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Abstract. Multigrid methods are well suited to large massively parallel computer architectures3
because they are mathematically optimal and display good parallelization properties. Since current4
architecture trends are favoring regular compute patterns to achieve high performance, the ability5
to express structure has become much more important. The hypre software library provides high-6
performance multigrid preconditioners and solvers through conceptual interfaces, including a semi-7
structured interface that describes matrices primarily in terms of stencils and logically structured8
grids. This paper presents a new semi-structured algebraic multigrid (SSAMG) method built on this9
interface. The numerical convergence and performance of a CPU implementation of this method are10
evaluated for a set of semi-structured problems. SSAMG achieves significantly better setup times11
than hypre’s unstructured AMG solvers and comparable convergence. In addition, the new method12
is capable of solving more complex problems than hypre’s structured solvers.13
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1. Introduction. The solution of partial differential equations (PDEs) often17

involves solving linear systems of equations18

(1.1) Ax = b,19

where A ∈ RN×N is a sparse matrix; b ∈ RN is the right-hand side vector, and20

x ∈ RN is the solution vector. In modern simulations of physical problems, the21

number of unknowns N can be huge, e.g., on the order of a few billion. Thus, fast22

solution methods must be used for Equation (1.1).23

Multigrid methods acting as preconditioners to Krylov-based iterative solvers are24

among the most common choices for fast linear solvers. In these methods, a multilevel25

hierarchy of decreasingly smaller linear problems is used to target the reduction of26

error components with distinct frequencies and solve (1.1) with O(N) computations27

in a scalable fashion. There are two basic types of multigrid methods [7]. Geometric28

multigrid employs rediscretization on coarse grids, which needs to be defined explicitly29

by the user. A less invasive and less problem-dependent approach is algebraic multi-30

grid (AMG) [27], which uses information coming from the assembled fine level matrix31

A to compute a multilevel hierarchy. The hypre software library [21, 15] provides32

high-performance preconditioners and solvers for the solution of large sparse linear33

systems on massively parallel computers with a focus on AMG methods. It features34

three different interfaces, a structured, a semi-structured, and a linear-algebraic inter-35

face. Its most used AMG method, BoomerAMG [19], is a fully unstructured method,36

built on compressed sparse row matrices (CSR). The lack of structure presents seri-37

ous challenges to achieve high performance on GPU architectures. The most efficient38

solver in hypre is PFMG [2], which is available through the structured interface. It39

is well suited for implementation on accelerators, since its data structure is built on40

grids and stencils, and achieves significantly better performance than BoomerAMG41

when solving the same problems [4, 14]; however, it is applicable to only a subset of42

the problems that BoomerAMG can solve. This work presents a new semi-structured43
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algebraic multigrid (SSAMG) preconditioner, built on the semi-structured interface,44

consisting of mostly structured parts and a small unstructured component. It has45

the potential to achieve similar performance as PFMG with the ability to solve more46

complex problems.47

There have been other efforts to develop semi-structured multigrid methods. For48

example, multigrid solvers for hierarchical hybrid grids (HHG) have shown to be highly49

efficient [6, 5, 17, 18, 22]. These grids are created by regularly refining an initial,50

potentially unstructured grid. Geometric multigrid methods for semi-structured tri-51

angular grids that use a similar approach have also been proposed [25]. More recently,52

the HHG approach has been generalized to a semi-structured multigrid method [24].53

Regarding applications, there are many examples employing semi-structured meshes54

which can benefit from new semi-structured algorithms, e.g., petroleum reservoir sim-55

ulation [16], marine ice sheets modeling [9], next-generation weather and climate56

models [1], and solid mechanics simulators [26], to name a few. In addition, software57

frameworks that support the development of block-structured AMR applications such58

as AMReX [29, 30] and SAMRAI [20] can benefit from the development of solvers for59

semi-structured problems.60

This paper is organized as follows. Section 2 reviews the semi-structured con-61

ceptual interface of hypre, which enables the description of matrices and vectors that62

incorporate information about the problem’s structure. Section 3 describes the new63

semi-structured algorithm in detail. In section 4, we evaluate SSAMG’s performance64

and robustness for a set of test cases featuring distinct characteristics and make com-65

parisons to other solver options available in hypre. Finally, in section 5, we list66

conclusions and future work.67

2. Semi-structured interface in hypre. The hypre library provides three68

conceptual interfaces by which the user can define and solve a linear system of equa-69

tions: a structured (Struct), a semi-structured (SStruct) and a linear algebraic (IJ)70

interface. They range from highly specialized descriptions using structured grids and71

stencils in the case of Struct to the most generic case where sparse matrices are stored72

in a parallel compressed row storage format (ParCSR) [12, 13]. In this paper, we focus73

on the SStruct interface [12, 13], which combines features of the Struct and the IJ in-74

terfaces and targets applications with meshes composed of a set of structured subgrids,75

e.g, block-structured, overset, and structured adaptive mesh refinement grids. The76

SStruct interface also supports multi-variable PDEs with degrees of freedom lying in77

the center, corners, edges or faces of cells composing logically rectangular boxes. From78

a computational perspective, these variable types are associated with boxes that are79

shifted by different offset values. In this work, we consider only cell-centered problems80

for ease of exposition. The current CPU implementation of SSAMG cannot deal with81

problems involving multiple variable types yet; however, the mathematical algorithm82

of SSAMG expands to such general cases.83

There are five fundamental components required to define a linear system in the84

SStruct interface: a grid, stencils, a graph, a matrix, and a vector. The grid is85

composed of np structured parts with independent index spaces and grid spacing.86

Each part is formed topologically by a group of boxes, which are a collection of cell-87

centered indices, described by their “lower” and “upper” corners. Figure 1 shows an88

example of a problem geometry that can be represented by this interface. Stencils89

are used to define connections between neighboring grid cells of the same part, e.g., a90

typical five-point stencil would connect a generic grid cell to itself and its immediate91

neighbors to the west, east, south, and north. The graph describes how individual92
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Figure 1. A semi-structured grid composed of five parts. Part 4 (orange) consists of two boxes,
while the others consist of just a single box. Furthermore, Part 1 (green) has a refinement factor of
two with respect to the other parts. The pairs (x, y) denote cell coordinates in the i and j topological
directions, respectively. Note that the indices of lower-left cells for each part are independent, since
the grid parts live in different index spaces.

parts are connected, see Figure 3 for an example. We have now the components93

to define a semi-structured matrix A = S + U , which consists of structured and94

unstructured components, respectively. S contains coefficients that are associated95

with stencil entries. These can be variable coefficients for each stencil entry in each96

cell within a part or can be set to just a single value if the stencil entry is constant97

across the part. U is stored in ParCSR format and contains the connections between98

parts. Since this matrix is unstructured and allows for any kind of connection between99

two different nodes, we do not restrict the way that two semi-structured parts interact,100

such as in the case of some octree-type implementations that require a 2 : 1 balance.101

