comparison of the different methods, we
chosean AMG setupsuch thatall components have shown the potential to scale up
to large scales.In particular, for all methods, we useHMIS coarsening, introduced
in [12], theextended+i interpolation method described in [28, 11] and symmetric
SOR/Jacobi smoothing in a V(1,1)-cycle.

We consider the compressible linear elasticity problem

−2µ div(ε(u))−λgrad(div(u)) = f ,

whereu is the unknown displacement andε(u) is the strain. The parameters are
λ = νE

(1+ν)(1−2ν) ,µ = E
2(1+ν) (cf. [5]), wherethe Young modulus isE = 210, andwe

vary the Poisson ratioν between 0.3 and 0.49.
More detaileddescriptionsof the various model problems in two and three di-

mensionsare given in subsequentsubsections. The finite element assembly is per-
formed in PETSc, and we also usePETSc’sGMRES / CG implementation. In all
tables we use the abbreviationsU-AMG for the unknown approach,H-AMG for
the hybrid approachwith thenodal coarsening strategyin Eq. (6)and the row-sum
norm, andH-AMG-GM1/GM2/LN for the interpolation approaches GM1, GM2, and
LN, respectively. Cop denotes theoperator complexity, which is defined as the sum
of the nonzeros of all matricesAi on all levels divided by the number of nonzeros of
the original matrixA. Operator complexity isan indication of memory usageand the
number of flops per iterationand also affects setup times. In order tominimizeCop,
we truncateP to at most Pmax nonzero elements per row and use a truncation factor
of Q-th (absolute threshold) to truncateQ. In the tables, we mark the fastest time
(for the sum of setup and solve) as well as the lowest number ofiterations inbold
face. As a baseline for our weak scalability tests, in order to avoid cache effects, we
use the smallest problem which still makes use of at least a single full node.

6.1 Results in Two Dimensions

If a Dirichlet boundary condition is applied to a large portion of the boundary, stan-
dard nodal or unknown approaches are known to perform well, and we do not ex-
pect any additional benefit from the GM or LN approach. Therefore, we consider
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an elasticity problem on a rectangular domain[0,8]× [0,1] in 2D, fixed on one of
the short sides. A volume force orthogonal to the longer sides is applied. We refer
to this problem as2D beam, and a solution for a linear elastic material is presented
in Fig. 2. We use piecewise quadratic finite elementson trianglesin all experiments
in two dimensions, and,by reorderingtheunknowns, weensurethat each MPI rank
holds a portion of the beam of favorable shape, i.e., close toa square. We present
weak scalability results for the2D beam in Tables 1 and 2, comparing the unknown
approachU-AMG, the hybrid approachH-AMG, and, representing the interpolation
approaches, the GM2 approach. The GM1 and LN approaches performed similarly
to or worse than GM2here, but are includedin a more detailed discussion on the
results in three dimensions, where differences between theapproaches are more in-
teresting.

In the weak-scaling results inTable 1, the number of GMRES iterations for the
unknown approachincreasesfrom 23 to 59 iterations,resulting in a noticeablein-
crease in the iteration timeas well. However, both the hybrid and GM2 approaches
achieve good weak scalability.Comparing the hybrid and the GM2approaches, the
AMG setup timesare slightly higher withthe GM2 approach. Thisincreased com-
putational costis expected due to the exact interpolation of the rotation. Since iter-
ation counts and thus the iteration times are lower, the GM2 approach is always the
fastest approach in this comparison.

Table 2 also contains weak-scaling results for the 2D beam, but the problem
sizes areapproximately 2.6 times largerper core. Results are similar tothe results
in Table 1,but here,for the largest problem with 6.7 billion degrees of freedom,
the hybrid approach needs 52 compared to only 21 GMRES iterations for the GM2
approach. Thisimprovementleads to a much faster convergencefor GM2; see also
Fig. 3 for a visualization.

We can conclude thatwith our settings, all three approaches work well for smaller
problems. For larger problems (and larger numbers of cores), the GM2 approach re-
mains scalable whereas U-AMG and H-AMGexperiencean increase in the number
of iterations. The setup cost for the GM2 approach is slightly higher, compared to
the other two approaches, but the setup time is scalable and amortized in the iteration
phase; see also Fig. 3.

