
A set of Common Software Quality Assurance
Baseline Criteria for Research Projects

A DOI-citable version of this manuscript is available at http://hdl.handle.net/10261/160086.

This manuscript was automatically generated on February 2, 2022 with the use of https://gitlab.com/manubot/rootstock/.

Authors

Pablo Orviz
 0000-0002-2473-6405 · orviz

Spanish National Research Council (CSIC); Institute of Physics of Cantabria (IFCA)

Alvaro Lopez
 0000-0002-0013-4602 · alvaro.lopez

Spanish National Research Council (CSIC); Institute of Physics of Cantabria (IFCA)

Doina Cristina Duma
 0000-0002-0124-4870 · caifti

National Institute of Nuclear Physics (INFN)

Mario David
 0000-0003-1802-5356 · mariojmdavid

Laboratory of Instrumentation and Experimental Particle Physics (LIP)

Jorge Gomes
 0000-0002-9142-2596 · jorge-lip

Laboratory of Instrumentation and Experimental Particle Physics (LIP)

Giacinto Donvito
 0000-0002-0628-1080

National Institute of Nuclear Physics (INFN)

http://hdl.handle.net/10261/160086
https://gitlab.com/manubot/rootstock/
https://orcid.org/0000-0002-2473-6405
https://github.com/orviz
https://orcid.org/0000-0002-0013-4602
https://github.com/alvaro.lopez
https://orcid.org/0000-0002-0124-4870
https://github.com/caifti
https://orcid.org/0000-0003-1802-5356
https://github.com/mariojmdavid
https://orcid.org/0000-0002-9142-2596
https://github.com/jorge-lip
https://orcid.org/0000-0002-0628-1080

Abstract
The purpose of this document is to de�ne a set of quality standards, procedures and best practices to
conform a Software Quality Assurance plan to serve as a reference within the European research
ecosystem related projects for the adequate development and timely delivery of software products.

Copyright Notice
Copyright © Members of the INDIGO-DataCloud, DEEP Hybrid-DataCloud eXtreme DataCloud and
EOSC-Synergy collaborations, 2015-2021.

Acknowledgements
The INDIGO-DataCloud, DEEP-Hybrid-DataCloud, eXtreme-DataCloud and EOSC-Synergy projects have
received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement number 653549, 777435, 777367 and 857647 respectively.

Document Log
Issue Date Comment

v1.0 31/01/2018 First draft version

v2.0 05/02/2018 Updated criteria

v3.0 20/12/2019 Code management section, metadata for
software

v3.1 05/03/2020 Add tags/names for each criteria

v3.2 23/04/2020 Add EOSC-Synergy to copyright

v3.3 15/10/2020 Fix issues: #32, #46, #47, #48, #49, #51

v4.0 02/02/2022

Add annex, spell check, Fix issues: #7, #35,
#50, #57, #59, #60, #61, #63, #64, #65, #66,
#67, #69, #70, #71, #72, #73, #74, #75, #76,
#77, #78

1. Introduction and Purpose
This document has been tailored upon the recommendations and requirements found in the Initial
Plan for Software Management and Pilot Services deliverable [1], produced by the INDIGO-DataCloud
project.

These guidelines evolved throughout the project’s lifetime and are being extended in the EOSC-
Synergy [2], as well as the past DEEP-Hybrid-DataCloud and eXtreme DataCloud subsequent projects.

The result is a consolidated Software Quality Assurance (SQA) baseline criteria emanated from the
European Open Science Cloud (EOSC), which aims to outline the SQA principles to be considered in
the upcoming software development e�orts within the European research community, and
continuously evolve in order to be aligned with future software engineering practices and security
recommendations.

2. Goals
1. Set the base of minimum SQA criteria that a software developed within EOSC development project

MUST ful�ll.

2. Enhance the visibility, accessibility and distribution of the produced source code through the
alignment to the Open Source De�nition [3].

3. Promote code style standards to deliver good quality source code emphasizing its readability and
reusability.

4. Improve the quality and reliability of software by covering di�erent testing methods at
development and pre-production stages.

5. Propose a change-based driven scenario where all new updates in the source code are
continuously validated by the automated execution of the relevant tests.