Finally, a semi-structured vector describes an array of values associated with the cells102

of a semi-structured grid.103

3. Semi-structured algebraic multigrid (SSAMG). In the hypre package,104

there is currently a single native preconditioner for solving problems with multiple105

parts through the SStruct interface, which is a block Jacobi method named Split. It106

uses one V-cycle of a structured multigrid solver as an approximation to the inverse107

of the structured part of A. This method has limited robustness since it consid-108

ers only structured intra-grid couplings in a part to build an approximation of A−1.109

In this paper, we present a new solver option for the SStruct interface that com-110

putes a multigrid hierarchy taking into account inter-part couplings. This method111

is called SSAMG (Semi-Structured Algebraic MultiGrid). It is currently available112

in the recmat branch of hypre. This section defines coarsening, interpolation, and113

relaxation for SSAMG (subsections 3.1, 3.2, and 3.4, respectively). It also describes114

how coarse level operators are constructed (subsection 3.3) and discusses a strategy115

for improving the method’s efficiency at coarse levels (subsection 3.5).116
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3.1. Coarsening. As in PFMG [2], we employ semi-coarsening in SSAMG. The117

coarsening directions are determined independently for each part of the SStructGrid118

to allow better treatment of problems with different anisotropies among the parts.119

The idea of semi-coarsening is to coarsen in a single direction of strong coupling such120

that every other perpendicular line/plane (2D/3D) forms the new coarse level. For121

an illustration, see Figure 3, where coarse points are depicted as solid disks.122

In the original PFMG algorithm, the coarsening direction was chosen to be the123

dimension with smallest grid spacing. This option is still available in hypre by allowing124

users to provide an initial nd-dimensional array of “representative grid spacings” that125

are only used for coarsening. However, both PFMG and SSAMG can also compute126

such an array directly from the matrix coefficients. In SSAMG, this is done separately127

for each part, leading to a matrix W ∈ Rnp×nd , where np and nd denote the number128

of parts and problem dimensions. Here, element Wpd is heuristically thought of as129

a grid spacing for dimension d of part p, and hence a small value indicates strong130

coupling.131

To describe the computation of W in part p, consider the two-dimensional nine-132

point stencil in Figure 2c and assume that AC > 0 (simple sign adjustments can be133

made if AC < 0). The algorithm extends naturally to three dimensions. Note also that134

both PFMG and SSAMG are currently restricted to stencils that are contained within135

this nine-point stencil (27-point in 3D). The algorithm proceeds by first reducing136

the nine-point matrix to a single five-point stencil through an averaging process,137

then computing the (negative) sum of the resulting off-diagonal coefficients in each138

dimension. That is, for the i-direction (d = 1), we compute139

(3.1) c1 =
∑
(i,j)

−(ASW +AW +ANW )− (ASE +AE +ANE),140

where the stencil coefficients are understood to vary at each point (i, j) in the grid.141

Here the left and right parenthetical sums contribute to the “west” and “east” co-142

efficients of the five-point stencil. The computation is analogous for the j-direction.143

From this, we define144

(3.2) Wpd =

√
max

1≤i≤nd

ci

cd
,145

based on the heuristic that the five-point stencil coefficients are inversely proportional146

to the square of the grid spacing.147

With W in hand, the semi-coarsening directions for each level and part are com-148

puted as described in Algorithm 3.1. The algorithm starts by computing a bounding149

box1 around the grid in each part, then loops through the grid levels from finest150

(level 1) to coarsest (level nl). For a given grid level l and part p, the coarsening151

direction d⋆ is set to be the one with minimum2 value in Wp (line 8). Then, the152

bounding box for part p is coarsened by a factor of two in direction d⋆ (line 9) and153

Wp,d⋆ is updated to reflect the coarser “grid spacing” on the next grid level (line 10).154

If the bounding box is too small, no coarsening is done (line 7) and that part becomes155

inactive. The coarsest grid level nl is the first level with total semi-structured grid156

1Given a set of boxes, a bounding box is defined by the cells with minimum index (lower corner)
and maximum index (upper corner) over the entire set.

2In the case of two or more directions sharing the same value of Wpd, as in an isotropic scenario,
we set d⋆ to the one with smallest index.
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size less than a given maximum size smax, unless this exceeds the specified maximum157

number of levels lmax.158

Algorithm 3.1 SSAMG coarsening

1: procedure SSAMGCoarsen(W )
2: for p = 1, np do
3: Compute part bounding boxes bboxp

4: end for
5: for l = 1, nl do
6: for p = 1, np do
7: if volume{bboxp} > 1 then
8: d⋆ = argmind {Wpd}
9: Coarsen bboxp in direction d⋆ by a factor of 2

10: Wpd⋆ = 2 ∗Wpd⋆

11: end if
12: end for
13: end for
14: end procedure

3.2. Interpolation. A key ingredient in multigrid methods is the interpolation159

(or prolongation) operator P , the matrix that transfers information from a coarse160

level in the grid hierarchy to the next finer grid. The restriction operator R moves161

information from a given level to the next coarser grid. For a numerically scalable162

method, error modes that are not efficiently reduced by relaxation should be captured163

in the range of P , so they can be reduced on coarser levels [7].164

In SSAMG, we employ a structured operator-based method for constructing pro-165

longation similar to the method used in [2]. It is “structured” because P is composed166

of only a structured component; interpolation is only done within a part, not between167

them. It is “operator-based” because the coefficients are algebraically computed from168

S and are able to capture heterogeneity and anisotropy. In hypre, P is a rectangular169

matrix defined by two grids (domain and range), a stencil, and corresponding stencil170

coefficients. In the case of P , the domain grid is the coarse grid and the range grid171

is the fine grid. Since SSAMG uses semi-coarsening, the stencil for interpolation con-172

sists of three coefficients that are computed by collapsing the stencil of A, a common173

procedure for defining interpolation in algebraic multigrid methods.174

To exemplify how P is computed, consider the solution of the Poisson equation on175

a cell-centered grid (Figure 2a) formed by a single part and box. Dirichlet boundary176

conditions are used and discretization is performed via the finite difference method177

with a nine-point stencil (Figure 2c). Assume that coarsening is in the i-direction178

by selecting fine grid cells with even i-coordinate index (depicted in darker red) and179

renumbering them on the coarse grid as shown in Figure 2b. The prolongation oper-180

ator connects fine grid cells to their neighboring coarse grid cells with the following181

stencil (see [11] for more discussion of stencil notation)182

P ∼
[
PW 1 PE

]
c
=

[
PW ∗ PE

]r1
c

⊕
[
∗ 1 ∗

]r2
c
,183

where184

(3.3) PW =
ASW +AW +ANW

AS +AC +AN
, and PE =

ASE +AE +ANE

AS +AC +AN
.185
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(1,1)

(5,5)

(3,3)

(a) Fine grid

(1,1)

(b) Coarse grid

(2,5)
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ANW ANE

AE

ASE

AN
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(c) Stencil of A
centered at (3,3)
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Figure 2. (a) and (b) show one example of fine and coarse grids, respectively, also known as
range and domain grids for the purpose of prolongation. Coarsening is done in the i-direction, as
depicted by the darker cells in the fine grid. (c) shows the stencil coefficients of A relative to the
grid point (3, 3) from the fine grid. Stencil coefficients for a given grid point can be viewed as the
nonzero coefficients of its respective row in a sparse matrix.