Fig. 2 Solution of the2D beam considering linear elasticity withE = 210 andν = 0.3. The color
represents the norm of the displacement
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Table 1 Weak scalability of the2D beam problem withE = 210 andν = 0.3; iterative solver:
preconditioned GMRES; stopping tolerance for the relativeresidual: 1e-8; quadratic triangular
finite elements;
Preconditioner denotes the AMG approach (one V-cycle);Pmax / Q-th denotes the truncation of
the interpolation operators forP (max nonzeros per row) andQ (absolute threshold);It. denotes
the number of GMRES iterations and(Cop) the operator complexity;Time GMRES denotes
the runtime of the AMG-GMRES solve phase;Time BoomerSetup denotes the time spent in
the BoomerAMG setup;Setup + Solvedenotes the total solution time spent in the AMG setup
(BoomerSetup) and the AMG-GMRES (Time GMRES) solve. The fastest variant is marked in
bold face

#MPI ranks Time Time Time
(=#Cores) Problem Size Preconditioner Pmax / Q-th It. (Cop) GMRES BoomerSetup Setup + Solve

U-AMG - / - 23 (2.4) 4.5 s 1.1 s 5.6 s
32 643 602 H-AMG - / - 21 (2.5) 4.0 s 1.7 s 5.7 s

H-AMG-GM2 - / 0.01 15 (2.5) 2.9 s 2.2 s 5.1 s
U-AMG - / - 26 (2.3) 5.3 s 1.1 s 6.4 s

128 2 567 202 H-AMG - / - 23 (2.3) 4.4 s 1.7 s 6.1 s
H-AMG-GM2 - / 0.01 15 (2.4) 3.0 s 2.3 s 5.3 s

U-AMG - / - 29 (2.2) 6.0 s 1.3 s 7.3 s
512 10 254 402 H-AMG - / - 25 (2.2) 4.8 s 1.9 s 6.7 s

H-AMG-GM2 - / 0.01 16 (2.3) 3.2 s 2.3 s 5.5 s
U-AMG - / - 48 (2.2) 10.2 s 1.4 s 11.6 s

2 048 40 988 802 H-AMG - / - 26 (2.2) 5.1 s 1.9 s 7.0 s
H-AMG-GM2 - / 0.01 18 (2.2) 3.6 s 2.4 s 6.0 s

U-AMG - / - 51 (2.2) 11.0 s 1.6 s 12.6 s
8 192 163 897 602 H-AMG - / - 26 (2.2) 5.1 s 2.0 s 7.1 s

H-AMG-GM2 - / 0.01 18 (2.2) 3.6 s 2.5 s 6.1 s
U-AMG - / - 54 (2.2) 11.9 s 1.8 s 13.7 s

32 768 655 475 202 H-AMG - / - 30 (2.2) 5.9 s 2.0 s 7.9 s
H-AMG-GM2 - / 0.01 19 (2.2) 3.8 s 2.5 s 6.3 s

U-AMG - / - 59 (2.2) 13.4 s 2.0 s 15.4 s
131 072 2 621 670 402 H-AMG - / - 29 (2.2) 5.8 s 2.1 s 7.9 s

H-AMG-GM2 - / 0.01 20 (2.2) 4.1 s 2.7 s 6.8 s

Table 2 Same problem setup and notation as in Table 1, but larger problem sizes

#MPI ranks Time Time Time
(=#Cores) Problem Size Preconditioner Pmax / Q-th It. (Cop) GMRES BoomerSetup Setup + Solve

U-AMG - / - 24 (2.4) 17.5 s 3.1 s 20.6 s
32 1 644 162 H-AMG - / - 23 (2.5) 18.5 s 4.3 s 22.8 s

H-AMG-GM2 - / 0.01 14 (2.5) 12.5 s 5.4 s 17.9 s
U-AMG - / - 28 (2.3) 20.4 s 3.1 s 23.5 s

128 6 565 122 H-AMG - / - 24 (2.3) 19.9 s 4.4 s 24.3 s
H-AMG-GM2 - / 0.01 16 (2.3) 14.0 s 5.5 s 19.5 s

U-AMG - / - 44 (2.2) 32.8 s 3.1 s 35.9 s
512 26 237 442 H-AMG - / - 26 (2.2) 21.8 s 4.5 s 26.3 s

H-AMG-GM2 - / 0.01 17 (2.3) 15.2 s 5.6 s 20.8 s
U-AMG - / - 51 (2.2) 38.0 s 3.3 s 41.3 s

2 048 104 903 682 H-AMG - / - 26 (2.2) 21.9 s 4.6 s 26.5 s
H-AMG-GM2 - / 0.01 18 (2.3) 16.2 s 5.7 s 21.9 s

U-AMG - / - 54 (2.2) 40.8 s 3.5 s 44.3 s
8 192 419 522 562 H-AMG - / - 27 (2.2) 23.1 s 4.6 s 27.7 s