6. Adopt an agile approach to e�ectively produce timely and audience-speci�c documentation.

7. Lower the barriers of software adoption by delivering quality documentation and the utilization of
automated deployment solutions.

8. Encourage secure coding practices and security static analysis at the development phase while
providing recommendations on external security assessment.

3. Notational Conventions
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC
2119 [4].

4. Quality Criteria
The following sections describe the quality conventions and best practices that apply to the
development phase of a software component within the EOSC ecosystem. These guidelines ruled the
software development process of the former European Commission-funded project INDIGO-
DataCloud, where they have proved valuable for improving the reliability of software produced in the
scienti�c European arena.

The next sections describe the development process driven by a change-based strategy, followed by a
continuous integration approach. Changes in the source code, trigger automated builds to analyze the
new contributions in order to validate them before being added to the software component code
base. Consequently, software components are more eligible for deployment in production
infrastructures, reducing the likelihood of service disruption.

4.1. Code Accessibility [QC.Acc]

[QC.Acc01] Following the open-source model, the source code being produced MUST be open and
publicly available to promote the adoption and augment the visibility of the software
developments.

[QC.Acc02] Source code MUST use a Version Control System (VCS).

[QC.Acc02.1] It is RECOMMENDED that all software components delivered by the same project
agree on a common VCS.

[QC.Acc03] Source code produced within the scope of a broader development project SHOULD
reside in a common organization of a version control repository hosting service.

4.2. Licensing [QC.Lic]

[QC.Lic01] As open-source software, source code MUST adhere to an open-source license to be
freely used, modi�ed and distributed by others.

[QC.Lic01.1] Non-licensed software is exclusive copyright by default.

[QC.Lic02] License MUST be compliant with the Open Source De�nition [3].

[QC.Lic02.1] RECOMMENDED licenses are listed in the Open Source Initiative portal under the
Popular Licenses category [5].

[QC.Lic03] Licenses MUST be physically present (e.g. as a LICENSE �le) in the root of all the source
code repositories related to the software component.

4.3. Code Style [QC.Sty]

Code style requirements pursue the correct maintenance of the source code by the common
agreement of a series of style conventions. These vary based on the programming language being
used.

[QC.Sty01] Each individual software product MUST comply with community-driven or de-facto
code style standards for the programming languages being used.

[QC.Sty01.1] Compliance with multiple complementary standards MAY exist.

[QC.Sty02] Custom code style guidelines SHOULD be avoided, only considered in the hypothetical
event of programming languages without existing community style standards.

[QC.Sty02.1] Custom styles MUST be documented by de�ning each convention and its expected
output.

[QC.Sty02.2] Custom styles SHOULD evolve over time towards a more consistent de�nition.

[QC.Sty03] Exceptions of individual conventions from the main de�nition are allowed but SHOULD
be avoided

[QC.Sty03.1] Absence of standard conventions SHOULD be justi�ed and tracked.

[QC.Sty04] Code style compliance testing MUST be automated and MUST be triggered for each
candidate change in the source code.

4.4. Code metadata [QC.Met]

Metadata for the software component provides a way to achieve its full identi�cation, thus making
software citation viable [6]. It allows the assignment of a Digital Object Identi�er (DOI) and is key
towards preservation, discovery, reuse, and attribution of the software component.

[QC.Met01] A metadata �le SHOULD exist along side the code, under its VCS. The metadata �le
SHOULD be updated when needed, as is the case of a new version.

4.5. Unit Testing [QC.Uni]

Unit testing evaluates all the possible �ows in the internal design of the code, so that its behavior
becomes apparent. It is a key type of testing for early detection of failures in the development cycle.

[QC.Uni01] Minimum acceptable code coverage threshold SHOULD be 70%.

[QC.Uni01.1] Unit testing coverage SHOULD be higher for those sections of the code identi�ed
as critical by the developers, such as units part of a security module.

[QC.Uni01.2] Unit testing coverage MAY be lower for external libraries or pieces of code not
maintained within the product’s code base.

[QC.Uni02] Units SHOULD reside in the repository code but separated from the main code.

[QC.Uni03] Unit testing coverage MUST be checked on change basis.

[QC.Uni04] Unit testing coverage MUST be automated.