Here, r1 denotes the range subgrid given by the light-colored cells in Figure 2a, and r2186

denotes the subgrid given by the dark-colored cells. For a fine-grid cell such as (3, 3)187

in Figure 2, interpolation applies the weights PW and PE to the coarse-grid unknowns188

associated with cells (2, 3) and (4, 3) in the fine-grid indexing, or (1, 3) and (2, 3) in the189

coarse-grid indexing. For a fine-grid cell such as (2, 3), interpolation applies weight 1190

to the corresponding coarse-grid unknown.191

When one of the stencil entries crosses a part boundary that is not a physical192

boundary, we set the coefficient associated with it to zero and update the coefficient193

for the opposite stencil entry so that the vector of ones is contained in the range194

of the prolongation operator. Although this gives a lower order interpolation along195

part boundaries, it limits stencil growth and makes the computation of coarse level196

matrices cheaper, see section 3.3. It also assures that the near kernel of A is well197

interpolated between subsequent levels.198

Another component needed in a multigrid method is the restriction operator,199

which maps information from fine to coarse levels. SSAMG follows the Galerkin200

approach, where restriction is defined as the transpose of prolongation (R = PT ).201

3.3. Coarse level operator. The coarse level operator Ac in SSAMG is com-202

puted via the Galerkin product PTAP . Since the prolongation matrix consists only203

of the structured component, the triple-matrix product can be rewritten as204

(3.4) Ac = PTSP + PTUP,205

where the first term on the right-hand side is the structured component of Ac, and206

the second its unstructured component. Note that the last term involves the mul-207

tiplication of matrices of different types, which we resolve by converting one matrix208

type to the other. Since it is generally not possible to represent a ParCSR matrix in209

structured format, we convert the structured matrix P to the ParCSR format. How-210

ever, we consider only the entries of P that are actually involved in the triple-matrix211

multiplication PTUP to decrease the computational cost of the conversion process.212

If we examine the new stencil size for Ac, we note that the use of the two-point213

interpolation operator limits stencil growth. For example, in the case of a 2D five-214

point stencil at the finest level, the maximum stencil size on coarse levels is nine, and215

for a 3D seven-point stencil at the finest level, the maximum stencil size on coarse216

levels is 27.217

We prove here that under certain conditions, the unstructured portion of the218
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Figure 3. Example of a graph of the matrix U and graph of matrix P derived from the semi-
structured grid shown in Figure 1. The graph of U is depicted by black-solid edges. Note that these
connections are determined by the stencils of each semi-structured part. In this example, all parts
have a five-point stencil, except for part 2, which has a nine-point stencil. This explains why parts
2, 3, and 4 are connected diagonally in U . The graph of P consists of five unconnected subgraphs
illustrated by the dotted multicolored lines. Lastly, the boundary points are depicted by black-rimmed
circles.

coarse grid operator stays restricted to the part boundaries and does not grow into219

the interior of the parts. Note that we define a part boundary δΩi here as the set of220

points in a part Ωi that are connected to neighboring parts in the graph of the matrix221

U . See the black-rimmed points in Figure 3 for an illustration. Figure 3 shows also222

the graph of P for the semi-structured grid in Figure 1 and an example of a graph for223

the unstructured matrix U .224

Theorem 1 We make the following assumptions:225

• The grid Ω consists of k parts: Ω = Ω1 ∪ ... ∪ Ωk, where Ωi ∩ Ωj = ∅.226

• The grid has been coarsened using semi-coarsening.227

• The operator P interpolates fine points using at most two adjacent coarse228

points aligned with the fine points and maps coarse points onto themselves.229

• The graph of the unstructured matrix U contains only connections between230

boundary points, i.e., ui,j = 0 if i ∈ Ωm \ δΩm,m = 1, ..., k, or j ∈ Ωn \231

δΩn, n = 1, ..., k, and there are no connections within a part, i.e., ui,j = 0 for232

i, j ∈ Ωm,m = 1, ..., k.233

Then the graph of the unstructured part Uc = PTUP also contains only connections234

between boundary points, i.e., uc
i,j = 0 if i ∈ Ωc

m \ δΩc
m,m = 1, ..., k, or j ∈ Ωc

n \235

δΩc
n, n = 1, ..., k, and there are no connections within a part, i.e., uc

i,j = 0 for i, j ∈236

Ωc
m,m = 1, ..., k..237

Proof : Since we want to examine how boundary parts are handled, we reorder238

the interpolation matrix P and the unstructured part U , so that all interior points239

are first followed by all boundary points. The matrices P and U are then defined as240

follows:241

(3.5) P =

(
P I P IB

PBI PB

)
, U =

(
0 0
0 UB

)
.242
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Note that while UB maps δΩ onto δΩ, PB maps δΩc onto δΩ. Thus, in the extreme243

case that all boundary points are fine points, P IB and PB do not exist. The coarse244

unstructured part is given as follows:245

(3.6) Uc = PTUP =

(
(PBI)TUBPBI (PBI)TUBPB

(PB)TUBPBI (PB)TUBPB

)
.246

It is clear already that there is no longer a connection to P I and P IB , eliminating247

many potential connections to interior points; however, we still need to investigate248

further the influence of PBI and PB .249

Since PBI , PB , and UB are still very complex due to their dependence on k250

parts, we further rewrite them as follows using the fact that P is defined only on the251

structured parts and U only connects boundary points of neighboring parts.252

(3.7) P x =


P x
1

P x
2

. . .

P x
k

 , UB =


0 UB

1,2 ... UB
1,k

UB
2,1 0

. . .
...

...
. . .

. . . UB
k−1,k

UB
k,1 ... UB

k,k−1 0

 .253

Note that while UB
ij maps δΩi to δΩj , only the coefficients corresponding to edges in254

the graph of U that connect points in δΩi to δΩj are nonzero, all other coefficients255

are zero. Then, (P x)TUBP y, where “x” and “y” can stand for “BI” as well as “B”,256

is given by257

(3.8)


0 (P x

1 )
TUB

1,2P
y
2 ... (P x

1 )
TUB

1,kP
y
k

(P x
2 )

TUB
2,1P

y
1 0

. . .
...

...
. . .