H-AMG-GM2 - / 0.01 18 (2.2) 16.4 s 5.8 s 22.2 s
U-AMG - / - 58 (2.2) 43.9 s 3.7 s 47.6 s

32 768 1 677 905 922 H-AMG - / - 30 (2.2) 25.4 s 4.8 s 30.2 s
H-AMG-GM2 - / 0.01 19 (2.2) 17.2 s 6.0 s 23.3 s

U-AMG - / - 83 (2.2) 63.6 s 3.9 s 67.5 s
131 072 6 711 255 042 H-AMG - / - 52 (2.2) 44.7 s 4.9 s 49.6 s

H-AMG-GM2 - / 0.01 21 (2.2) 19.1 s 6.2 s 25.3 s
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Fig. 3 Weak scalability of total solution time for the two dimensional beam withν = 0.3 and
E = 210; cf. Table 2

6.2 Results in Three Dimensions

Now we present results for several three-dimensional domains. In particular, we first
investigate weak scalability for a3D beam problem. We also investigate the effect
of a higher Poisson ratioν on the3D beam, showing scalability results and present-
ing a small study that increasesν. Second, we examine doubling the beam length.
And for a third model problem, we consider a heterogeneous material with different
boundary condition, called the3D cuboid.

3D Beam Problem

Similar to the2D beam, the3D beam problem is defined on the domain[0,8]×
[0,1]× [0,1] for ν = 0.3, ν = 0.45 andν = 0.49. First, wepresent weak scalability
results inTable 3 forthe 3D beam with ν = 0.3 for all approaches. For the 262K
MPI ranks case, we alsoincludea larger problem to show the effect of increasing
problemsize on performance at large scale.

From the results in Table 3(see also Fig. 4 and 5), weconcludethat for smaller
problems, a set of parameters can be foundfor all approachessuch that the results
are satisfactory with respect to the numbers of iterations and the solution times.
However, for the larger problems(e.g., 262K MPI ranks),the AMG approaches
adaptedspecificallyfor elasticity, i.e., GM1, GM2, and LN, result in smaller num-
bers of CG iterations.Note that inthe case of the GM1 approach, the low numbers
of iterations come at the expense of high complexitiesbecauseGM1 suffers from
the lack of a suitable truncation strategy. As a result, the H-AMG approach is actu-
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Fig. 4 Weak scalability of the BoomerAMG Setup(left) and the time spent in the AMG-CG solve
phase(right) for the three dimensional beam withν = 0.3 andE = 210; cf. Table 3

Fig. 5 Weak scalability of total solution time for the three dimensional beam withν = 0.3 and
E = 210; cf. Table 3

ally fasterthan GM1. The GM2 and LN approaches achievethe fastestoveralltotal
times (with a slight advantage for the LN approach)due to their low iteration counts
andacceptable complexities. These considerations also hold when viewing the re-
sults for 262K MPI ranks and the increased problem size of 6.3billion unknowns in
Table 3.
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Now we increase the Poisson ratio toν = 0.45 for the3D beam. The results
in Table 4 (see also Fig. 6 and 7) show that all approaches suffer from a higher
number of iterations compared to the case ofν = 0.3.The GM2 and LN approaches
remain superior as a result of combining low numbers of iteration with acceptable
complexities. For U-AMG and H-AMG, depending on the choice of parameters,
either the numbers of iterations are high or the complexities increase substantially.
The times are visualized in Fig. 6 and 7.Since GM1 with Pmax=3 requires too much
memory, we use it here with Pmax=2.Note that GM1fails for the largest problem
considered.

Next,in Table 5, the effect of the Poisson ratio on the different AMG approaches
is studied. We see that H-AMG does not converge within the limit of 1000 itera-
tions forν = 0.49. For the other approaches, the convergence rate suffers from an
increasing value ofν towards almost incompressibility. This deterioration is also
the case for the AMG approaches which are especially adaptedfor (compressible)
elasticity problems, i.e., GM1, GM2, and LN, but which are based on H-AMG. For
ν = 0.49, U-AMG, while exhibiting the highest Cop, is the fastest variant in terms
of total time.

3D Beam Problem with Double Length

For ν = 0.3, we examine the effect of doubling the length of the3D beam such
that the domain is[0,16]× [0,1]× [0,1]. Table 6lists the results obtained for the3D
beam with double the length, using up to 16 of the total 28 racks of the JUQUEEN
supercomputer. Again, these experiments show the clear advantage of the GM2 and
LN approaches for this problem over the standard methods. The largest three di-
mensional problem with approximately 13 billion unknowns is solved in less than
81 seconds using the LN approach.Here, the solve phase time of LN is twice as fast
as that of the fastest standard approach H-AMG.

