-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
402 lines (358 loc) · 15.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#!/usr/bin/env python3
# Usage:
# PYTHONPATH=src ./train --dataset <file|directory|glob>
import argparse
import json
import os
import time
import numpy as np
import tensorflow as tf
import tqdm
from tensorflow.core.protobuf import rewriter_config_pb2
import encoder
import memory_saving_gradients
import model
import sample
from accumulate import AccumulatingOptimizer
from load_dataset import Sampler, load_dataset
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
CHECKPOINT_DIR = 'checkpoint'
SAMPLE_DIR = 'samples'
parser = argparse.ArgumentParser(
description='Fine-tune GPT-2 on your custom dataset.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--dataset',
metavar='PATH',
type=str,
required=True,
help=
'Input file, directory, or glob pattern (utf-8 text, or preencoded .npz files).'
)
parser.add_argument('--model_name',
metavar='MODEL',
type=str,
default='117M',
help='Pretrained model name')
parser.add_argument(
'--combine',
metavar='CHARS',
type=int,
default=50000,
help=
'Concatenate input files with <|endoftext|> separator into chunks of this minimum size'
)
parser.add_argument('--encoding',
type=str,
default='utf-8',
help='Set the encoding for reading and writing files.')
parser.add_argument('--batch_size',
metavar='SIZE',
type=int,
default=1,
help='Batch size')
parser.add_argument('--learning_rate',
metavar='LR',
type=float,
default=0.00002,
help='Learning rate for Adam')
parser.add_argument('--accumulate_gradients',
metavar='N',
type=int,
default=1,
help='Accumulate gradients across N minibatches.')
parser.add_argument('--memory_saving_gradients',
default=False,
action='store_true',
help='Use gradient checkpointing to reduce vram usage.')
parser.add_argument('--only_train_transformer_layers',
default=False,
action='store_true',
help='Restrict training to the transformer blocks.')
parser.add_argument('--optimizer',
type=str,
default='adam',
help='Optimizer. <adam|sgd>.')
parser.add_argument(
'--noise',
type=float,
default=0.0,
help='Add noise to input training data to regularize against typos.')
parser.add_argument('--top_k',
type=int,
default=40,
help='K for top-k sampling.')
parser.add_argument('--top_p',
type=float,
default=0.0,
help='P for top-p sampling. Overrides top_k if set > 0.')
parser.add_argument(
'--restore_from',
type=str,
default='latest',
help='Either "latest", "fresh", or a path to a checkpoint file')
parser.add_argument(
'--run_name',
type=str,
default='run1',
help='Run id. Name of subdirectory in checkpoint/ and samples/')
parser.add_argument('--sample_every',
metavar='N',
type=int,
default=100,
help='Generate samples every N steps')
parser.add_argument('--sample_length',
metavar='TOKENS',
type=int,
default=1024,
help='Sample this many tokens')
parser.add_argument('--sample_num',
metavar='N',
type=int,
default=1,
help='Generate this many samples')
parser.add_argument('--save_every',
metavar='N',
type=int,
default=1000,
help='Write a checkpoint every N steps')
parser.add_argument('--val_dataset',
metavar='PATH',
type=str,
default=None,
help='Dataset for validation loss, defaults to --dataset.')
parser.add_argument('--val_batch_size',
metavar='SIZE',
type=int,
default=2,
help='Batch size for validation.')
parser.add_argument('--val_batch_count',
metavar='N',
type=int,
default=40,
help='Number of batches for validation.')
parser.add_argument('--val_every',
metavar='STEPS',
type=int,
default=0,
help='Calculate validation loss every STEPS steps.')
def maketree(path):
try:
os.makedirs(path)
except:
pass
def randomize(context, hparams, p):
if p > 0:
mask = tf.random.uniform(shape=tf.shape(context)) < p
noise = tf.random.uniform(shape=tf.shape(context),
minval=0,
maxval=hparams.n_vocab,
dtype=tf.int32)
return tf.where(mask, noise, context)
else:
return context
def main():
args = parser.parse_args()
enc = encoder.get_encoder(args.model_name)
hparams = model.default_hparams()
with open(os.path.join('models', args.model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
if args.sample_length > hparams.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" %
hparams.n_ctx)
if args.model_name == '345M':
args.memory_saving_gradients = True
if args.optimizer == 'adam':
args.only_train_transformer_layers = True
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.graph_options.rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.OFF
with tf.Session(config=config) as sess:
context = tf.placeholder(tf.int32, [args.batch_size, None])
context_in = randomize(context, hparams, args.noise)
output = model.model(hparams=hparams, X=context_in)
loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=context[:, 1:], logits=output['logits'][:, :-1]))
if args.val_every > 0:
val_context = tf.placeholder(tf.int32, [args.val_batch_size, None])
val_output = model.model(hparams=hparams, X=val_context)
val_loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=val_context[:, 1:],
logits=val_output['logits'][:, :-1]))
val_loss_summary = tf.summary.scalar('val_loss', val_loss)
tf_sample = sample.sample_sequence(hparams=hparams,
length=args.sample_length,
context=context,
batch_size=args.batch_size,
temperature=1.0,
top_k=args.top_k,
top_p=args.top_p)
all_vars = [v for v in tf.trainable_variables() if 'model' in v.name]
train_vars = [v for v in all_vars if '/h' in v.name
] if args.only_train_transformer_layers else all_vars
if args.optimizer == 'adam':
opt = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
elif args.optimizer == 'sgd':
opt = tf.train.GradientDescentOptimizer(
learning_rate=args.learning_rate)
else:
exit('Bad optimizer:', args.optimizer)
if args.accumulate_gradients > 1:
if args.memory_saving_gradients:
exit(
"Memory saving gradients are not implemented for gradient accumulation yet."