. . . (P x
k−1)

TUB
k−1,kP

y
k

(P x
k )

TUB
k,1P

y
1 ... (P x

k )
TUB

k,k−1P
y
k−1 0

 .258

This allows us to just focus on the submatrices (P x
i )

TUB
ijP

y
j . Let us define P x

i |δΩij259

as the matrix that consists of the rows of P x
i that correspond to boundary points in260

δΩi that are connected to boundary points in δΩj . Note that δΩij can still be fairly261

complex and consist of several sides, e.g., if one part is embedded in another part.262

In that situation, we will divide P x
i |δΩij into independent submatrices that belong to263

just one side of the part boundary and examine them individually. Boundary points264

that can be associated with several sides will be assigned to the side that connects265

with the other part. Since coarsening only occurs in one direction, this assignment is266

unambiguous. For simplicity, we will assume that δΩij is just a single line for now.267

There are only three potential scenarios that can occur due to our use of semi-268

coarsening and a simple two-point interpolation (Figure 3):269

• all boundary points are coarse points as shown at the right boundary of part270

2 and the left boundary of part 3;271

• all boundary points are fine points as at the right boundary of part 1 and 4;272

• the boundary points are alternating coarse and fine points as illustrated at273

the right boundary of part 5.274

If all points are coarse points, PB
i |δΩij = I and PBI

i |δΩij = 0, since there are no275

connections from the boundary to the interior for PBI
i |δΩij . If all points are fine points,276

PB
i |δΩij

does not exist, and PBI
i |δΩij

is a matrix with at most one nonzero element277

per row in the column corresponding to the interior coarse point connected to the fine278
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boundary point, or it does not exist, if there are no interior points. Coarse points in279

Ωi adjacent to the fine boundary points in δΩi become boundary points of Ωc
i , e.g.,280

see right boundary of part 1 or left and right boundaries of part 4. Consequently,281

all nonzero elements in PBI
i |δΩij are associated with a column belonging to δΩi.282

In the case of alternating fine and coarse points, PBI
i |δΩij = 0, since there are no283

connections from the boundary to the interior, and PB
i |δΩij

is a matrix with at most284

two nonzeros in the j-th and k-th columns, where j and k are elements of δΩc
i . Recall285

that all columns in Uij belonging to points outside of δΩj and all rows belonging286

to points outside of δΩi are zero. Based on this and the previous observations it is287

clear that if all points are coarse or we are dealing with alternating fine and coarse288

points, the submatrices in (3.8) that involve PBI
i will be 0, since PBI

i |δΩij
= 0 and289

PBI
j |δΩji

= 0. Any additional nonzero coefficients in PBI
i or PBI

j due to boundary290

points next to other parts will be canceled out in the matrix product. It is also clear,291

since the columns of PB
i pertain only to points in δΩc

i , that the graph of the product292

(PB
i )TUijP

B
j only contains onnections of points of δΩc

i to points of δΩc
j and none to293

he interior or to itself.294

Let us further investigate the case where all boundary points are fine points. We295

first consider (PBI
i )TUijP

BI
j . Since we have already shown that PBI

i |δΩij
= 0 for296

boundaries with coarse or alternating points leading to zero triple products in (3.8),297

we can ignore these scenarios and assume that for both PBI
i and PBI

j the boundary298

points adjacent to each other are fine points. Each row of PBI
i |δΩij

has at most one299

nonzero element in the column corresponding to the interior coarse point connected300

to the fine boundary point. This interior point is also an element in δΩc
i . Therefore301

the graph of the product (PBI
i )TUijP

BI
j only contains connections of points of δΩc

i to302

points of δΩc
j and none to the interior or to itself. Finally, this statement also holds303

for the triple products (PB
i )TUijP

BI
j and (PBI

i )TUijP
B
j using the same arguments304

as above. Note that the number of nonzero coefficients in Uc can still be larger than305

those in U , however the growth only occurs along part boundaries, and we have not306

observed unlimited growth in our numerical experiments.307

3.4. Relaxation. Relaxation, or smoothing, is an important element of multi-308

grid whose task is to eliminate high frequency error components from the solution309

vector x. The relaxation process at step k > 0 can be described via the generic310

formula:311

(3.9) xk = xk−1 + ωM−1 (b−Axk−1) ,312

where M−1 is the smoother operator and ω is the relaxation weight. In SSAMG, we313

provide two pointwise relaxation schemes. The first one is weighted Jacobi, in which314

M−1 = D−1, with D being the diagonal of A. Moreover, ω varies for each multigrid315

level and semi-structured part as a function of the grid-spacing metric W :316

(3.10) ωp =
2

3− βp/αp
,317

where318

(3.11) αp =

nd∑
d=1

1

W 2
pd

and βp =

nd∑
d=1,
d ̸=d⋆

1

W 2
pd

.319

The ratio βp/αp adjusts the relaxation weight to more closely approximate the optimal320

weight for isotropic problems in different dimensions. To see how this works, consider321
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as an example a highly-anisotropic 3D problem that is nearly decoupled in the k-322

direction and isotropic in i and j. Because of the severe anisotropy, the problem is323

effectively 2D, so the optimal relaxation weight is 4/5. Since our coarsening algorithm324

will only coarsen in either directions i or j, we get βp/αp = 1/2, and ωp = 4/5 as325

desired.326

The second relaxation method supported by SSAMG is L1-Jacobi. This method327

is similar to the previous one, in the sense that a diagonal matrix is used to construct328

the smoother operator; however, here, the i-th diagonal element of M equals the329

L1-norm of the i-th row of A:330

Mii =

N∑
j=1

|Aij | .331

This form leads to guaranteed convergence when A is positive definite, i.e., the error332

propagation operator E = I−M−1A has a spectral radius smaller than one. We refer333

to [3] for more details. This option tends to give slower convergence than weighted334

Jacobi; however, a user-defined relaxation factor in the range (1, 2/λmax(M
−1A))335

(λmax is the maximum eigenvalue) can be used to improve convergence.336

To reduce the computational cost of a multigrid cycle within SSAMG, we also337

provide a way to turn off relaxation on certain multigrid levels in fully and partially338

isotropic scenarios. We call this option “skip”, and it has the action of mimicking339

full-coarsening. With this option, relaxation levels (and skipped relaxation levels) are340

defined in sequence moving from fine to coarse as follows. Let d⋆l be the coarsening341

direction on level l and let r be the relaxation level with largest value r < l. If d⋆l = d⋆p342

for some p ≥ r, then we define level l to be a relaxation level. We also ensure relaxation343

is never skipped on the finest and coarsest levels. For example, in an isotropic setting,344

the coarsening directions (from fine to coarse) might be 1, 2, 3, 1, 2, 3, ... with relaxation345

occuring on levels where d⋆l = 1. In an anisotropic setting with strong coupling in346

dimension 1, the coarsening directions might be 1, 1, 1, 1, 2, 3, ... with relaxation again347

occuring on levels where d⋆l = 1.348

3.5. Hybrid approach. Since SSAMG uses semi-coarsening, the ratio between349

the number of variables on subsequent grids is equal to two. In classical algebraic350

multigrid, this value tends to be larger, especially when aggressive coarsening strate-351

gies are applied. This leads to the creation of more levels in the multigrid hierarchy352

of SSAMG when compared to BoomerAMG. Since the performance benefits of ex-353

ploiting structure decreases on coarser grid levels, we provide an option to transition354

to an unstructured multigrid hierarchy at a certain level or coarse problem size cho-355

sen by the user. This is done by converting the matrix type from SStructMatrix to356