3D Cuboid Problem

Finally, we consider a3D cuboid problem. The cuboid has the same form and
size as the original3D beam, but is fixed on the two opposite sides withx = 0 and
x = 8. We then compress the cuboid to 95% of its length. Note that for the 3D
cuboid, we have a core material withE = 210 andν = 0.45 in the part of the cuboid
where 0.25< y < 0.75 and 0.25< z < 0.75. Here(x,y,z) denotes the coordinates
in the undeformed reference configuration of the cuboid. In the remaining hull, we
haveE = 210 andν = 0.3.

The results for the3D cuboid problem in Table 7 show that the AMG approaches
benefitfrom the larger Dirichlet boundaryascompared to the3D beam. However,
the GM2 and LN approaches show the best numerical scalability, i.e., the numbers
of iterations only increase from 29 to 44 for GM2 and from 24 to39 for LN when
scaling weakly from 64 to 262K MPI ranks. For this problem, the H-AMG approach
remains competitiveas well for the largest number of ranks with regard to total
timescd c as a result ofits low setup time.
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Table 3 Weak scalability of the3D beam problem withE = 210 andν = 0.3; iterative solver:
preconditioned CG; stopping tolerance for the relative residual: 1e-6; linear tetrahedral finite ele-
ments; 2 MPI ranks per Blue Gene/Q core are used;
Preconditioner denotes the AMG approach (one V-cycle);Pmax / Q-th denotes the truncation of
the interpolation operators forP (max nonzeros per row) andQ (absolute threshold);It. denotes
the number of CG iterations and(Cop) the operator complexity;Time CG denotes the runtime of
the AMG-CG solve phase;Time BoomerSetupdenotes the time spent in the BoomerAMG setup;
Setup + Solvedenotes the total solution time spent in the AMG setup and theAMG-CG solve

#MPI ranks Time Time Time
(=2×#Cores) Problem Size Preconditioner Pmax / Q-th It. (Cop) CG BoomerSetup Setup + Solve

U-AMG 2 / - 88 (2.76) 23.50 s 2.42 s 25.92 s
U-AMG 3 / - 58 (2.94) 15.30 s 3.19 s 28.49 s
U-AMG 4 / - 44 (3.14) 12.25 s 4.64 s 16.89 s

64 839 619 H-AMG 3 / - 58 (2.42) 12.11 s 3.44 s 15.55 s
H-AMG 4 / - 50 (2.83) 11.64 s 5.31 s 16.95 s

H-AMG-GM1 2 / 0.05 52 (2.82) 12.19 s 5.25 s 17.44 s
H-AMG-GM1 3 / 0.05 37 (3.61) 10.34 s 9.18 s 19.52 s
H-AMG-GM2 3 / 0.05 47 (2.45) 10.06 s 4.54 s 14.60 s
H-AMG-LN 3 / 0.05 48 (2.44) 10.26 s 4.75 s 15.01 s

U-AMG 2 / - 118 (2.81) 36.27 s 3.77 s 40.04 s
U-AMG 3 / - 73 (3.02) 23.85 s 5.21 s 29.06 s
U-AMG 4 / - 54 (3.23) 17.48 s 6.52 s 24.00 s

512 6 502 275 H-AMG 3 / - 70 (2.45) 15.22 s 4.35 s 19.57 s
H-AMG 4 / - 59 (2.87) 14.34 s 6.39 s 20.73 s

H-AMG-GM1 2 / 0.05 71 (2.84) 18.24 s 7.17 s 25.41 s
H-AMG-GM1 3 / 0.05 44 (3.66) 12.81 s 12.37 s 25.18 s
H-AMG-GM2 3 / 0.05 55 (2.47) 12.35 s 5.09 s 17.44 s
H-AMG-LN 3 / 0.05 57 (2.46) 12.77 s 5.29 s 18.06 s

U-AMG 2 / - 149 (2.86) 50.64 s 5.12 s 55.76 s
U-AMG 3 / - 89 (3.09) 33.16 s 7.14 s 40.30 s
U-AMG 4 / - 67 (3.32) 25.21 s 8.76 s 33.97 s

4 096 51 171 075 H-AMG 3 / - 86 (2.47) 19.34 s 5.08 s 24.42 s
H-AMG 4 / - 67 (2.89) 16.98 s 7.39 s 24.37 s

