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Abstract The parallel performance of several classical Algebraidtigiud (AMG)
methods applied to linear elasticity problems is invesédaThese methods include
standardAMG approache$or systems of partial differential equatioasch as the
unknownandhybrid approachess well the more recent global matrix (GM) and
local neighborhood (LN) approacheghichincorporateigid body modes (RBMs)
into theAMG interpolationoperator Numerical experimen@re presentetbr both
two- and three-dimensional elasticity probleomup to 131 072 core@nd262 144
MPI processewon the Vulcan supercomputer (LLNL, USA) and up to 262 144 sore
(and 524 288 MPI procesgesn the JUQUEEN supercomputer (JSC, Julich, Ger-
many). It is demonstrated that incorporating all RBMs irtte interpolation leads
generally tafasterconvergence anitnprovedscalability.

1 Introduction

Classical Algebraic Multigrid (AMG) methods were origityatiesigned for scalar
partial differential equations (PDEs) and usually assulna¢ the nullspace of the
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operator is one-dimensional and constant. This assumg@tea not hold for many
systems of PDEdg-or elasticity problems in particulathe nullspace consists of
three (in 2D) or six (in 3D) rigid bodyodeg RBMs), which comprise translations
and rotations. Classical AMG methods, including standamt@aches modified to
handle systems of PDEs,g, the unknown approach [23hterpolatetranslations
but not rotations. Thigimitation will typically result in a loss of optimality and
scalability for these approaches when applied to systeotdgms.

Different approaches to handle linear elasticity problemtt AMG methods
have been suggested in the last decades, e.g., smoothesyaiign [26, 7], un-
smoothed aggregation [8, 19, 4, 20, 21, 3], AMGe [6], eleniezg AMGe [15],
local optimization problems to incorporate tRBMs in the interpolation [13], or
the global matrix (GM)andlocal neighborhood (LN) approaches [2].

In this paper, we provide a brief overview of AMG methods and@ for sys-
tems inSect.2 and 3.In Sect. 4 and Sect.,5ve describe the GMand LN ap-
proacheswhich werefirst introduced in [2]. These twaapproaches explicitly incor-
porate given smooth error vectors into the AMG interpolatioorder to handle the
correction of these error components in the coarse grickcban.We note that the
descriptions of the AMG methods and interpolations in tlsipgr are based on both
[2] (which only considered sequential AMG) and on Chap. defdissertation [18].
In Sect. 6, we compare the performance of AMG approachey&tess of PDEs
and show that the GM and LN approaches can improve convezgamtscalability
for elasticity problemsThe parallel numerical results on uphtalf a million MPI
processepresented irBect.6 are new and have not been published elsew(ese
[2] contained only serial results for small problems).

2 Algebraic Multigrid

We first give a brief overview of AMGConsider the linear systefu = f, which
is often generated from the discretization of a scalar PD&.déhote withu; the
i-th entry ofu. As in geometric multigrid, one needs to define a hierarctgoaiser
grids or levels, adequate smoothers or relaxation schesneath level and restric-
tion, and interpolation operators to move between levetsvéver, unlike geometric
multigrid, algebraic multigrid methods are applied to timear system without any
geometrical or mesh-related information.

Because grid information is not given, one needs to use tiealisystem to
define a “grid”. The variables; are now the grid points and the non-zero enteigs
of matrix A define the connections between the grid points. Becausdl natiables
are equally important, one defines the concetrohg dependence. For a threshold
0< 6 <1, avariablay strongly dependson the variabley; if

—ajj > 6T§><(—euk) 1)
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To determine the coarse-grid variables, which are a sulisbheovariableal;, one
first eliminates all connections that do not fulfill (1). Theme applies a coarsening
algorithm to the remaining “grid”. For brevity, we do not debe any coarsening
algorithms here, but note that descriptions of several comooarsening strategies
and an investigation of their parallel performance can bmdoin [27] (e.g., Ruge-
Stuiben [23, 25], HMIS [12] and Falgout [16]).

In AMG, errors are reduced by two separate operations: tlomgrng or relax-
ation steps and the coarse grid correction. For an optimaBANethod, the coarse
grid correction and the relaxation strategy must be choaesgfully to complement
each other. While simple point-wise relaxation method$sag Jacobi or Gaul3-
Seidel rapidly reduce errors in the directions of eigermecassociated with large
eigenvalues, the reduction in directions of eigenvectssseaiated with small eigen-
values is less optimal; see [6] for details. Errors which @oerly reduced by the
smoothing steps are referred tosa®oth errors. More preciselyalgebraic smooth
errors can be characterized Ae ~ 0, wheree is an eigenvector associated with a
small eigenvalue. For an effective AMG method, the smoathbrenust be reduced
by the coarse grid correction. Therefore, an interpoladiperatoi® needs to be de-
fined in such a way that the smooth errors are approximatetyeimange of [6].
For additional details on interpolation operators, werrdie reader to various pub-
lications, e.g. [23, 25, 11, 28]. The restriction operd®as often defined to be the
transposed operat®” , since in the case of a symmetric positive definite malix
the coarse grid operat®AP is also symmetric positive definite. After interpolation,
restriction, and coarse grid operators have been defined eeldxation strategy has
been determined, the solve phase can be performed.

For simplicity,consider the two-level case with one figiéd and one coarse grid.
For an approximate solutianand the exact solutiou of the systemAu* = f on the
fine grid, we have the relationshie = r, wheree := u* — u is theerror vector and
r .= f — Auis the residualOne AMG cycle to correct (or updata)s as follows:

1) Smoothv; times on: Au= f

2) Compute the residual:r = f — Au

3) Solve on the coarse gridRAPe; = Rr
4) Correct u: u=u-+ Pe.

5) Smoothv, times on: Au = f.

To obtain afull multi-level AMG V-cycle, one needs to apply this algorithe-
cursively, asdepicted in Fig. 1. For more details on classical AMG methsds,
e.g., [25, 23].

3 Algebraic Multigrid for Systems of PDEs

We now consider a linear system of equatiéws= f derived from the discretiza-
tion of a system of PDESs witp scalar functions or unknowns. Now, each variable
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Fig. 1 One AMG V-cycle: Smoothing on the fine grig Restricting to the coarsest grid Solving
on coarsest grie Interpolating to the finest grid. (Figufeom [18])

or degree of freedom (dof) of the linear system describesphiysical quantity in

a grid point or node. For example, in linear or nonlineartétéy, we have one dof
describing one spatial direction in each node. For sintplieve restrict our pre-
sentation here to the two dimensional case and consideratio#tly problem with
two unknownsx andy, representing the two spatial directions. A detailed three
dimensional description can be found in [2].