ParCSRMatrix at the transition level. The rest of the multigrid hierarchy is set up357

using BoomerAMG configured with the default options used in hypre as of version358

2.25.0, i.e., HMIS coarsening, strength threshold of value of 0.25, ext+i interpolation,359

and forward/backward L1-Gauss-Seidel relaxation. With a properly chosen transition360

level, the hybrid approach can improve convergence and thus solve times while main-361

taining a similar overall setup cost for SSAMG. In the non-hybrid case, the coarsest362

level problem in SSAMG is solved with a single sweep of the same relaxation method363

used in previous levels.364

4. Numerical results. In this section, we investigate convergence and perfor-365

mance of SSAMG when used as a preconditioner for the conjugate gradient method366

(PCG). We also compare it to three other multigrid schemes in hypre, namely PFMG,367
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Split, and BoomerAMG. The first is the flagship multigrid method for structured368

problems in hypre based on semi-coarsening [2, 8], the second, a inexact block-Jacobi369

method built on top of the SStruct interface [21], in which blocks are mapped to370

semi-structured parts, and the last scheme is hypre’s unstructured algebraic multi-371

grid method [19]. Each of these preconditioners has multiple setup parameters that372

affect its performance. For the comparison made here, we select those leading to the373

best solution times on CPU architectures. In addition, we consider four variants of374

SSAMG in an incremental setting to demonstrate the effects of different setup options375

described in the paper. A complete list of the methods considered here is given below:376

• PFMG: weighted Jacobi smoother and “skip” option, as described in section377

3.4 for SSAMG, turned on.378

• Split: inexact block-Jacobi method with one V-cycle of PFMG as the inner379

solver for parts.380

• BoomerAMG3: Forward/Backward L1-Gauss-Seidel relaxation [3]; coarsen-381

ing via HMIS [10] with a strength threshold value of 0.25; modularized option382

for computing the Galerkin product RAP ; one level (first) of aggressive coars-383

ening with multi-pass interpolation [28] and, in the following levels, matrix-384

based extended+i interpolation [23] truncated to a maximum of four nonzero385

coefficients per row.386

• SSAMG-base: baseline configuration of SSAMG employing weighted L1-387

Jacobi smoother with relaxation factor equal to 3/2.388

• SSAMG-skip: above configuration plus the “skip” option.389

• SSAMG-hybrid: above configuration plus the “hybrid” option for transition-390

ing to BoomerAMG, with the aggressive coarsening option and multipass391

interpolation options disabled, as the coarse solver at the 10th level, which392

corresponds to three steps of full grid refinement in 3D, i.e., 512 times reduc-393

tion on the number of degrees of freedom (DOFs).394

• SSAMG-opt: refers to the best SSAMG configuration and employs the same395

parameters as SSAMG-hybrid except for transitioning to BoomerAMG at396

the 7th level. This results in six pure SSAMG coarsening levels and reduction397

factor of 64 on the number of DOFs.398

Every multigrid preconditioner listed above is applied to the residual vector via a399

single V(1,1)-cycle. The global coarsest grid size is equal to at most eight unknowns400

in all cases where BoomerAMG is used, one unknown for PFMG, and the number of401

parts for Split, SSAMG-base and SSAMG-skip. The number of parts varies according402

to the test case, e.g., four in test cases 1 and 2, three in test case 3, and one in the last403

test case. Since we test the solvers for increasing global problem sizes, the number of404

levels in the various multigrid hierarchies increases for larger problems.405

We consider four test cases featuring three-dimensional semi-structured grids,406

different part distributions, problem sizes and anisotropy directions. In the coarsest407

problem size for a test case, each semi-structured part is owned by a different processor408

and formed by a single box containing m × m × m cells. In the remaining problem409

sizes, each semi-structured part is uniformly refined in all directions by a factor equal410

to p and distributed to p × p × p unique MPI tasks. This leads to a total of npp
3411

MPI tasks for np parts. Note that, in this strategy, the number of unknowns owned412

by a processor and the total number of parts in the grid are kept constant, while the413

global number of unknowns per part is (m×p)3. For an example of grid partitioning,414

3We tuned the BoomerAMG configuration parameters for performance, i.e. best overall setup
and solve times. Note that such a strategy generally does not lead to the fastest convergence.
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see Figure 4. We are particularly interested in evaluating the weak scalability of the415

proposed method for a few tasks up to a range of thousands of MPI tasks. Thus, we416

vary the value of p from one to eight with unitary increments.417

For the results, we report the number of iterations needed for convergence, setup418

time of the preconditioner, and solve time of the iterative solver. All experiments419

were performed on Lassen, a cluster at LLNL equipped with two IBM POWER9420

processors (totaling 44 physical cores) per node. However, we note that 32 cores per421

node at most were used in the numerical experiments to reduce the effect of limited422

memory bandwidth. Convergence of the iterative solver is achieved when the L2-423

norm of the residual vector is less than 10−6||b||2. The linear systems were formed424

via discretization of the Poisson equation through finite differences via the following425

seven-point stencil:426

(4.1) A ∼
[
−γ

]  −β
−α 2(α+ β + γ) −α

−β

 [
−γ

]
427

where α, β, and γ denote the coefficients in the i, j, and k topological directions. For428

the isotropic problems, α = β = γ = 1, for the anisotropic cases we define their values429

in section 4.2. Finally, we used a vector of ones for the right hand side and an initial430

solution guess composed of random numbers between zero and one.431

4.1. Test case 1 - cubes side-by-side. The first test case is made of an iso-432

tropic and block-structured three-dimensional domain composed of four cubes, where433

each contains the same number of cells and refers to a different semi-structured part.434

Figure 4a shows one particular case with cubes formed by four cells in each direction.435

Regarding the solver choices, since PFMG works only for single-part problems, we436

translated parts into independent boxes in an equivalent structured grid. Note that437

such a transformation is only possible due to the simplicity of the current problem438

geometry and it is unattainable in more general cases such as those described later in439

sections 4.3 and 4.4.440

Part 0

Part 2

Part 1

Part 3

Part 1

Part 1

Proc 0 Proc 1

Proc 2 Proc 3

(b) Grid partitioning (4 processes)(a) Base grid

Proc 0 Proc 1

Proc 2 Proc 3

Proc 8 Proc 9

Proc 10 Proc 11

Proc 16 Proc 17

Proc 18 Proc 19

Proc 24 Proc 25

Proc 26 Proc 27

(c) Grid partitioning (32 processes)