H-AMG-GM1 2 / 0.05 78 (2.84) 20.48 s 8.25 s 28.73 s
H-AMG-GM1 3 / 0.05 47 (3.69) 14.05 s 14.50 s 28.55 s
H-AMG-GM2 3 / 0.05 68 (2.48) 15.83 s 6.18 s 22.01 s
H-AMG-LN 3 / 0.05 67 (2.48) 15.48 s 6.38 s 21.86 s

U-AMG 2 / - 189 (2.89) 70.94 s 8.73 s 79.67 s
U-AMG 3 / - 112 (3.13) 49.73 s 12.90 s 62.63 s
U-AMG 4 / - 86 (3.36) 40.69 s 15.36 s 56.05 s

32 786 406 003 203 H-AMG 3 / - 95 (2.47) 21.97 s 6.72 s 28.69 s
H-AMG 4 / - 87 (2.90) 22.95 s 8.98 s 31.93 s

H-AMG-GM1 2 / 0.05 100 (2.84)26.82 s 8.89 s 35.71 s
H-AMG-GM1 3 / 0.05 64 (3.70) 19.54 s 15.86 s 35.40 s
H-AMG-GM2 3 / 0.05 81 (2.48) 19.53 s 7.36 s 26.89 s
H-AMG-LN 3 / 0.05 74 (2.48) 17.78 s 7.60 s 25.38 s

U-AMG 2 / - 232 (2.90) 95.95 s 15.36 s 111.31 s
U-AMG 3 / - 135 (3.15) 73.26 s 27.78 s 101.04 s
U-AMG 4 / - 101 (3.49) 67.16 s 38.35 s 105.51 s

262 144 3 234 610 179 H-AMG 3 / - 124 (2.48) 29.64 s 8.53 s 38.17 s
H-AMG 4 / - 106 (2.90) 29.33 s 9.68 s 39.01 s

H-AMG-GM1 2 / 0.05 138 (2.84)37.81 s 8.70 s 46.51 s
H-AMG-GM1 3 / 0.05 73 (3.70) 22.99 s 21.39 s 44.38 s
H-AMG-GM2 3 / 0.05 94 (2.48) 23.84 s 11.01 s 34.85 s
H-AMG-LN 3 / 0.05 84 (2.48) 21.22 s 11.21 s 32.43 s

Increased Problem Size
U-AMG 3 / - 143 (3.10)118.72 s 36.94 s 155.66 s

262 144 6 312 364 803 H-AMG 3 / - 134 (2.52) 62.48 s 13.76 s 76.24 s
H-AMG-GM2 3 / 0.05 102 (2.53)48.64 s 16.89 s 65.53 s
H-AMG-LN 3 / 0.05 88 (2.53) 41.76 s 16.89 s 58.65 s



16 Baker, Klawonn, Kolev, Lanser, Rheinbach, and Yang

Table 4 Same problem setup and notation as in Table 3, but larger problem sizes,ν = 0.45. On
32K MPI ranks H-AMG-GM1 hits the maximal iteration number of1000 (marked withmax It.)

#MPI ranks Time Time Time
(=2×#Cores) Problem Size Preconditioner Pmax / Q-th It. (Cop) CG BoomerSetup Setup + Solve

U-AMG 2 / - 98 (3.18) 56.75 s 6.10 s 62.85 s
U-AMG 3 / - 69 (3.52) 43.12 s 9.09 s 52.21 s
U-AMG 4 / - 54 (3.84) 35.86 s 12.15 s 48.01 s

64 1 618 803 H-AMG 3 / - 151 (2.55) 65.27 s 8.52 s 73.79 s
H-AMG 4 / - 80 (2.97) 38.67 s 11.86 s 50.53 s

H-AMG-GM1 2 / 0.01 77 (3.07) 38.01 s 11.08 s 49.09 s
H-AMG-GM2 3 / 0.01 64 (3.07) 31.94 13.52 s 45.46 s
H-AMG-GM2 3 / 0.05 72 (2.56) 31.78 s 9.52 s 41.30 s
H-AMG-LN 3 / 0.05 69 (2.56) 30.45 s 10.07 s 40.52 s

U-AMG 2 / - 128 (3.26) 78.80 s 9.11 s 87.91 s
U-AMG 3 / - 85 (3.59) 56.54 s 15.10 s 71.64 s
U-AMG 4 / - 65 (3.94) 46.60 s 20.58 s 67.18 s

512 12 616 803 H-AMG 3 / - 232 (2.57)103.70 s 9.80 s 113.50 s
H-AMG 4 / - 104 (2.99) 51.60 s 14.16 s 65.76 s