[QC.Uni04.1] When working on automated testing, the use of testing doubles is
RECOMMENDED to mimic a simplistic behavior of objects and procedures (c.f. section 4.6.).

4.6. Test Harness [QC.Har]

In software development, a test harness [7], is a collection of software and test data used by
developers to unit test software models during development. A test harness will speci�cally refer to
test doubles, which are programs that interact with the software being tested. Once a test harness is
used to execute a test, they can also utilize a test library to generate reports.

It is also a simple form of Integration Testing, where interaction and integration with external
components are substituted by a Double.

Test Double is a generic term for any case where you replace a production object for testing purposes.
There are various kinds of double [8]:

Dummy objects are passed around but never actually used. Usually they are just used to �ll
parameter lists.

Fake objects actually have working implementations, but usually take some shortcut which makes
them not suitable for production (such as an InMemoryTestDatabase).

Stubs provide canned answers to calls made during the test, usually not responding at all to
anything outside what’s programmed in for the test.

Spies are stubs that also record some information based on how they were called. One form of this
might be an email service that records how many messages where sent.

Mocks are pre-programmed with expectations which form a speci�cation of the calls they are
expected to receive. They can throw an exception if they receive a call they don’t expect and are
checked during veri�cation to ensure they got all the calls they were expecting.

As such the following criteria is de�ned for Test Harness:

[QC.Har01] When working on automated testing, the use of Test Doubles is RECOMMENDED to
mimic a simplistic behavior of objects and procedures.

[QC.Har02] Test Doubles SHOULD reside in the software component repository code base but
separated from the main code.

[QC.Har03] Regression testing, that checks the conformance with previous tests, SHOULD be
covered at this stage by executing the complete set of Test Doubles available.

[QC.Har04] Test Doubles and regression, MUST be checked on change basis.

4.7. Test-Driven Development [QC.Tdd]

Test-Driven Development [9], is a software development process relying on software requirements
being converted to test cases before software is fully developed, and tracking all software
development by repeatedly testing the software against all test cases. This is opposed to software
being developed �rst and test cases created later.

[QC.Tdd01] Software requirements SHOULD be converted to test cases, and these test cases
SHOULD be checked automatically.

4.8. Documentation [QC.Doc]

[QC.Doc01] Documentation MUST be treated as code.

[QC.Doc01.1] Version controlled, it MAY reside in the same repository where the source code
lies.

[QC.Doc02] Documentation MUST use plain text format using a markup language, such as
Markdown or reStructuredText.

[QC.Doc02.1] It is RECOMMENDED that all software components delivered by the same project
agree on a common markup language.

[QC.Doc03] Documentation MUST be online and available in a documentation repository.

[QC.Doc03.1] Documentation SHOULD be rendered automatically.

[QC.Doc04] Documentation MUST be updated on new software versions involving any substantial
or minimal change in the behavior of the application.

[QC.Doc05] Documentation MUST be updated whenever reported as inaccurate or unclear.

[QC.Doc06] Documentation MUST be produced according to the target audience, varying
according to the software component speci�cation. The identi�ed types of documentation and
their RECOMMENDED content are:

[QC.Doc06.1] README �le

One-paragraph description of the application.
A “Getting Started” step-by-step description on how to get a development environment
running (prerequisites, installation).
Automated test execution how-to.
Links to the external documentation below (production deployment, user guides).
Contributing code of conduct (optionally linked to an external CONTRIBUTING �le)
Versioning speci�cation.
Author list and contacts.
License information, with a link to the detailed description in an external LICENSE �le.
Acknowledgments.

[QC.Doc06.2] Developer

Private API documentation.
Structure and interfaces.
Build documentation.

[QC.Doc06.3] Deployment and Administration

Installation and con�guration guides.
Service Reference Card, with the following RECOMMENDED content:

Brief functional description.
List of processes or daemons.
Init scripts and options.

List of con�guration �les, location and example or template.
Log �les location and other useful audit information.
List of ports.
Service state information.
List of cron jobs.

Security information.
FAQs and troubleshooting.

[QC.Doc06.4] User

Public API documentation.
Command Line Interface (CLI) reference.

4.9. Security [QC.Sec]

Security assessment is essential for any production Software. An e�ective implementation of the
security requirements applies to every stage in the Software Development Life Cycle (SDLC), especially
e�ective at the source code level.

