
Lessons Learned from Parker’s Internship
1. Blackbox optimization is probably not a good fit for generic HERON

models.

The various blackbox methods tried tend to be quite sensitive to problem
formulation and do not robustly find a minimum. The exact reason for this
is not known for certain, but it is most likely due to insufficietly accurate
gradient information. While these method can and do work for some
cases, experience has shown them to be insufficeintly robust to handle
arbitrary user problems with differing initial guess values, transfer function
formulations and cost function formulations.

2. Pyomo does support blackbox, but only through a surrogate trust constraint
method.

The Pyomo blackbox support method (trust-constr) replaces blackbox
elements of models with an AML surrogate, allowing Pyomo to use the
AML interface to IPOPT or other optimizers. While this could be ideal
for greybox modeling or very simple blackbox problems it does not seem
to work well for larger blackbox problems like a HERON dispatcher would
need.

3. There are multiple ways to get at IPOPT as an optimizer: AML and direct.

IPOPT provides two main access methods. The first of these is a direct
method where the optimizer is directly passed an objective function, ja-
cobian function and suitable constraint and constraint gradient functions.
This is the method used previously through PyOptSparse and is the method
used in cyIPOPT.

The other interface is an algebraic modeling language (AML) interface
in the form of AMPL files. When this interface is used, IPOPT reads
the AML files and internally generates corresponding objective, jacobian,
constraint and constraint gradient methods. This is the interface used
by Pyomo. Pyomo does not support access to IPOPT through the direct
interface.

Current State
There are multiple resources available for anyone interested in continuing work
in this direction.

• Chickadee: This is and independent python package installable through
PyPi as chickadee-opt. The source code is available on GitHub: https:
//github.com/dhill2522/chickadee

• Working Chickadee blackbox HERON fork: This method wraps the Python
Chickadee package allowing it to be used as a HERON dispatcher. The

1

https://github.com/dhill2522/chickadee
https://github.com/dhill2522/chickadee


fork is also available on the chickadee branch of the GitHub repo: https:
//github.com/dhill2522/HERON/tree/chickadee

• Incomplete cyIPOPT HERON fork: This method seeks to use the cyIPOPT
package as a HERON dispatcher. The current source code is available in
another fork of HERON: https://github.com/parkerwstott/HERON

• The installation of pyOptSparse on a system can be quite involved (compil-
ing IPOPT) as previously noted. A script has been developed for facilitating
this installation for certain systems and is available upon request.

Recommended Future Actions
• The trust constraint method could have interesting application in HERON

for greybox modeling in HERON
• If there is still motivation for a blackbox dispatcher in HERON, I would rec-

ommend debugging the difference between the PyOptSparse and cyIPOPT
implementations. While this has been tried, the difference between the
working chickadee and broken cyipopt implementations must lie in the ex-
act functions and parameters being passed to IPOPT. There may be some
additional magic that pyOptSparse is doing that results in one problem
working while another fails entirely.

2

https://github.com/dhill2522/HERON/tree/chickadee
https://github.com/dhill2522/HERON/tree/chickadee
https://github.com/parkerwstott/HERON

	Lessons Learned from Parker’s Internship
	Current State
	Recommended Future Actions