H-AMG-GM1 2 / 0.01 96 (3.10) 48.72 s 15.38 s 64.10 s
H-AMG-GM2 3 / 0.01 71 (2.66) 33.29 s 14.62 s 47.91 s
H-AMG-GM2 3 / 0.05 96 (2.58) 43.76 s 11.45 s 55.21 s
H-AMG-LN 3 / 0.05 89 (2.58) 40.52 s 11.99 s 52.51 s

U-AMG 2 / - 141 (3.30) 95.04 s 13.13 s 108.17 s
U-AMG 3 / - 106 (3.64) 79.87 s 21.70 s 101.57 s
U-AMG 4 / - 85 (4.00) 68.90 s 27.33 s 96.23 s

4 096 99 614 403 H-AMG 3 / - 375 (2.58)174.54 s 11.57 s 186.11 s
H-AMG 4 / - 184 (3.01) 95.46 s 16.32 s 111.78 s

H-AMG-GM1 2 / 0.01 115 (3.12)59.89 s 17.58 s 77.47 s
H-AMG-GM2 3 / 0.01 90 (2.60) 42.97 s 15.81 s 58.78 s
H-AMG-GM2 3 / 0.05 125 (2.59)58.93 s 13.58 s 72.52 s
H-AMG-LN 3 / 0.05 109 (2.58)51.15 s 13.80 s 64.95 s

U-AMG 2 / - 202 (3.31)146.31 s 23.41 s 169.72 s
U-AMG 3 / - 128 (3.65)124.37 s 48.18 s 172.55 s
U-AMG 4 / - 102(4.02) 114.02 s 54.98 s 169.00 s

32 768 791 664 003 H-AMG 3 / - 692 (2.58)340.75 s 14.44 s 355.19 s
H-AMG 4 / - 320 (3.01)174.94 s 19.26 s 195.22 s

H-AMG-GM1 2 / 0.01 max It. – – –
H-AMG-GM2 3 / 0.01 124 (2.59)61.91 s 19.15 s 81.06 s
H-AMG-GM2 3 / 0.05 146 (2.59)72.67 s 17.08 s 89.75 s
H-AMG-LN 3 / 0.05 118 (2.58)57.24 s 16.19 s 73.43 s

Table 5 Same problem setup and notation as in Table 3. Investigationof the effect of an increas-
ing ν ; Setup + Solvedenotes the total solution time spent in the AMG setup and theAMG-CG
solve; H-AMG hits the maximal iteration number of 1000 (marked withmax It.)

512 MPI ranks, 12 616 803 dofs
ν = 0.3 ν = 0.45 ν = 0.49

Preconditioner Pmax / Q-th It. (Cop) Setup+Solve It. (Cop) Setup+Solve It. (Cop) Setup+Solve
U-AMG 2 / - 128 (2.79) 76.61 s 128 (3.26) 87.91 s 125 (3.60) 102.94 s
U-AMG 3 / - 79 (2.98) 53.69 s 85 (3.59) 71.64 s 89 (3.81) 85.39 s
U-AMG 4 / - 57 (3.21) 56.16 s 65 (3.94) 67.18 s 72 (3.89) 79.10 s
H-AMG 3 / - 76 (2.50) 41.47 s 232 (2.57) 113.50 s max It. -
H-AMG 4 / - 59 (2.94) 41.24 s 104 (2.99) 65.76 s max It. -

H-AMG-GM1 2 / 0.01 56 (2.88) 39.74 s 96 (3.10) 64.10 s 189 (3.49) 127.05 s
H-AMG-GM2 3 / 0.01 49 (2.59) 34.07 s 71 (2.66) 47.91 s 159 (2.79) 99.25 s
H-AMG-LN 3 / 0.01 47 (2.54) 32.34 s 79 (2.62) 50.06 s 196 (2.71) 110.85 s
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Table 6 Weak scalability of the larger[0,16]× [0,1]× [0,1] 3D beam problem withE = 210 and
ν = 0.3. Same notation as in Table 3. Computations carried out on JUQUEEN BlueGene/Q at
Jülich Supercomputing Centre (JSC)

#MPI ranks Time Time Time
(=2×#Cores) Problem Size Preconditioner Pmax / Q-th It. (Cop) CG BoomerSetup Setup + Solve

U-AMG 3 / - 96 (2.83) 35.18 s 3.83 s 39.01 s
16 424 683 H-AMG 3 / - 92 (2.49) 27.39 s 4.73 s 32.12 s