)
opt = AccumulatingOptimizer(opt=opt, var_list=train_vars)
opt_reset = opt.reset()
opt_compute = opt.compute_gradients(loss)
opt_apply = opt.apply_gradients()
summary_loss = tf.summary.scalar('loss', opt_apply)
else:
if args.memory_saving_gradients:
opt_grads = memory_saving_gradients.gradients(loss, train_vars)
else:
opt_grads = tf.gradients(loss, train_vars)
opt_grads = list(zip(opt_grads, train_vars))
opt_apply = opt.apply_gradients(opt_grads)
summary_loss = tf.summary.scalar('loss', loss)
summary_lr = tf.summary.scalar('learning_rate', args.learning_rate)
summaries = tf.summary.merge([summary_lr, summary_loss])
summary_log = tf.summary.FileWriter(
os.path.join(CHECKPOINT_DIR, args.run_name))
saver = tf.train.Saver(var_list=all_vars,
max_to_keep=5,
keep_checkpoint_every_n_hours=2)
sess.run(tf.global_variables_initializer())
if args.restore_from == 'latest':
ckpt = tf.train.latest_checkpoint(
os.path.join(CHECKPOINT_DIR, args.run_name))
if ckpt is None:
# Get fresh GPT weights if new run.
ckpt = tf.train.latest_checkpoint(
os.path.join('models', args.model_name))
elif args.restore_from == 'fresh':
ckpt = tf.train.latest_checkpoint(
os.path.join('models', args.model_name))
else:
ckpt = tf.train.latest_checkpoint(args.restore_from)
print('Loading checkpoint', ckpt)
saver.restore(sess, ckpt)
print('Loading dataset...')
chunks = load_dataset(enc,
args.dataset,
args.combine,
encoding=args.encoding)
data_sampler = Sampler(chunks)
if args.val_every > 0:
if args.val_dataset:
val_chunks = load_dataset(enc,
args.val_dataset,
args.combine,
encoding=args.encoding)
else:
val_chunks = chunks
print('dataset has', data_sampler.total_size, 'tokens')
print('Training...')
if args.val_every > 0:
# Sample from validation set once with fixed seed to make
# it deterministic during training as well as across runs.
val_data_sampler = Sampler(val_chunks, seed=1)
val_batches = [[
val_data_sampler.sample(1024)
for _ in range(args.val_batch_size)
] for _ in range(args.val_batch_count)]
counter = 1
counter_path = os.path.join(CHECKPOINT_DIR, args.run_name, 'counter')
if os.path.exists(counter_path):
# Load the step number if we're resuming a run
# Add 1 so we don't immediately try to save again
with open(counter_path, 'r') as fp:
counter = int(fp.read()) + 1
def save():
maketree(os.path.join(CHECKPOINT_DIR, args.run_name))
print(
'Saving',
os.path.join(CHECKPOINT_DIR, args.run_name,
'model-{}').format(counter))
saver.save(sess,
os.path.join(CHECKPOINT_DIR, args.run_name, 'model'),
global_step=counter)
with open(counter_path, 'w') as fp:
fp.write(str(counter) + '\n')
def generate_samples():
print('Generating samples...')
context_tokens = data_sampler.sample(1)
all_text = []
index = 0
while index < args.sample_num:
out = sess.run(
tf_sample,
feed_dict={context: args.batch_size * [context_tokens]})
for i in range(min(args.sample_num - index, args.batch_size)):
text = enc.decode(out[i])
text = '======== SAMPLE {} ========\n{}\n'.format(
index + 1, text)
all_text.append(text)
index += 1
print(text)
maketree(os.path.join(SAMPLE_DIR, args.run_name))
with open(os.path.join(SAMPLE_DIR, args.run_name,
'samples-{}').format(counter),
'w',
encoding=args.encoding) as fp:
fp.write('\n'.join(all_text))
def validation():
print('Calculating validation loss...')
losses = []
for batch in tqdm.tqdm(val_batches):
losses.append(
sess.run(val_loss, feed_dict={val_context: batch}))
v_val_loss = np.mean(losses)
v_summary = sess.run(val_loss_summary,
feed_dict={val_loss: v_val_loss})
summary_log.add_summary(v_summary, counter)
summary_log.flush()
print('[{counter} | {time:2.2f}] validation loss = {loss:2.2f}'.
format(counter=counter,
time=time.time() - start_time,
loss=v_val_loss))
def sample_batch():
return [data_sampler.sample(1024) for _ in range(args.batch_size)]
avg_loss = (0.0, 0.0)
start_time = time.time()
try:
while True:
if counter % args.save_every == 0:
save()
if counter % args.sample_every == 0:
generate_samples()
if args.val_every > 0 and (counter % args.val_every == 0
or counter == 1):
validation()
if args.accumulate_gradients > 1:
sess.run(opt_reset)
for _ in range(args.accumulate_gradients):
sess.run(opt_compute,
feed_dict={context: sample_batch()})
(v_loss, v_summary) = sess.run((opt_apply, summaries))
else:
(_, v_loss, v_summary) = sess.run(
(opt_apply, loss, summaries),
feed_dict={context: sample_batch()})
summary_log.add_summary(v_summary, counter)
avg_loss = (avg_loss[0] * 0.99 + v_loss,
avg_loss[1] * 0.99 + 1.0)
print(
'[{counter} | {time:2.2f}] loss={loss:2.2f} avg={avg:2.2f}'
.format(counter=counter,
time=time.time() - start_time,
loss=v_loss,
avg=avg_loss[0] / avg_loss[1]))
counter += 1
except KeyboardInterrupt:
print('interrupted')
save()
if __name__ == '__main__':
main()