For algebraic multigrid method#he two common approaches teeatingsys-
tems of PDEssuch asAu = f arethe unknown approach (U-AMG) and the nodal
approache.g., [25, 23, 22, 10, 14, 1While U-AMG completely separates the dif-
ferent physical quantities, the nodal approach considemmknowns belonging to
the same node at once and thus acts on a nodal basis.

We first take a brief look at th&-AMG. Here, we assume an unknown-related
ordering of the system matrix.¢., first all dofs related to the unknowfollowed

by those associated witf):
A= {AXX AXV} . 2

Ayx Ay

One now applies classical AMG coarsening and interpolatteategies to the dif-
ferent variables separately, i.e., only to the diagonatkd@ andA,y. Note that

this strategy ignores couplings betwaamrknownsx andy, which are contained in
Ay andAy, and leads to an AMG interpolationatrix P that has the diagonal block

structure
_ PX 0
Skt ©)

In generalU-AMG is often used to handle systems of PDEs anglite effective
for problems with weak coupling between the different unkns. Of course, per-



Parallel Scalability of AMG Variants for Elasticity Half a Million Parallel Tasks 5

formance also strongly depends on the general quality ottlusen coarsening,
interpolation, and smoothing techniques for the diagolwaiks Ay andAyy.

We now describe the nodal approach, which is often a moreteféeapproach
for problems with a stronger coupling between the differentspdaj quantities.
If we block all unknowns thasharethe same nodand considea node-related
ordering,then the system matriX can be written as

A1 Ao - AN
Az1 Ago -+ AN @
Ani Anz .- AnN

where the2 x 2 blocksAjj connectnodesi and j. Note that if we definéN as the
number of nodes or grid points, thénis aN x N block matrix. With the nodal
approach, we consider strong dependdreta/een two nodesandj, instead of be-
tween two variablesTherefore, wenow have to compare block entries, such’gs

or Ajj. Thiscomparison typically involvean appropriate norm such as the Frobe-
nius norm|| - || or the row-sum norn - ||». Applying the norm to the blocks of the
system matridA results ina condenselll x N matrix with scalar entries

C11 C12 -+ CIN [[Aval] [|Ag2]| - [|AaN]]
C21 C22 -+ CoN [[Aze]| |[Az2]| - ||Aan]]

= = : : ) : (5)
CN1 CN2 ... CNN [[Ana|| [IAN2]] - [[ANN]]

The definition of strong dependence in Eq. (1) is based orC being anM-matrix,
i.e., a matrix whose off-diagonal elements have the oppasgn of the diagonal

elements. Therefore, we change the diagonal elentgrtsC to cij = —||Aji|| or
N
Ci = — (1A (6)

This approach as well as additional options for defirihgre further discussed in
[10]. In our experiments, we found the latter approéich, the row-sum normip
give better convergence, and we are udiog(6) in the numerical results presented
in Sect.6. The AMG coarse grids are now obtained by applying clab£é4G
coarsening techniques to the condensed m@trir the nodal coarsening approach,
all unknownsonone grid point share the same set of coarse gNoe the contrast
with the unknown approackyhich canresultincompletely different coarse meshes
for eachunknown. The interpolatiomatrix in the nodal approaatan be obtained
by applying scalar AMG interpolation techniques to the kk@.g., [14]) Another
option, used in our experiments in Sect. 6, is to combine hodarsening with
unknown-based interpolation. We call this approachiieid approach (H-AMG).
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4 The Global Matrix Approach

As mentioned in Sect. 2, smooth error vectors should be irrdahge of the in-
terpolation operator. In the case of linear elasticity, tiodispace of the matrixA
consists of the rigid body modes (RBMs), i.e., all rotatiamsl translations of the
domain. Since classical AMG interpolatiéhalready interpolates constant vectors
exactly, we only have to take care of rotations (i.e., in twnehsions, the single ro-
tations(x,y) := [y, —X]). A possible approach to incorporate an exact interpaiaifo
smooth error vectors in the AMG interpolation is, as alreamintioned, thejlobal
matrix (GM) approach, introduced in [2]. The following descriptis restricted to
two levels. A generalization to the multilevel-case candaenfd in [2].

The GM approach is based on the idea of augmenting a given global AMG
terpolationmatrix P with several matrice®!. Each matrixQ! is chosen to exactly
interpolate a specifiesimooth error vectosj. We designatéhe rotations := [y, —x]
in two dimensions athe smooth errowvector We defines: as the restriction o
onto the coarse grid ardéfine a new interpolation matriby augmentindp:

P:=[P Q], suchthase rangéP). @)

There are several possibilities to define a ma@ifulfilling Eq.(7) and alsaetain
the sparsity oP. We will consider both variants suggested in [2]. Fariant 1 or
GM1 we defineP such that

~|0

ZHEE ®)
whereas folariant 2 or GM2, P is definedsuch that

~| s .

P[ 1} =s ©)]

For GM1, the coefficient§)j; of Q, wherei is the index of a fine grid point anpl
the index of a coarse grid point, are then defined as

Qij = Hj(%), (10)
keG;

whereC; is the set of coarse points in the direct neighborhooid ioé., the indices
of the columns with nonzero entries in ravef the interpolatiorP. For GM2, the
entriesQ;j, are given by

S

Qi=Ri( gy~ () (11)
keGi

The unknown-based GM interpolation in two dimensions cam the written as
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p_ [Px 0 Qx]
ORQy|’

whereQy andQy can be computed independently and have the same spar§ity as
andR,. Note that this leads to a coarse grid space with a larger ruoflilegrees of
freedom than the coarse grid space generated by the unkbased or the hybrid
approachThe increase in degrees of freed@reven further exacerbated in three
dimensions, where one needs to add three rigid body modesvitle we expect
improved convergence, the new method is potentgfyificantlymore expensive,
andtheincreased complexities could prevent better performartoerefore, to mit-
igatethe increase in complexitiesje also truncate th€ matrices ¢ee also our
numerical results in Sect. 6). Truncation@ieeds to be done independently from
truncation ofP, becaus@-truncation is normalized to interpolate constants wherea
the truncated matrices need to interpolate the rotations. When trung&ito Q,
we adjust the weights @ so that the row sums @ equal those o).