H-AMG-GM2 3 / 0.01 55 (3.50) 21.63 s 11.38 s 33.01 s
H-AMG-LN 3 / 0.01 56 (3.14) 20.19 s 9.22 s 29.41 s

U-AMG 3 / - 118 (2.93) 64.49 s 6.05 s 70.54 s
128 3 232 563 H-AMG 3 / - 117 (2.48) 49.88 s 6.71 s 56.59 s

H-AMG-GM2 3 / 0.01 84 (3.04) 41.66 s 12.04 s 43.70 s
H-AMG-LN 3 / 0.01 65 (2.68) 29.68 s 10.23 s 39.91 s

U-AMG 3 / - 145 (2.99) 82.55 s 8.79 s 91.34 s
1 024 25 213 923 H-AMG 3 / - 138 (2.50) 59.94 s 8.57 s 68.51 s

H-AMG-GM2 3 / 0.01 86 (2.59) 38.88 s 12.12 s 51.00 s
H-AMG-LN 3 / 0.01 80 (2.54) 35.77 s 11.41 s 47.18 s

U-AMG 3 / - 188 (3.04)113.42 s 10.61 s 124.03 s
8 192 199 151 043 H-AMG 3 / - 160 (2.51) 70.76 s 9.01 s 79.77 s

H-AMG-GM2 3 / 0.01 108 (2.53)48.94 s 11.82 s 60.76 s
H-AMG-LN 3 / 0.01 103(2.52) 46.64 s 11.94 s 58.58 s

U-AMG 3 / - 225 (3.11)157.34 s 19.84 s 177.18 s
65 536 1 583 018 883 H-AMG 3 / - 195 (2.52) 89.01 s 11.32 s 100.33 s

H-AMG-GM2 3 / 0.01 120 (2.53)55.63 s 14.80 s 70.43 s
H-AMG-LN 3 / 0.01 115(2.53) 53.29 s 14.86 s 68.15 s

U-AMG 3 / - 270 (3.06)229.40 s 39.18 s 268.58 s
524 288 12 623 496 963 H-AMG 3 / - 253 (2.52)118.38 s 13.34 s 131.72 s

H-AMG-GM2 3 / 0.01 144 (2.53)68.56 s 18.17 s 86.73 s
H-AMG-LN 3 / 0.01 131(2.53) 62.52 s 18.11 s 80.63 s

Table 7 Weak scalability results for the3D cuboid problem; Notation as in Table 3

#MPI ranks Time Time Time
(=2×#Cores) Problem Size Preconditioner Pmax / Q-th It. (Cop) CG BoomerSetup Setup + Solve

U-AMG 2 / - 49 (2.73) 25.50 s 4.53 s 30.03 s
U-AMG 3 / - 34 (2.95) 18.76 s 6.93 s 25.69 s

64 1 618 803 H-AMG 3 / - 34 (2.48) 14.57 s 7.67 s 22.24 s
H-AMG-GM2 3 / 0.01 29 (3.04)14.51 s 12.81 s 27.32 s
H-AMG-LN 3 / 0.01 24 (2.68) 11.09 s 10.86 s 21.95 s

U-AMG 2 / - 65 (2.79) 35.83 s 6.24 s 42.07 s
U-AMG 3 / - 43 (2.98) 24.77 s 8.57 s 33.34 s

512 12 616 803 H-AMG 3 / - 41 (2.50) 18.06 s 8.33 s 26.39 s
H-AMG-GM2 3 / 0.01 31 (2.59)14.25 s 11.83 s 26.08 s
H-AMG-LN 3 / 0.01 23 (2.55) 10.57 s 11.25 s 21.83 s

U-AMG 2 / - 84 (2.84) 49.76 s 8.06 s 57.82 s
U-AMG 3 / - 53 (3.04) 32.02 s 10.75 s 42.77 s

4 096 99 614 403 H-AMG 3 / - 45 (2.51) 20.18 s 9.23 s 29.41 s
H-AMG-GM2 3 / 0.01 33 (2.53)15.32 s 12.28 s 27.60 s
H-AMG-LN 3 / 0.01 31 (2.53) 14.34 s 12.30 s 26.64 s

U-AMG 2 / - 102 (2.87)64.11 s 11.83 s 75.94 s
U-AMG 3 / - 63 (3.09) 43.83 s 18.31 s 62.14 s

32 768 791 664 003 H-AMG 3 / - 49 (2.52) 22.58 s 10.01 s 32.59 s
H-AMG-GM2 3 / 0.01 38 (2.53)17.90 s 13.58 s 31.48 s
H-AMG-LN 3 / 0.01 34 (2.53) 16.03 s 14.05 s 30.08 s