[QC.Sec01] Secure coding practices MUST be applied into all the stages of a software component
development lifecycle.

[QC.Sec01.1] Compliance with Open Web Application Security Project (OWASP) secure coding
guidelines [10] is RECOMMENDED, even for non-web applications.

[QC.Sec02] Source code MUST use automated linter tools to perform static application security
testing (SAST) [11] that �ag common suspicious constructs that may cause a bug or lead to a
security risk (e.g. inconsistent data structure sizes or unused resources).

[QC.Sec03] Security code reviews [12] for certain vulnerabilities SHOULD be done as part of the
identi�cation of potential security �aws in the code. Inputs SHOULD come from automated linters.

[QC.Sec04] World-writable �les or directories MUST NOT be present in the product’s con�guration
or logging locations.

4.10. Code Work�ow [QC.Wor]

A change-based approach is accomplished with a branching model.

[QC.Wor01] The main branch in the source code repository MUST maintain a working state version
of the software component.

[QC.Wor01.1] Main branch SHOULD be protected to disallow force pushing, thus preventing
untested and un-reviewed source code from entering the production-ready version.

[QC.Wor01.2] New features SHOULD only be merged in the main branch whenever the SQA
criteria is ful�lled.

[QC.Wor02] New changes in the source code MUST be placed in individual branches.

[QC.Wor02.1] It is RECOMMENDED to agree on a branch nomenclature, usually by pre�xing, to
di�erentiate change types (e.g. feature, release, �x).

[QC.Wor03] The existence of a secondary long-term branch that contains the changes for the next
release is RECOMMENDED.

[QC.Wor03.1] Next release changes SHOULD come from the individual branches.

[QC.Wor03.2] Once ready for release, changes in the secondary long-term branch are merged
into the main branch and versioned. At that point in time, main and secondary branches are
aligned. This step SHOULD mark a production release.

4.11. Semantic Versioning [QC.Ver]

[QC.Ver01] Semantic Versioning [13] speci�cation is RECOMMENDED for tagging the production
releases.

4.12. Code Management [QC.Man]

[QC.Man01] An issue tracking system facilitates structured software development. Leveraging
issues to track down both new enhancements and defects (bugs, documentation typos) is
RECOMMENDED.

[QC.Man01.1] In addition to monitoring the internal development, issues are the best means for
supporting users. External users SHOULD be able to create issues based on the operational
performance of the software.

[QC.Man01.2] The description of an issue SHOULD be concise and state clearly the problem. It
is RECOMMENDED to add any reference to the actual problem. In the case of bugs, the issue
SHOULD be accompanied by the relevant debug information. * The usage of templates for the
issue description is RECOMMENDED.

[QC.Man02] In social coding environments, pull or merge requests represent the cornerstone of
collaboration. A pull or merge request provides a place for review and discussion of the changes
proposed to be part of an existing version of the code.

[QC.Man02.1] Pull/Merge requests SHOULD be used for every change in the codebase.

[QC.Man02.2] A software project SHOULD be open to external collaboration through
pull/merge requests.

[QC.Man02.3] A pull/merge request description SHOULD be concise and state clearly its
purpose (e.g. if it is �xing an observed bug or adding a new feature).

[QC.Man02.4] The usage of templates for the pull/merge request’s description is
RECOMMENDED.

[QC.Man02.5] It is RECOMMENDED to use pull/merge requests to address open issues.

[QC.Man02.6] The pull/merge request description SHOULD make reference to the identi�ers of
the issues it is �xing (to eventually close them, either manually or automatically).

4.13. Code Review [QC.Rev]

Code review implies the informal, non-automated, peer review of any change in the source code [12].
It appears as the last step in the change management pipeline, once the candidate change has
successfully passed over the required set of change-based tests.

[QC.Rev01] Code reviews MUST be done in the agreed peer review tool within the project, with the
following RECOMMENDED functionality:

[QC.Rev01.1] Allows general and speci�c comments on the line or lines that need to be
reviewed.

[QC.Rev01.2] Shows the results of the required change-based test executions.