Interestingly enough, the application of both variantsdrel/the first level leads
to very different algorithmsGM1 needs to only interpolate constants after the first
level, whereas GM2 needs to continue to interpolate coaessions of the rigid
body modes, thus requiring the storage of coarse grid vessid the rigid body
modes as well as additional computations. More details a#adble in [2]. How-
ever,note thatGM2 leads to coefficients of similar size, which is not theecaw
GML1. Itis therefore much more difficult to effectively truate theQ matrices gen-
erated in GM1. Thiglifficulty will become evident irSect.6.

5 The Local Neighborhood Approach

We now consider an approach where the rigid body modes are incatgublocally.
Becauseexact local interpolation leads to exact global intergotatthis approach
shouldwork at least as well as the global matrix approach. This @ggr requires
looking at interpolation from a different angldssumethat the error at the fine
points,er, is interpolated by the error at the coarse poietssuch that

er = Wrcec. 12)

Let C be the set of new coarse points that have been introdibyeaidding new
degrees of freedom to the coarse notesthersis a rigid body modes: is sat the
original coarse grid points, arsg is s at the fine grid points. The idea for the local
neighborhood approach is then to exactly interpolate tpd body mode using an
extension operator

er =Wecec +Weges st s =Weese +Weass, (13)

wheresz = 1 at the new degrees of freedonGnThe LN interpolation matrix needs
to be defined by harmonic extension based on the local ert®sc = Wk, We¢).



8 Baker, Klawonn, Kolev, Lanser, Rheinbach, and Yang

Let Ds be the matrix with diagonal Becaus&\-c interpolates constants, the fol-
lowing definition, which is similar to GM2, satisfies Eq. (13)

Weg = [DEWec —WecDS). (14)

To allow for an arbitrary interpolation matri, the implementation of this ap-
proach performs a preprocessing step (cf. "iterative weigfinement” [9]) that
results inP where

— 1
HJZ—a(aiﬁrk;aikaj), (15)

whereF is the fine neighborhood of poinaand

R
L= . 16
WkJ ZFIECi H(n ( )

Now thatP is based on harmonic extensi@h¢an be determined using the following
formula

1
Qij= —ak;aikwkj(sx—sj)- (17)

Forkrigid body modes,, ..., &, the new LN interpolation operator is given by
P=[P Q.. Q] (18)

Note that this approach assumes that= 0. Howeverthe unknown-based inter-
polation is not generated frof but from the block diagonal matri&p with block
diagonalshy andAyy in 2D (as well ash, in 3D). In this situation it is important to
modify Eq. (17) by incorporating th@on-zero residuaWe refer to [2] forfurther
details.In addition, likeGM2, the LN approach requir¢ke generation of) on all
coarse levels.

6 Numerical Results

In this section, wepresentumerical results that compare the performancthef
previously described AMG approachésMG is here used as a preconditioner to
eitherGMRESor CG. The parallel experiments were conducted on the Vulcan su
percomputer (LLNL) except for those presented in Table 6, which were computed
on the JUQUEEN supercomputer (JSC) [2ZHJQUEEN and Vulcanvere ranked
11th and 12th respectively on the TOP500 list of the world&dst supercomputers
of November 2015. JUQUEEN is a 28 672 node 6-petaflops Blue(@eaystem

at Julich Supercomputing Center (JSC, Germany), witha taimber of 458752
processor cores. Vulcan is a 24576 node 5 Petaflop Blue Ggmedction system

at Lawrence Livermore National Laboratory (USA) with a tatamber of 393216
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processor cores. Both Blue Gene/Q systems use a Power BQC.66€Elz proces-
sor with 16 cores and 16 GB memory per node.

We use BoomerAMG [16], the unstructured algebraic multigolver in hypre
version 2.10.0b [17], whiclmow provides an efficient parallel implementation of
the GM and the LN approacheln hypre version 2.10.0b, the user n@inply
has to provide the smooth error vectors on the fine gridddition to the linear
system In our case, we provide the rotatiogjs one in 2D, three in 3D. In order to
make efficient use of the hardware threéalsthe 3D results in Tables 3 and we
use oversubscriptiowith 2 MPI ranks for each core of the Power BQC processor.
Note thatno parallel results are given [2], as a parallel implementation was not
available at that timeTo ensurea fair comparison of the different methods, we
chosean AMG setupsuch thatll components have shown the potential to scale up
to large scaledn particular, for all methods, we us¢éMIS coarsening, introduced
in [12], the extended+i interpolation method described in [28, 11] and symmetric
SOR/Jacobi smoothing in a V(1,1)-cycle.

We consider the compressible linear elasticity problem

—2u div(e(u)) — Agraddiv(u)) = f,

whereu is the unknown displacement amidu) is the strain. The parameters are
A= (1+V;’<El_2‘}),u = 2(15\)) (cf. [5]), wherethe Young modulus i& = 210, andve
varythe Poisson ratio between (B and 049.

More detaileddescriptionsof the various model problems in two and three di-
mensionare given in subsequestibsections. The finite element assembly is per-
formed in PETSc, and we also uBETSc'sGMRES / CG implementation. In all
tables we use the abbreviatiosAMG for the unknown approachy-AMG for
the hybrid approactvith the nodal coarsening strategy Eq. (6)and the row-sum
norm, andH-AMG-GM1/GM2/LN for the interpolation approaches GM1, GM2, and
LN, respectivelyCop denotes theperator complexity, which is defined as the sum
of the nonzeros of all matrices on all levels divided by the number of nonzeros of
the original matrixA. Operator complexity ian indication of memory usagad the
number of flops per iteratioand also affects setup times. In ordemmimizeCop,
we truncateP to at most Pmax nonzero elements per row and use a truncatitor f
of Q-th (absolute threshold) to truncafe In thetables we mark the fastest time
(for the sum of setup and solve) as well as the lowest numbierattions inbold
face As a baseline for our weak scalability tests, in order to éeaiche effects, we
use the smallest problem which still makes use of at leastgesfull node.