U-AMG 2 / - 126 (2.86)81.26 s 17.51 s 98.77 s
U-AMG 3 / - 73 (3.10) 60.98 s 37.99 s 98.97 s

262 144 6 312 364 803 H-AMG 3 / - 64 (2.52) 30.15 s 12.60 s 42.75 s
H-AMG-GM2 3 / 0.01 44 (2.53)21.20 s 17.85 s 39.05 s
H-AMG-LN 3 / 0.01 39 (2.53) 18.84 s 17.83 s 36.67 s
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Fig. 6 Weak scalability of the BoomerAMG Setup(left) and the time spent in the AMG-CG solve
phase(right) for the three dimensional beam withν = 0.45 andE = 210; cf. Table 4

Fig. 7 Weak scalability of total solution time for the three dimensional beam withν = 0.45 and
E = 210; cf. Table 4

6.3 Parallel Problem Assembly and Reordering Process

Although the focus of this paper is on the parallel performance of AMG for linear
elasticity problems, we also comment on the parallel problem assembly andsetup,
presenting timingresults in Table 8. In order to assemble the global elasticity prob-
lems in two and three dimensions, we first decompose the domain into nonoverlap-
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ping parts of equal size, one for each MPI rank. We then assemble local stiffness
matrices corresponding to these local parts. These computations are completely lo-
cal to the ranks and thus perfectly scalable. The local assembly process is denoted
asLocal Asm. in Table 8. To assemble the local stiffness matrices to one global
and parallel stiffness matrix, some global communication is necessary. This global
assembly process is denoted asGlobal Asm. in Table 8. This process scales fine up
to 32K ranks. Scaling further, the amount of communication and synchronization
slows the global assembly down. A classical lexicographical ordering of the global
indices is often not optimal for the convergence, especially using hybrid approaches,
and we therefore reorder the indices. After thereordering process, each rank holds
a portion of the global stiffness matrix which has a shape close to a square in two
dimensions and a cube in three dimensions. The implementation of the index re-
ordering step is very fast (see Table 8) but makes use of the same communication
patterns as the global assembly process leading to the same deterioration and more
than 32K cores.

Table 8 Presentation ofproblem assembly and setuptimings,which areindependent of the chosen
AMG preconditioner. Values are averages over the measured values in all runs presented in Table 3.
The total runtime of the complete3D beam application can be obtained by adding these three times
to theSetup + Solvetime from Table 3

#MPI ranks Problem Size Local Asm. Global Asm. Reorder
64 839 619 19.10 s 0.81 s 0.67 s
512 6 502 275 19.14 s 0.86 s 0.84 s

4 096 51 171 075 19.14 s 0.93 s 0.77 s
32 786 406 003 203 19.05 s 1.44 s 1.57 s
262 144 3 234 610 179 19.03 s 8.82 s 9.35 s

7 Conclusions

We investigatedthe performance of hypre’s AMG variants for elasticity for several
2D and 3D linear elasticity problems with varying Poisson ratios ν. We compared
the unknown and hybridapproaches, which use prolongation operators that only in-
terpolate the translations, with three approaches, GM1, GM2 and LN, that are based
on the hybrid approach and also incorporate the rotations. In all cases, GM1, GM2
and LN showed improved convergence over the hybrid approachwhen using the
same truncation forP. Forν = 0.3, all hybrid approaches scaled better than the un-
known approach, and the GM2 and LN approaches were overall faster for very large
problems.For the largest problem in three dimensions with 14 billion unknowns and
using the largest number of processes considered, i.e., 524288 processes, the LN ap-
proach was 40 percent faster than the standard approaches.For ν = 0.45, GM2 and
LN clearly scale better than the other approaches and are more than twice as fast
on 32768 processes with better complexities and five times as fast as the hybrid
approach with the same operator complexity.
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We also found that the unknown approach was more robust with regard to an
increase inν than the other approaches, solving the problem withν = 0.49 faster
than any of the other approaches, but generally needed larger complexities. While
the hybrid approach did not converge within 1000 iterationsfor ν = 0.49, GM1,
GM2 and LN were able to solve the problem in less than 200 iterations.

Overall, our study shows that the inclusion of the rigid bodymodes into AMG
interpolation operators is generally beneficial, especially at large scale.We conclude
that, for elasticity problems, using enhancements of the interpolation, parallel AMG
methods are able to scale to the largest supercomputers currently available.
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