Skip to content

Latest commit

 

History

History
66 lines (51 loc) · 1.38 KB

README.md

File metadata and controls

66 lines (51 loc) · 1.38 KB

DRAC 2022 Task 2 Image Quality Assessment

This repo covers our solution for MICCAI2022 Diabetic Retinopathy Analysis Challenge (DRAC), which solves the task of rating OCTA image quality according to poor, good and excellent.

Dataset

Download the dataset from the official website: https://drac22.grand-challenge.org/

Install

# 1. Create a conda virtual environment.
conda create -n drac python=3.9 -y
conda activate drac

# 2. Install PyTorch (We use PyTorch 2.0 built under cuda 11.8)
conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia

# 3.
pip install timm
pip install pandas
pip install scikit-learn
pip install torchnet

Folder Structure

.
├── checkpoints
│   ├── effb2
│   ├── incepv3
│   ├── resnet18
│   └── resnet50d
├── data
│   ├── 1. Original Images
│   │   ├── a. Training Set
│   │   └── b. Testing Set
│   ├── 2. Groundtruths
│   └── LICENSE.txt
├── dataset.py
├── main.py
├── README.md
├── results
│   ├── effb2
│   ├── incepv3
│   ├── resnet18
│   └── resnet50d
├── test_multi.py
└── test.py

Train & Eval

python main.py --model resnet50d

Test

python test_multi.py --model resnet50d