6.1 Resultsin Two Dimensions

If a Dirichlet boundary condition is applied to a large portiof the boundary, stan-
dard nodal or unknown approaches are known to perform wedl vee do not ex-
pect any additional benefit from the GM or LN approach. Thenefwe consider
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an elasticity problem on a rectangular domgr8] x [0,1] in 2D, fixed on one of
the short sides. A volume force orthogonal to the longerssidapplied. We refer
to this problem a2D beam, and a solution for a linear elastic material is presented
in Fig. 2. We use piecewise quadratic finite elememtsrianglesn all experiments
in two dimensionsand,by reorderingheunknowns, wesnsurghat each MPI rank
holds a portion of the beam of favorable shape, i.e., closedquare. We present
weak scalability results for th2D beamin Tables 1 and 2, comparing the unknown
approachJ-AMG, the hybrid approachH-AMG, and, representing the interpolation
approaches, the GM2 approach. The GM1 and LN approachesmed similarly

to or worse than GMaere, but are includeith a more detailed discussion on the
results in three dimensions, where differences betweeaghsaches are more in-
teresting.

In the weak-scaling results ifable 1, the number of GMRES iterations for the
unknown approachncreasedrom 23 to 59 iterationsresulting in a noticeablm-
crease in the iteration timas well However, both the hybrid and GM2 approaches
achieve good weak scalabilit@omparing the hybrid and the GM#pproacheghe
AMG setup timesare slightly higher witithe GM2 approach. Thiscreased com-
putational cosis expected due to the exact interpolation of the rotatiamceSiter-
ation counts and thus the iteration times are lower, the Gp2@ach is always the
fastest approach in this comparison.

Table 2 also contains weak-scaling results for the 2D bearmntHe problem
sizes areapproximately 2.6 times larg@er core. Results are similar the results
in Table 1,but herefor the largest problem with.8 billion degrees of freedom,
the hybrid approach needs 52 compared to only 21 GMRESiaesator the GM2
approach. Thigmprovementeads to a much faster convergeficeGM2; see also
Fig. 3 for a visualization.

We can conclude thatith our settings, all three approaches work well for smaller
problems. For larger problems (and larger numbers of cotesYsM2 approach re-
mains scalable whereas U-AMG and H-AM&Zperiencean increase in the number
of iterations. The setup cost for the GM2 approach is shghitjher, compared to
the other two approaches, but the setup time is scalableraodiaed in the iteration
phase; see also Fig. 3.

NNNN

NNNN
NNN
AN

NN
NN

%
4%
V%

Fig. 2 Solution of the2D beam considering linear elasticity wite = 210 andv = 0.3. The color
represents the norm of the displacement
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Table 1 Weak scalability of the?D beam problem withE = 210 andv = 0.3; iterative solver:
preconditioned GMRES; stopping tolerance for the relategdual: 1e-8; quadratic triangular
finite elements;

Preconditioner denotes the AMG approach (one V-cyclBjnax / Q-th denotes the truncation of
the interpolation operators fé (max nonzeros per row) an@ (absolute threshold)t. denotes
the number of GMRES iterations ar{@op) the operator complexityTime GMRES denotes
the runtime of the AMG-GMRES solve phasEime BoomerSetup denotes the time spent in
the BoomerAMG setupSetup + Solvedenotes the total solution time spent in the AMG setup
(BoomerSetup) and the AMG-GMRES (Time GMRES) solve. Theetsvariant is marked in
bold face

#MPI ranks Time Time Time
(=#Cores) Problem Sizg Preconditioner|Pmax/ Q-th It. (Cop) | GMRES BoomerSetug Setup + Solveg

U-AMG -/- 23(2.4)] 45s 11s 5.6s

32 643602 H-AMG -1/- 21(2.5)| 4.0s 1.7s 5.7s
H-AMG-GM2 -/0.01 15(2.5)| 29s 2.2s 5.1s

U-AMG -/- 26 (2.3)] 5.3s 11s 6.4s

128 2567202 H-AMG -/- 23(2.3)| 4.4s 1.7s 6.1s
H-AMG-GM2 -/0.01 15(2.4)| 3.0s 2.3s 5.3s

U-AMG -/- 29 (2.2)| 6.0s 1.3s 7.3s

512 10254402 H-AMG -/- 25(2.2)| 4.8s 1.9s 6.7s
H-AMG-GM2 -/0.01 16(2.3)| 3.2s 2.3s 55s

U-AMG -1- 48 (2.2) 10.2s 1.4s 11.6s

2048 40988802 H-AMG -1/- 26 (2.2)| 5.1s 1.9s 7.0s
H-AMG-GM2 -/0.01 18(2.2)| 3.6s 2.4s 6.0s

U-AMG -/- 51(2.2)[ 11.0s 16s 12.6s

8192 163897 602 H-AMG -/- 26(2.2)| 5.1s 2.0s 7.1s
H-AMG-GM2 -/0.01 18(2.2)| 3.6s 2.5s 6.1s

U-AMG -/- 54 (2.2)| 11.9s 1.8s 13.7s

32768 655475 207 H-AMG -/- 30(2.2)] 5.9s 2.0s 7.9s
H-AMG-GM2 -/0.01 19(2.2)| 3.8s 25s 6.3s

U-AMG -1- 59 (2.2)| 13.4s 2.0s 154s

131072 2621670402 H-AMG -1/- 29(2.2)| 538s 2.1s 7.9s
H-AMG-GM2 -/0.01 20(2.2)| 4.1s 2.7s 6.8s

Table 2 Same problem setup and notation as in Table 1, but largeteprosizes

#MPI ranks Time Time Time

(=#Cores) Problem Sizg Preconditioner|Pmax/ Q-th It. (Cop) | GMRES BoomerSetug Setup + Solve