Proc
9

Proc
11

Proc
15

Proc
13

Proc
29

Proc
25

Proc
27

Proc
31Proc 27Proc 26

Proc 30 Proc 31

Proc 19Proc 18

Proc 22 Proc 23

k

i

j

Figure 4. (a) Three-dimensional base grid used for test case 4.1. Note that there are no
adjacent parts in the k-direction. Colors denote different parts, and the numerical experiments
showed in this section are produced by uniformly refining the semi-structured parts composing the
base grid in all topological directions. The next two ilustrations show how portions of the semi-
structured grid are mapped to different MPI tasks for p = 1 (b) and p = 2 (c). Note that part zero
(blue) is entirely owned by processor zero when p = 1, and it is distributed among processors zero
to seven when p = 2 (processors four to seven cannot be seen in the figure), while keeping the same
number of unknowns per processor.

For the numerical experiments, we consider m = 128, which gives a local problem441

size per part of 2, 097, 152 DOFs and a global problem size of 8, 388, 608 DOFs for 4442
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MPI tasks (p = 1). The largest problem we consider here, obtained when p = 8, has a443

global size of about 4.3 billion DOFs. For a complete list of problem sizes considered444

for this test case, see Table 1. In addition, we show the number of levels in the445

various multigrid hierarchies. Note that SSAMG-base, SSAMG-skip, and Split have446

the same numbers, which increase with the problem sizes since these methods have447

a fixed coarsening ratio. The same observation is valid for PFMG, while its number448

of levels are shifted by two since the coarsest problem size is set to a single degree of449

freedom. BoomerAMG (abbreviated to AMG on the table) has the least number of450

levels among all methods, this is due to the use of aggressive coarsening and the fact451

that the coarsening ratio varies through the hierarchy. Lastly, SSAMG-hybrid and452

SSAMG-opt demonstrates a mixed behavior due to the transition to BoomerAMG at453

some point in their multigrid hierarchies.454

Table 1
Number of levels in the multigrid hierarchy generated by each method (columns) for several

problem sizes (rows). Structured multigrid methods have an increasing number of levels with larger
problem sizes, while unstructured multigrid (BoomerAMG) shows a less pronounced increase.

p Nprocs DOFs
Number of multigrid levels

SSAMG
AMG Split PFMG

base skip hybrid opt

1 4 8,388,608 22 22 14 12 8 22 24
2 32 67,108,864 25 25 15 12 9 25 27
3 108 226,492,416 26 26 15 13 9 26 28
4 256 536,870,912 28 28 15 13 10 28 30
5 500 1,048,576,000 28 28 15 13 10 28 30
6 864 1,811,939,328 29 29 15 13 10 29 31
7 1,372 2,877,292,544 30 30 15 13 10 30 32
8 2,048 4,294,967,296 31 31 15 13 10 31 33

Figure 5 shows weak scalability results for this test case. Analyzing the iteration455

counts, Split is the only method that does not converge in less than the maximum456

iteration count of 100 for runs larger than 108 million DOFs (p = 3). This lack457

of numerical scalability was already expected since couplings among parts are not458

captured in Split’s multigrid hierarchy. The best iteration counts are reached by459

PFMG, which is natural since this method can take full advantage of the problem’s460

geometry. Noticeably, the iteration counts of SSAMG-opt follow PFMG closely, since461

part boundaries are no longer considered after transitioning to BoomerAMG on the462

coarser levels and the transition level takes place earlier here than in SSAMG-hybrid;463

the other SSAMG variants need a higher number of iterations for achieving conver-464

gence, since the interpolation is of lower quality along part boundaries. Lastly, the465

BoomerAMG preconditioner shows a modest increase in iteration counts for increasing466

problem sizes, and this is common in the context of algebraic multigrid.467

Solve times are directly related to iteration counts. Since Split has a similar468

iteration cost to the other methods but takes the largest number of iterations to469

converge, it is the slowest option in solution time. For the same reason, the three470

SSAMG variants except for SSAMG-opt are slower than the remaining precondition-471

ers. Still, SSAMG-skip is faster than SSAMG-base, despite showing more iterations,472

because the “skip” option reduces its iteration cost. The optimal variant SSAMG-opt473

is able to beat BoomerAMG by a factor of 1.6x for p = 1 and 1.8x for p = 8. More-474
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Figure 5. Weak scalability results for test case 1. Three metrics are shown in the figure, i.e.,
setup phase times in seconds (left); solve phase times in seconds (middle), and number of iterations
(right). All curves are plotted with respect to the number of MPI tasks, Nprocs, which varies from 4
(p = 1) up to 2048 (p = 8).

over, SSAMG-opt shows little performance degradation with respect to the fastest475

preconditioner (PFMG). Lastly, the jumps in solve times between Nprocs = 32 and476

Nprocs = 108 are mainly due to the higher costs associated with inter-node com-477

munication versus intra-node communication. The same observation is valid for the478

remaining test cases in this section.479

BoomerAMG is the slowest option when analyzing setup times. This is a result480

of multiple reasons, the three most significant ones being:481

• BoomerAMG employs more elaborate formulas for computing interpolation,482

which require more computation time than the simple two-point scheme used483

by PFMG and SSAMG;484

• the triple-matrix product algorithm for computing coarse operators imple-485

mented for CSR matrices is less efficient than the specialized algorithm em-486

ployed by Struct and SStruct matrices;487

• BoomerAMG’s coarsening algorithm involves choosing fine/coarse nodes on488

the matrix graph besides computing a strength of connection matrix. Those489

steps are not necessary for PFMG or SSAMG.490

This is followed by Split, which should have setup times close to PFMG, but due491

to a limitation of its parallel implementation, the method does not scale well with492

an increasing number of parts. On the other hand, all the SSAMG variants show493

comparable setup times, up to 2.8x faster than BoomerAMG. The first two SSAMG494

variants share the same setup algorithm, and their lines are superposed. SSAMG-opt495

has a slightly slower setup for p ≤ 5 than SSAMG-base, but for p > 5 the setup496

times of these two methods match. The fastest SSAMG variant by a factor of 1.2x497

with respect to the others is SSAMG-hybrid, and that holds because it generates a498

multigrid hierarchy with fewer overall levels than the non-hybrid SSAMG variants499

leading to less communication overhead associated with collective MPI calls. The500

same argument is true for SSAMG-opt; however, the benefits of having fewer levels is501

outweighed by the higher cost of converting the SStructMatrix to a ParCSRMatrix502

at a finer transition level, which involves more data. Still, SSAMG-opt is 2.9x and503