[QC.Rev01.3] Allows to prevent merges of the candidate change whenever not all the required
tests are successful. Exceptions to this rule cover the third-party or upstream contributions
which MAY use the existing mechanisms or tools for code review provided by the target
software project. This exception MUST only be allowed whenever the external revision lifecycle
does not interfere with the project deadlines.

[QC.Rev02] Code reviews MUST be open and collaborative, allowing external experts revisions.

[QC.Rev03] Code reviews SHOULD be concise and use neutral language. The areas where the
reviewers MAY focus are:

[QC.Rev03.1] Message description: commit message is clear, self-explanatory and describes
precisely the objectives being addressed.

[QC.Rev03.2] Goal or scope: change is needed and/or addresses/�xes the whole set of
objectives.

[QC.Rev03.3] Code analysis: useless statements in the code, library or modules imported but
never used or code style suggestions.

[QC.Rev03.4] Review of required tests: check if they include tests of the changes, such as tests
of new features, or tests of bug �xing (regression tests), ensuring proper validation of the
changes.

[QC.Rev03.5] Review of documentation: whether the change SHOULD bring along a
corresponding update in the documentation.

[QC.Rev04] Code reviews MUST be checked on change basis.

[QC.Rev05] Code reviews SHOULD assess the inherent security risk of the changes, ensuring that
the security model has not been downgraded or compromised by the changes.

4.14. Automated Delivery [QC.Del]

Automated delivery comprises the build of Software into an artifact, its upload/registration into a
public repository of such artifacts and noti�cation of the success of the process.

[QC.Del01] Production-ready code MUST be built as an artifact that can be e�ciently executed on
a system.

[QC.Del01.1] The built artifact SHOULD be as minimal as possible, including no more than the
precise runtime environment and dependencies required for the execution of the software.

[QC.Del02] The builded artifact MUST be uploaded and registered into a public repository of such
artifacts.

[QC.Del03] Upon success of the previous (QC.Del02) process, a noti�cation MUST be sent to pre-
de�ned parties such as the main developer or team.

4.15. Automated Deployment [QC.Dep]

[QC.Dep01] Production-ready code MUST be deployed as a workable system with the minimal user
or system administrator interaction leveraging software con�guration management (SCM) tools.

[QC.Dep02] A SCM module is treated as code.

[QC.Dep02.1] Version controlled, it SHOULD reside in a di�erent repository than the source
code to facilitate the distribution.

[QC.Dep03] It is RECOMMENDED that all software components delivered by the same project
agree on a common SCM tool.

[QC.Dep03.1] However, software products MAY not be restricted to provide a unique solution
for the automated deployment.

[QC.Dep04] Any change a�ecting the application’s deployment or operation MUST be
subsequently re�ected in the relevant SCM modules.

[QC.Dep05] O�cial repositories provided by the manufacturer SHOULD be used to host the SCM
modules, thus augmenting the visibility and promote external collaboration.

5. Glossary
API

Application Programming Interface
CLI

Command Line Interface
EOSC

European Open Science Cloud
OWASP

Open Web Application Security Project
SAST

Static Application Security Testing
SCM

Software Con�guration Management
SQA

Software Quality Assurance
TDD

Test-Driven Development
VCS

Version Control System

A1. Annex
The Quality Criteria described in this document is abstract, as such the choice of tools and services to
implement their veri�cation and the code work�ow, is up to the team or community developing
and/or using a given software.

The annex describes the implementation of how the Quality Criteria detailed in this document can be
veri�ed. The technical implementation is achieved through the SQA as a Service (SQAaaS) platform,
being developed in the framework of the EOSC-Synergy project described in Deliverable 3.2 [14]). It
details the architecture and set of components of the platform.

This annex details the code work�ow, the tools and services used to achieve the veri�cation of the
Criteria.

A1.1. Code work�ow

The code work�ow is shown in Figure 1. It depicts a real case example, Github is used for several
purposes that will be described below. The work�ow start when the developer branches the code to
implement a given new feature or �x, after the implementation the Pull Request triggers a CI pipeline
in the Jenkins service.

In the Jenkins service, several checks are performed, both on the code (static), such as code style
linting, as well as dynamic tests such as unit and harness tests. To perform functional tests that may
include API tests in case of a service, the packages will need to be built (delivery), and automatically
deployed into a running state. In the case shown, the con�guration is done with ansible roles and
playbooks.