U-AMG -/- 24 (2.4)| 17.5s 3.1s 20.6s

32 1644162 H-AMG -1/- 23(2.5)| 185s 4.3s 22.8s

H-AMG-GM2 -/0.01  14(25)| 12.5s 54s 17.9s

U-AMG -/- 28 (2.3)| 20.4s 3.1s 23.5s

128 6565122 H-AMG -/- 24 (2.3)| 19.9s 4.4s 24.3s

H-AMG-GM2 -/0.01 16(2.3)| 14.0s 55s 19.5s

U-AMG -/- 44 (2.2) 32.8s 3.1s 35.9s

512 26237442 H-AMG -/- 26 (2.2)| 21.8s 45s 26.3s

H-AMG-GM2 -/0.01 17(2.3)| 15.2s 5.6s 20.8s

U-AMG -1- 51(2.2)| 38.0s 3.3s 41.3s

2048 104 903 687 H-AMG -1/- 26 (2.2)| 21.9s 46s 26.5s

H-AMG-GM2 -/0.01 18(2.3)| 16.2s 5.7s 21.9s

U-AMG -/- 54 (2.2)| 40.8s 35s 44.3s

8192 419522562 H-AMG -/- 27 (2.2)| 23.1s 4.6s 27.7s

H-AMG-GM2 -/0.01 18(2.2)| 16.4s 5.8s 22.2s

U-AMG -/- 58 (2.2)| 43.9s 3.7s 47.6s

32768 1677905922 H-AMG -/- 30(2.2)| 25.4s 48s 30.2s

H-AMG-GM2 -/0.01 19(2.2)| 17.2s 6.0s 23.3s

U-AMG -1- 83(2.2)| 63.6s 3.9s 67.5s

131072 6711255042 H-AMG -1/- 52 (2.2)| 44.7s 49s 49.6s

H-AMG-GM2 -/0.01 21(2.2)| 19.1s 6.2s 25.3s
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Fig. 3 Weak scalability of total solution time for the two dimensa& beam withv = 0.3 and
E = 210; cf. Table 2

6.2 Resultsin Three Dimensions

Now we present results for several three-dimensional desnai particular, we first
investigate weak scalability for 3D beam problem. We also investigate the effect
of a higher Poisson ratie on the3D beam, showing scalability results and present-
ing a small study that increases Second, we examine doubling the beam length.
And for a third model problem, we consider a heterogeneousnmaawith different
boundary condition, called tHzD cuboid.

3D Beam Problem

Similar to the2D beam, the 3D beam problem is defined on the domdid, 8] x
[0,1] x [0,1] for v =0.3, v = 0.45 andv = 0.49. First, wepresent weak scalability
results inTable 3 forthe 3D beam with v = 0.3 for all approaches. For the 262K
MPI ranks case, we aldacludea larger problem to show the effect of increasing
problemsize on performance at large scale.

From the results in Table (3ee also Fig. 4 and 5)ve concludethat for smaller
problems, a set of parameters can be fofordll approachesuch that the results
are satisfactory with respect to the numbers of iterations the solution times.
However, for the larger problenm(g.g., 262K MPI ranks)the AMG approaches
adaptedspecificallyfor elasticity, i.e., GM1, GM2, and LN, result in smaller num
bers of CG iterationdNote that inthe case of the GM1 approach, the low numbers
of iterations come at the expense of high complexitiesausésM1 suffers from
the lack of a suitable truncation strategy. As a result, theNH5 approach is actu-
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Fig. 4 Weak scalability of the BoomerAMG Set(fleft) and the time spent in the AMG-CG solve
phasgright) for the three dimensional beam with= 0.3 andE = 210; cf. Table 3
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Fig. 5 Weak scalability of total solution time for the three dimemsl beam withv = 0.3 and
E = 210; cf. Table 3

ally fasterthan GM1 The GM2 and LN approaches achidhe fastesoveralltotal
times (with a slight advantage for the LN approadbg to their low iteration counts
andacceptable complexities. These considerations also hie&hwiewing the re-
sults for 262K MPI ranks and the increased problem size ob#li8n unknowns in
Table 3.
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Now we increase the Poisson ratio wo= 0.45 for the3D beam. The results
in Table 4 (see also Fig. 6 and 7) show that all approachesrsinim a higher
number of iterations compared to the case ef 0.3. The GM2 and LN approaches
remain superior as a result of combining low numbers of fil@nawith acceptable
complexities. For U-AMG and H-AMG, depending on the choidgparameters,
either the numbers of iterations are high or the complexitierease substantially.
The times are visualized in Fig. 6 andSince GM1 with Pmax=3 requires too much
memory, we use it here with Pmax=32ote that GM1fails for the largest problem
considered.

Next,in Table 5, the effect of the Poisson ratio on the different@lspproaches
is studied. We see that H-AMG does not converge within thét Ioh1000 itera-
tions forv = 0.49. For the other approaches, the convergence rate suffensai
increasing value ob towards almost incompressibility. This deterioration lsoa
the case for the AMG approaches which are especially adéptédompressible)
elasticity problems, i.e., GM1, GM2, and LN, but which arsé&&on H-AMG. For
v = 0.49, U-AMG, while exhibiting the highest Cop, is the fasteatiant in terms
of total time.

3D Beam Problem with Double Length

Forv = 0.3, we examine the effect of doubling the length of 8i2beam such
that the domain if0,16] x [0, 1] x [0,1]. Table 6liststhe results obtained for t{8D
beamwith double the length, using up to 16 of the total 28 rackef {UQUEEN
supercomputer. Again, these experiments show the cleantatye of the GM2 and
LN approaches for this problem over the standard methods.|dtigest three di-
mensional problem with approximately 13 billion unknowasolved in less than
81 seconds using the LN approattere, the solve phase time of LN is twice as fast
as that of the fastest standard approach H-AMG.

3D Cuboid Problem

Finally, we consider @D cuboid problem. The cuboid has the same form and
size as the origina8D beam, but is fixed on the two opposite sides with= 0 and
x = 8. We then compress the cuboid to 95% of its length. Note thathfe 3D
cuboid, we have a core material with= 210 andv = 0.45 in the part of the cuboid
where 025 <y < 0.75 and 025 < z < 0.75. Here(x,Y,z) denotes the coordinates
in the undeformed reference configuration of the cuboidhéremaining hull, we
haveE = 210 andv = 0.3.