2.5x faster than BoomerAMG for p = 1 and p = 8, respectively. PFMG yields the504

best setup times with a speedup of nearly 4.8x with respect to BoomerAMG and up505
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to 1.9x with respect to SSAMG.506

We note that PFMG is naturally a better preconditioner for this problem than507

SSAMG since it does not have the same restrictions as SSAMG for computing inter-508

polation coefficients across part boundaries. However, this test case was significant to509

show how close the performance of SSAMG can be to PFMG, and we demonstrated510

that SSAMG-opt is fairly close to PFMG, besides yielding faster solve and setup times511

than BoomerAMG.512

4.2. Test case 2 - anisotropic cubes. This test case has the same problem513

geometry and sizes (m = 128) as the previous test case; however, it employs different514

stencil coefficients (α, β, and γ) for each part of the grid with the aim of evaluating515

how anisotropy affects solver performance. Particularly, we consider three different516

scenarios (Figure 6) where the coefficients relative to stencil entries belonging to the517

direction of strongest anisotropy for a given part are 100 times larger than the re-518

maining ones. The directions of prevailing anisotropy for each scenario are listed519

below:520

(A) “i” (horizontal) for all semi-structured parts.521

(B) “i” for parts zero and two; “j” (vertical) for parts one and three.522

(C) “i” for part zero, “j” for part three, and “k” (depth) for parts one and two.523

Regarding the usage of PFMG for this problem, the same transformation mentioned524

in section 4.1 applies here as well.525

(a) Scenario A (b) Scenario B (c) Scenario C

Figure 6. XY -plane cut of the three-dimensional grids used in test case 4.2. We consider
three anisotropy scenarios. Arrows indicate the direction of prevailing anisotropy in each part of the
grid, e.g., i-direction in scenario A. Diagonal arrows in the rightmost case indicate the k-direction.

Figure 7 shows the results referent to scenario A. Numerical scalabilities of the526

hybrid SSAMG variants look good, and for SSAMG-hybrid particularly, they look527

better than in the previous test case since the two-point interpolation strategy is528

naturally a good choice for the first few coarsening levels when anisotropy is present in529

the same direction as the coarsening one. However, the non-hybrid SSAMG variants530

do not show a reasonable scalability, which can be explained by their inability to531

interpolate accross part boundaries when the coarse level problems get isotropic. Note532

that BoomerAMG does not suffer from this limitation, which helps the hybrid SSAMG533

variants to be more scalable. For the same reason as discussed in the previous test534

case, Split takes more than 100 iterations to converge, thus, it is not shown in the535

figures for this test case. Lastly, PFMG uses the least number of iterations followed536

closely by SSAMG-opt and BoomerAMG.537

Regarding solve times, SSAMG-opt is about 1.3x faster than BoomerAMG for538

p ≤ 2 and p > 5. The “skip” option of SSAMG is not beneficial for this case since539

the solve times of SSAMG-skip are higher than SSAMG-base. In fact, such an option540
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Figure 7. Weak scalability results for scenario A of test case 2. Three metrics are shown in the
figure, i.e., setup phase times in seconds (left); solve phase times in seconds (middle), and number
of iterations (right). All curves are plotted with respect to the number of MPI tasks, Nprocs, which
varies from 4 (p = 1) up to 2048 (p = 8).

does not play a significant role in reducing the solve time compared to isotropic test541

cases. This is because coarsening happens in the same direction for the first few levels542

in anisotropic test cases, and thus relaxation is skipped only in the later levels of the543

multigrid hierarchy where the cost per iteration associated with them is already low544

compared to the initial levels. Moreover, the omission of relaxation in coarser levels545

of the multigrid hierarchy can be detrimental for convergence in SSAMG, explaining546

why SSAMG-skip requires more iterations than SSAMG-base. Following the fact547

that PFMG is the method that needs fewer iterations for convergence, it is also the548

fastest in terms of solution times. For setup times, the four SSAMG variants show549

comparable results, and similar conclusions to test case 1 are valid here. Lastly, the550

speedups of SSAMG-opt over BoomerAMG are 3.5x and 2.4x for p = 1 and p = 8,551

respectively.552

Results for scenario B are shown in Figure 8. The most significant difference553

here compared to scenario A are the results for PFMG. Particularly, the number of554

iterations for PFMG is above 100 and not shown in the plots. This is caused by the555

fact that PFMG employs the same coarsening direction everywhere on the grid, and556

thus it cannot recognize the different regions of anisotropy as done by SSAMG. This557

is clearly sub-optimal since a good coarsening scheme should adapt to the direction558

of largest coupling of the matrix coefficients. The larger number of iterations is also559

reflected in the solve times of PFMG, which become less favorable than those by560

SSAMG and BoomerAMG. Setup times of PFMG continue to be the fastest ones;561

however, this advantage is not sufficient to maintain its position of fastest method562

overall. The comments regarding the speedups of SSAMG compared to BoomerAMG563

made for scenario A also apply here.564

We conclude this section by analyzing the results, given in Figure 9, for the last565

anisotropy scenario C. Since there is a mixed anisotropy configuration in this case as566

in scenario B, PFMG does not show a satisfactory convergence behavior and it is not567

shown in the graph. On the other hand, the SSAMG variants show good numerical568

and computational scalabilities, and, particularly, SSAMG-opt shows similar speedups569

compared to the BoomerAMG variants as discussed in the previous scenarios. When570

considering all three scenarios discussed in this section, we note that SSAMG shows571
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Figure 8. Weak scalability results for scenario B of test case 2. Three metrics are shown in the
figure, i.e., setup phase times in seconds (left); solve phase times in seconds (middle), and number
of iterations (right). All curves are plotted with respect to the number of MPI tasks, Nprocs, which
varies from 4 (p = 1) up to 2048 (p = 8).

good robustness with changes in anisotropy, and this an important advantage over572

PFMG.573
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Figure 9. Weak scalability results for scenario C of test case 2. Three metrics are shown in the
figure, i.e., setup phase times in seconds (left); solve phase times in seconds (middle), and number
of iterations (right). All curves are plotted with respect to the number of MPI tasks, Nprocs, which
varies from 4 (p = 1) up to 2048 (p = 8).

4.3. Test case 3 - three-points intersection. In this test case, we consider a574

grid composed topologically of three semi-structured cubic parts that share a common575

intersection edge in the k-direction (Figure 10). Stencil coefficients are isotropic,576

but this test case is globally non-Cartesian. In particular, the coordinate system is577

different on either side of the boundary between parts 1 and 2. For example, an east578

stencil coefficient coupling Part 1 to Part 2 is symmetric to a north coefficient coupling579

Part 2 to Part 1.580

For the numerical experiments of this section, we use m = 160, which gives a local581

problem size per part of 4, 096, 000 DOFs, and a global problem size of 12, 288, 000582

DOFs, when p = 1, i.e., three parts and MPI tasks. Figure 11 reports weak scalability583
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Part 0

Part 1

Part 2

i

j

i

j

i

j

Figure 10. ij-plane view of the base geometry for test case 4.3. Uniformly refined instances
of this problem in all directions are used for obtaining the results.

results for the current test case. As noted in section 4.1, it is not possible to recast584

this problem into a single part; thus, we cannot show results for PFMG here.585
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Figure 11. Weak scalability results for test case 3. Three metrics are shown in the figure, i.e.,
setup phase times in seconds (left); solve phase times in seconds (middle), and number of iterations
(right). All curves are plotted with respect to the number of MPI tasks, Nprocs, which varies from 3
(p = 1) up to 1536 (p = 8).