The results for th&D cuboid problem in Table 7 show that the AMG approaches
benefitfrom the larger Dirichlet boundargscompared to th&D beam. However,
the GM2 and LN approaches show the best numerical scajaldit, the numbers
of iterations only increase from 29 to 44 for GM2 and from 28%for LN when
scaling weakly from 64 to 262K MPI ranks. For this probleng Hr AMG approach
remains competitiveas well for the largest number of ranks with regard to total
timescd c as a result @f low setup time.
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Table 3 Weak scalability of the8D beam problem withE = 210 andv = 0.3; iterative solver:
preconditioned CG; stopping tolerance for the relativédies: 1e-6; linear tetrahedral finite ele-
ments; 2 MPI ranks per Blue Gene/Q core are used;

Preconditioner denotes the AMG approach (one V-cyclBjnax / Q-th denotes the truncation of
the interpolation operators fé (max nonzeros per row) an@ (absolute threshold)t. denotes
the number of CG iterations arf@op) the operator complexityfime CG denotes the runtime of
the AMG-CG solve phas&;ime BoomerSetupdenotes the time spent in the BoomerAMG setup;
Setup + Solvedenotes the total solution time spent in the AMG setup and\¥i&-CG solve

#MPI ranks Time Time Time
(=2x#Cores) Problem Sizg Preconditioner|Pmax/Q-th It. (Cop) | CG BoomerSetugSetup + Solvd
U-AMG 2/- 88 (2.76)[ 23.50s 2.42s 25.92s
U-AMG 3/- 58 (2.94)[ 15.30s 3.19s 28.49s
U-AMG 4/- 44 (3.14)[ 12.25s 4.64s 16.89s
64 839619 H-AMG 3/- 58 (2.42)[ 12.11s 3.44s 15.55s
H-AMG 4/- 50 (2.83)[ 11.64s 5.31s 16.95s
H-AMG-GM1 2/0.05 52(2.82]12.19s 5.25s 17.44s
H-AMG-GM1 3/0.05 37(3.61)| 10.34s 9.18s 19.52s
H-AMG-GM2 3/0.05 47 (2.45)] 10.06s 4.54s 14.60s
H-AMG-LN 3/0.05 48(2.44] 10.26s 4.75s 15.01s
U-AMG 2/- 118 (2.81) 36.27 s 3.77s 40.04s
U-AMG 3/- 73 (3.02)| 23.85s 5.21s 29.06s
U-AMG 4/- 54 (3.23)[ 17.48s 6.52s 24.00s
512 6502275 H-AMG 3/- 70 (2.45) 15.22s 4.35s 19.57s
H-AMG 4/- 59 (2.87)| 14.34s 6.39s 20.73s
H-AMG-GM1 2/0.05 71(2.84)18.24s 7.17s 25.41s
H-AMG-GM1 3/0.05 44(3.66)| 12.81s 12.37s 25.18s
H-AMG-GM2 3/0.05 55(2.47)12.35s 5.09s 17.44s
H-AMG-LN 3/0.05 57(2.46] 12.77s 5.29s 18.06s
U-AMG 2/- 149 (2.86) 50.64 s 5.12s 55.76s
U-AMG 3/- 89 (3.09)[ 33.16s 7.14s 40.30s
U-AMG 4/- 67 (3.32) 25.21s 8.76s 33.97s
4096 51171075 H-AMG 3/- 86 (2.47)[ 19.34s 5.08s 24.42s
H-AMG 4/- 67 (2.89)| 16.98s 7.39s 24.37s
H-AMG-GM1 2/0.05 78(2.84] 20.48s 8.25s 28.73s
H-AMG-GM1 3/0.05 47(3.69)| 14.05s 14.50s 28.55s
H-AMG-GM2 3/0.05 68(2.48] 15.83s 6.18s 22.01s
H-AMG-LN 3/0.05 67(2.48] 15.48s 6.38s 21.86s
U-AMG 2/- 189 (2.89) 70.94 s 8.73s 79.67s
U-AMG 3/- 112 (3.13) 49.73s 12.90s 62.63s
U-AMG 4/- 86 (3.36)[ 40.69s 15.36s 56.05s
32786 406003203 H-AMG 3/- 95 (2.47)[ 21.97 s 6.72s 28.69s
H-AMG 4/- 87 (2.90)[ 22.95s 8.98s 31.93s
H-AMG-GM1 2/0.05 100 (2.84)26.82s 8.89s 35.71s
H-AMG-GM1 3/0.05 64(3.70)| 19.54s 15.86s 35.40s
H-AMG-GM2 3/0.05 81(2.48] 19.53s 7.36s 26.89s
H-AMG-LN 3/0.05 74(2.48]17.78s 7.60s 25.38s
U-AMG 2/- 232(2.90) 95.95s 15.36s 111.31s
U-AMG 3/- 135 (3.15) 73.26s 27.78s 101.04s
U-AMG 4/- 101 (3.49) 67.16s 38.35s 105.51s
262144 3234610179 H-AMG 3/- 124 (2.48) 29.64 s 8.53s 38.17s
H-AMG 4/- 106 (2.90) 29.33s 9.68s 39.01s
H-AMG-GM1 2/0.05 138(2.84)37.81s 8.70s 46.51s
H-AMG-GM1 3/0.05 73(3.70)| 22.99s 21.39s 44.38s
H-AMG-GM2 3/0.05 94 (2.48] 23.84s 11.01s 34.85s
H-AMG-LN 3/0.05 84(2.48]21.22s 11.21s 32.43s
Increased Problem Size
U-AMG 3/- 143 (3.10)118.72s 36.94s 155.66's
262144 6312364803 H-AMG 3/- 134 (2.52) 62.48s 13.76s 76.24s
H-AMG-GM2 3/0.05 102 (2.53)48.64s 16.89s 65.53s
H-AMG-LN 3/0.05 88(2.53)[41.76s 16.89s 58.65s
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Table 4 Same problem setup and notation as in Table 3, but largetgmnobizesy = 0.45. On
32K MPI ranks H-AMG-GML1 hits the maximal iteration numberldd00 (marked withmax It.)

#MPI ranks Time Time Time
(=2x#Cores) Problem Sizg Preconditioner|Pmax/Q-th It. (Cop) | CG BoomerSetupSetup + Solvd
U-AMG 2/- 98 (3.18)[ 56.75s 6.10s 62.85s
U-AMG 3/- 69 (3.52)| 43.12s 9.09s 52.21s
U-AMG 4/- 54(3.84)| 35.86s 12.15s 48.01s
64 1618803 H-AMG 3/- 151 (2.55) 65.27 s 8.52s 73.79s
H-AMG 4/- 80 (2.97)[ 38.67s 11.86s 50.53s

H-AMG-GM1 2/0.01 77(3.07] 38.01s 11.08s 49.09s
H-AMG-GM2 3/0.01 64(3.07] 31.94 13.52s 45.46s

H-AMG-GM2 3/0.05 72(2.56] 31.78s 9.52s 41.30s

H-AMG-LN 3/0.05 69(2.56] 30.45s 10.07s 40.52s

U-AMG 2/- 128 (3.26) 78.80s 9.11s 87.91s

U-AMG 3/- 85 (3.59)[ 56.54 s 15.10s 71.64s

U-AMG 4/- 65(3.94)]| 46.60s 20.58s 67.18s

512 12616803 H-AMG 3/- 232(2.57)103.70s 9.80s 113.50s
H-AMG 4/- 104 (2.99) 51.60s 14.16s 65.76s

H-AMG-GM1 2/0.01 96(3.10] 48.72s 15.38s 64.10s

H-AMG-GM2 3/0.01 71(2.66] 33.29s 14.62s 47.91s

H-AMG-GM2 3/0.05 96(2.58] 43.76s 11.45s 55.21s

H-AMG-LN 3/0.05 89(2.58] 40.52s 11.99s 52.51s

U-AMG 217- 141 (3.30) 95.04 s 13.13s 108.17s

U-AMG 3/- 106 (3.64) 79.87 s 21.70s 101.57s

U-AMG 4/- 85(4.00)| 68.90s 27.33s 96.23s

4096 99614403 H-AMG 3/- 375 (2.58)174.54s 11.57s 186.11s
H-AMG 4/- 184 (3.01) 95.46s 16.32s 111.78s

H-AMG-GM1 2/0.01 115(3.124)59.89s 17.58s 77.47s

H-AMG-GM2 3/0.01 90(2.60] 42.97s 15.81s 58.78s

H-AMG-GM2 3/0.05 125(2.59)58.93s 13.58s 72.52s
H-AMG-LN 3/0.05 109(2.5¢)51.15s 13.80s 64.95s

U-AMG 217- 202 (3.31)146.31s 23.41s 169.72s
U-AMG 3/- 128 (3.65)124.37 s 48.18s 172.55s
U-AMG 4/- 102(4.02)]114.02s 54.98s 169.00s
32768 791664 009 H-AMG 3/- 692 (2.58)340.75s 14.44s 355.19s
H-AMG 4/- 320 (3.01)174.94s 19.26s 195.22s

H-AMG-GM1 2/0.01 max It. - - -

H-AMG-GM2 3/0.01 124(2.59)61.91s 19.15s 81.06s
H-AMG-GM2 3/0.05 146 (2.59)72.67s 17.08s 89.75s
H-AMG-LN 3/0.05 118(2.54)57.24s 16.19s 73.43s

Table 5 Same problem setup and notation as in Table 3. Investigafitime effect of an increas-
ing v; Setup + Solvedenotes the total solution time spent in the AMG setup and\¥&-CG
solve; H-AMG hits the maximal iteration number of 1000 (medkvithmax It.)

512 MPI ranks, 12 616 803 dofs
v=03 v =045 v=0.49

Preconditioner|Pmax / Q-th| It. (Cop) Setup+Solve|lt. (Cop) Setup+Solve|lt. (Cop) Setup+Solve

U-AMG 2/- 128 (2.79) 76.61s |128(3.26) 87.91s [125(3.60) 102.94s

U-AMG 3/- 79 (2.98) 53.69s | 85(3.59) 71.64s |[89(3.81) 85.39s

U-AMG 4]- 57 (3.21) 56.16s | 65(3.94) 67.18s |[72(3.89) 79.10s

H-AMG 3/- 76 (2.50) 41.47s |232(2.57) 113.50s | maxt. -

H-AMG 41 - 59 (2.94) 41.24s |104 (2.99) 65.76s | maxt. -
H-AMG-GM1 2/0.01 |56(2.88) 39.74s |96 (3.10) 64.10s (189 (3.49) 127.05s
H-AMG-GM2 3/0.01 |49(2.59) 34.07s [71(2.66) 47.91s [159 (2.79) 99.25s

H-AMG-LN 3/0.01 |47(2.54) 32.34s [79(2.62) 50.06s (196 (2.71) 110.85s
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Table 6 Weak scalability of the larggp, 16| x [0,1] x [0,1] 3D beam problem withE = 210 and
v = 0.3. Same notation as in Table 3. Computations carried out (PQUEEN BlueGene/Q at

Julich Supercomputing Centre (JSC)

#MPI ranks Time Time Time

(=2x#Cores) Problem Size| Preconditioner|Pmax/Q-th It. (Cop) | CG BoomerSetugSetup + Solvg

U-AMG 3/- 96 (2.83)| 35.18s 3.83s 39.01s

16 424683 H-AMG 3/- 92 (2.49)| 27.39s 4.73s 32.12s

H-AMG-GM2 3/0.01 55(3.50)|21.63s 11.38s 33.01s

H-AMG-LN 3/0.01 56(3.14) 20.19s 9.22s 29.41s

U-AMG 3/- 118 (2.93) 64.49s 6.05s 70.54s

128 3232563 H-AMG 3/- 117 (2.48) 49.88s 6.71s 56.59s

H-AMG-GM2 3/0.01 84(3.04] 41.66s 12.04s 43.70s

H-AMG-LN 3/0.01 65(2.68)| 29.68s  10.23s 39.91s

U-AMG 3/- 145 (2.99) 82.55s 8.79s 91.34s

1024 25213923 H-AMG 3/- 138 (2.50) 59.94 s 8.57s 68.51s

H-AMG-GM2 3/0.01 86(2.59) 38.88s 12.12s 51.00s

H-AMG-LN 3/0.01 80(2.54)|35.77s 11.41s 47.18s

U-AMG 3/- 188 (3.04)113.42s 10.61s 124.03s

8192 199151043 H-AMG 3/- 160 (2.51) 70.76 s 9.01s 79.77s

H-AMG-GM2 3/0.01 108 (2.53)48.94s 11.82s 60.76s

H-AMG-LN 3/0.01 103(2.52) 46.64s 11.94s 58.58's

U-AMG 3/- 225 (3.11)157.34s 19.84s 177.18s

65536 1583018888 H-AMG 3/- 195(2.52) 89.01s  11.32s 100.33s

H-AMG-GM2 3/0.01 120(2.53)55.63s 14.80s 70.43s

H-AMG-LN 3/0.01 115(2.53)53.29s  14.86s 68.15s

U-AMG 3/- 270 (3.06)229.40s 39.18s 268.58s

524288 12623496963 H-AMG 3/- 253(2.52)118.38s  13.34s 131.72s

H-AMG-GM2 3/0.01 144 (2.53)68.56s 18.17s 86.73s

H-AMG-LN 3/0.01 131(2.53) 62.52s  18.11s 80.63s

Table 7 Weak scalability results for th&D cuboid problem;