Examining the iteration counts reported in Figure 11, we see that SSAMG-opt586

is the fastest converging option with the number of iterations ranging from 17, for587

p = 1 (3 MPI tasks), to 19, for p = 8 (1536 MPI tasks). This is the best numerical588

scalability among the other methods, including BoomerAMG. On the other hand, the589

remaining SSAMG variants do not show such good scalability as in the previous test590

cases. Once again, this is related to how SSAMG computes interpolation weights of591

nodes close to part boundaries. In this context, we plan to investigate further how to592

improve SSAMG’s interpolation such that the non-hybrid SSAMG variants can have593

similar numerical scalability to SSAMG-opt. As in the previous test cases, the Split594

method is the least performing method and does not converge within 100 iterations595

for p ≥ 2 (Nprocs ≥ 24).596

Regarding solve times, SSAMG-opt is the fastest method since it needs the min-597

imum amount of iterations to reach convergence. Compared to BoomerAMG, its598

speedup is 1.3x for p = 1 and p = 8. SSAMG-skip shows solution times smaller than599

SSAMG-base, and, here, the “skip” option is beneficial to performance. Lastly, look-600
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ing at setup times, all SSAMG variants show very similar timings and the optimal601

variant is up to 3.2x faster than BoomerAMG, proving once again the benefits of602

exploiting problem structure.603

4.4. Test case 4 - structured adaptive mesh refinement (SAMR). In the604

last problem, we consider a three-dimensional SAMR grid consisting of one level of605

grid refinement, and thus composed of two semi-structured parts (Figure 12). The606

first one, in red, refers to the outer coarse grid, while the second, in blue, refers to607

the refined patch (by a factor of two) located in the center of the grid. Each part has608

the same number of cells. To construct the linear system matrix for this problem,609

we treat coarse grid points living inside of the refined part as ghost unknowns, i.e.,610

the diagonal stencil entry for these points is set to one and the remaining off-diagonal611

stencil entries are set to zero. Inter-part couplings at fine-coarse interfaces are stored612

in the unstructured matrix (U), and the value for the coefficients connecting fine613

grid cells with its neighboring coarse grid cells (and vice-versa) is set to 2/3. This614

value was determined by composing a piecewise constant interpolation formula with a615

finite volume discretization rule. We refer the reader to the SAMR section of hypre’s616

documentation [21] for more details.617

Part 0

Part 1

Figure 12. XY -plane cut of the three-dimensional semi-structured grid used in test case 4.4
when m = 8. The semi-structured parts represent two levels of refinement and contain the same
number of cells.

The numerical experiments performed in this section used m = 128, leading to a618

local problem size per part of 2, 097, 152 DOFs, and a global problem size of 4, 194, 304619

DOFs, for p = 1 (Nprocs = 2). Figure 13 shows weak scalability results for this test620

case. This problem is not suitable for PFMG, thus we do not show results for it.621

As in the previous test cases, Split does not reach convergence within 100 itera-622

tions when p ≥ 2. Then, SSAMG-skip is the second least convergent option followed623

by SSAMG-base. The best option is again SSAMG-opt with the number of itera-624

tions ranging from 18 (p = 1) to 29 (p = 8). Furthermore, its iteration counts are625

practically constant for the several parallel runs, except for slight jumps located at626

p = 4 (Nprocs = 128) and p = 8 (Nprocs = 1024), which are more pronounced for627

SSAMG-hybrid.628

Solve times are generally better when the methods converge faster; however, that629

is not always true. In this test case, the iteration costs of SSAMG-base are higher630

than SSAMG-skip, due to more time spent on relaxation, and the faster convergence631

of the former method is not able to offset the cheaper cost of the latter, leading to632

very similar solve times for these methods. Once again, Split is the least performing633

option due to its lack of robustness. Lastly, SSAMG-opt and BoomerAMG have634
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Figure 13. Weak scalability results for test case 4. Three metrics are shown in the figure, i.e.,
setup phase times in seconds (left); solve phase times in seconds (middle), and number of iterations
(right). All curves are plotted with respect to the number of MPI tasks, Nprocs, which varies from 2
(p = 1) up to 1024 (p = 8).

similar performance, with SSAMG-opt being slightly better for various cases, but635

BoomerAMG showing more consistent performance here.636

Setup times of the SSAMG variants are very similar. Listing them in decreasing637

order of times, SSAMG-base and SSAMG-skip show nearly the same values, followed638

by SSAMG-opt, and SSAMG-hybrid is the fastest option. The results for Split are639

better here than in the previous test cases, and this is due to the small number of semi-640

structured parts involved in this SAMR problem. Still, SSAMG leads to the fastest641

options. The slowest method for setup is again BoomerAMG, while SSAMG-opt642

shows speedups with respect to the latter method of 2.6x for p = 1 and 2.7x for643

p = 8.644

5. Conclusions. In this paper, we presented a novel algebraic multigrid method,645

built on the semi-structured interface in hypre, capable of exploiting knowledge about646

the problem’s structure and having the potential of being faster than an unstruc-647

tured algebraic multigrid method such as BoomerAMG on CPUs and accelerators.648

Moreover, SSAMG features a multigrid hierarchy with controlled stencil sizes and649

significantly improved setup times.650

We developed a distributed parallel implementation of SSAMG for CPU archi-651

tectures in hypre. Furthermore, we tested its performance, when used as a precondi-652

tioner to PCG, for a set of semi-structured problems featuring distinct characteristics653

in terms of grid, stencil coefficients, and anisotropy. SSAMG proves to be numerically654

scalable for problems having up to a few billion degrees of freedom and its current655

implementation achieves speedups with respect to BoomerAMG up to a factor of 3.5656

for the setup phase and 1.8 for the solve phase.657

For future work, we plan to improve different aspects of SSAMG and its implemen-658

tation. We will further investigate SSAMG convergence for more complex problems659

than have been considered so far. We want to explore adding an unstructured com-660

ponent to the prolongation matrix to improve interpolation across part boundaries661

and evaluate how this benefits convergence and time to solution. We also plan to add662

a non-Galerkin option for computing coarse operators targeting isotropic problems663

since this approach applied in PFMG has shown excellent runtime improvements on664

both CPU and GPU. Finally, we will develop a GPU implementation for SSAMG.665
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