Notation as in Table 3

#MPI ranks Time Time Time

(=2x#Cores) Problem Sizg Preconditioner|Pmax/ Q-th It. (Cop) | CG BoomerSetuf Setup + Solveg

U-AMG 2/- 49 (2.73)[25.50 s 4.53s 30.03s

U-AMG 3/- 34 (2.95)18.76 s 6.93s 25.69s

64 1618803 H-AMG 3/- 34 (2.48)(14.57s 7.67s 22.24s

H-AMG-GM2 3/0.01 29(3.04)14.51s 12.81s 27.32s

H-AMG-LN 3/0.01 24(2.68)|11.09s 10.86s 21.95s

U-AMG 2/- 65 (2.79)(35.83s 6.24s 42.07s

U-AMG 3/- 43 (2.98)|24.77 s 8.57s 33.34s

512 12616803 H-AMG 3/- 41 (2.50)|18.06 s 8.33s 26.39s

H-AMG-GM2 3/0.01 31(2.59)14.25s 11.83s 26.08s

H-AMG-LN 3/0.01 23(2.55)[10.57s 11.25s 21.83s

U-AMG 2/- 84 (2.84)[49.76 s 8.06s 57.82s

U-AMG 3/- 53(3.04)(32.02s 10.75s 42.77s

4096 99614403 H-AMG 3/- 45 (2.51)|20.18s 9.23s 29.41s

H-AMG-GM2 3/0.01 33(2.53)15.32s 12.28s 27.60s

H-AMG-LN 3/0.01 31(2.53)(14.34s 12.30s 26.64s

U-AMG 2/- 102 (2.87)64.11s 11.83s 75.94s

U-AMG 3/- 63 (3.09)(43.83s 18.31s 62.14s

32768 791664 003 H-AMG 3/- 49 (2.52)|22.58s 10.01s 32.59s

H-AMG-GM2 3/0.01 38(2.53)17.90s 13.58s 31.48s

H-AMG-LN 3/0.01 34(2.53)(16.03s 14.05s 30.08s

U-AMG 2/- 126 (2.86)81.26s 17.51s 98.77s

U-AMG 3/- 73(3.10)(60.98 s 37.99s 98.97s

262144 6312364803 H-AMG 3/- 64 (2.52)(30.15s 12.60s 42.75s

H-AMG-GM2 3/0.01 44 (2.53)21.20s 17.85s 39.05s

H-AMG-LN 3/0.01 39(2.53)(18.84s 17.83s 36.67s
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Fig. 6 Weak scalability of the BoomerAMG Set(fleft) and the time spent in the AMG-CG solve
phasgright) for the three dimensional beam with= 0.45 andE = 210; cf. Table 4
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Fig. 7 Weak scalability of total solution time for the three dimemsl beam withv = 0.45 and
E = 210; cf. Table 4

6.3 Parallel Problem Assembly and Reordering Process

Although the focus of this paper is on the parallel perforogaof AMG for linear
elasticity problemswe also comment on the parallel problem assemblysatdp,
presenting timingesults in Table 8. In order to assemble the global elagtiribb-
lems in two and three dimensions, we first decompose the doimiai nonoverlap-
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ping parts of equal size, one for each MPI rank. We then adeelotal stiffness
matrices corresponding to these local parts. These cotipmgare completely lo-
cal to the ranks and thus perfectly scalable. The local aslsgpnocess is denoted
asLocal Asm. in Table 8. To assemble the local stiffness matrices to oabal
and parallel stiffness matrix, some global communicat®nédcessary. This global
assembly process is denoted@sbal Asm. in Table 8. This process scales fine up
to 32K ranks. Scaling further, the amount of communicatind synchronization
slows the global assembly down. A classical lexicograghliodering of the global
indices is often not optimal for the convergence, espegoieding hybrid approaches,
and we therefore reorder the indices. After therdering process, each rank holds
a portion of the global stiffness matrix which has a shapeelo a square in two
dimensions and a cube in three dimensions. The implementafithe index re-
ordering step is very fast (see Table 8) but makes use of the sammunication
patterns as the global assembly process leading to the ssteréodation and more
than 32K cores.

Table 8 Presentation gbroblem assembly and settimings,which areindependent of the chosen
AMG preconditioner. Values are averages over the measatedwin all runs presented in Table 3.
The total runtime of the comple®D beam application can be obtained by adding these three times
to theSetup + Solvetime from Table 3

#MPI ranks Problem Size|Local Asm. Global Asm. Reorder
64 839619 19.10s 0.81s 0.67
512 6502275 | 19.14s 0.86s 0.844

4096 51171075 19.14s 0.93s 0.774
32786 406003203 19.05s 1.44s 1.574
262144 3234610179 19.03s 8.82s 9.359

7 Conclusions

We investigatedhe performance of hypre’s AMG variants for elasticity fewsral
2D and 3D linear elasticity problems with varying Poissotiosav. We compared
the unknown and hybridpproachesvhich use prolongation operators that only in-
terpolate the translations, with three approaches, GM12@Ml LN, that are based
on the hybrid approach and also incorporate the rotationall cases, GM1, GM2
and LN showed improved convergence over the hybrid appraden using the
same truncation faP. Forv = 0.3, all hybrid approaches scaled better than the un-
known approach, and the GM2 and LN approaches were ovestdfior very large
problemsFor the largest problem in three dimensions with 14 billiokmowns and
using the largest number of processes considered, i.e28®drocesses, the LN ap-
proach was 40 percent faster than the standard appro&ares= 0.45, GM2 and
LN clearly scale better than the other approaches and are than twice as fast
on 32768 processes with better complexities and five times stsafathe hybrid
approach with the same operator complexity.
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We also found that the unknown approach was more robust wghrd to an
increase inv than the other approaches, solving the problem with 0.49 faster
than any of the other approaches, but generally needed leogeplexities. While
the hybrid approach did not converge within 1000 iteratitorsv = 0.49, GM1,
GM2 and LN were able to solve the problem in less than 200titera.

Overall, our study shows that the inclusion of the rigid bodydes into AMG
interpolation operators is generally beneficial, espbcéllarge scaleWe conclude
that, for elasticity problems, using enhancements of ttexfiolation, parallel AMG
methods are able to scale to the largest supercomputeentiyravailable.
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