The Pull Request is updated with the results of the tests, thus notifying the developer team that they
can proceed with the review and, if approved, with the release process where the branch is merge
into the main production branch.

Figure 1: Code work�ow

A1.2. Services

The SQAaaS platform can be used to compose custom Jenkins pipelines in an easy way, in order to
implement all necessary checks of the baseline criteria.

Table 1 shows the list of tools and services used for the source code management as well as to
implement the veri�cation of the Quality Criteria detailed in this document.

The main service used for Software source code management has been Github. It is uses git as
Version Control System, branching and tag management. Additionally has an issue tracker for bugs,
requests and enhancements and the mechanism of Pull Requests for code review and discussion of
changes.

Ansible and Ansible-Galaxy are used in many software frameworks as deployment and con�guration
tools.

The software is packed/built into executable artifacts that can be RPMs (case of RedHat and derivative
OS), DEBs (case of Debian/Ubuntu and derivatives) and in many cases into docker images.

The artifacts are provided, in general, by public repositories and most notably Dockerhub in the case
of docker images. Other common repositories are PyPI for python SW or modules and Maven for Java.

Regarding the CI/CD automation, Jenkins pipelines can be easily composed through the SQAaaS
platform and put into the git repositories to be used by the Jenkins CI service to perform the tests. The
tools used in the CI automation are shown in section A1.2.

Table 1: Tools and services used to implement the QA criteria, also shown the criteria where applicable. * All in the
tooling; https://github.com/EOSC-synergy/sqaaas-tooling/blob/staging/tooling.json#L305. QC.FAIR - Criteria “FAIRness
level of Digital Objects”, are not covered in this document.

https://github.com/EOSC-synergy/sqaaas-tooling/blob/staging/tooling.json#L305

Service Usage Criter
ia Repo URL or documentation Comment

Github VCS QC.Ac
c https://docs.github.com/ Source code repository - git

Github API QC.W
or https://docs.github.com/en/rest git branching management and

version tagging

Github Issue tracker QC.M
an https://docs.github.com/en/issues Track issues, bugs, new features,

etc.

Github Pull Requests
(PR)

QC.M
an,

QC.Re
v

https://docs.github.com/en/pull-requests Code review through PRs

Github Documentatio
n

QC.D
oc

Documentation present in VCS
repository

Ansible,
Galaxy Install, Con�g QC.A

ud https://docs.ansible.com/ Automated deployment and
con�guration

SQAaaS
platform

Pipeline
composition All * https://www.eosc-

synergy.eu/home/software-services/
Pipeline composition for

automatic tests

SQAaaS
platform

Assessment &
awarding

QC.Ac
c,

QC.D
oc,

QC.Li
c,

QC.M
et

https://www.eosc-synergy.eu/eosc-
synergy-quality-badges/ Bronze badge awarding

Jenkins CI
service

Automated
tests All * https://www.jenkins.io/ Execution of automatic tests

Dockerhub Docker images QC.De
l https://hub.docker.com/ Public repository of docker

images

A1.3. Tools for CI/CDD automation

This section shows the tools being used in the CI pipelines, the criteria that it veri�es, applicable
programming language. This list is based on the template �le in https://github.com/EOSC-synergy/sqa-
composer-templates/blob/main/tooling.json.

Tool Criteria Programming
Language Repo URL or documentation Summary

pylint QC.Sty Python https://pylint.org/ Code style

hadolint QC.Sty Docker�le https://github.com/hadolint/hadolint Code style

checkstyle QC.Sty Java https://github.com/checkstyle/checkstyle Code style

jsonlint QC.Sty JSON https://github.com/zaach/jsonlint Code style

bandit QC.Sec Python https://bandit.readthedocs.io/ Static security

pycodestyle QC.Sty Python https://pycodestyle.pycqa.org/en/latest/ Code style

licensee QC.Lic Agnostic https://github.com/licensee/licensee Check license

https://docs.github.com/
https://docs.github.com/en/rest
https://docs.github.com/en/issues
https://docs.github.com/en/pull-requests
https://docs.ansible.com/
https://www.eosc-synergy.eu/home/software-services/
https://www.eosc-synergy.eu/eosc-synergy-quality-badges/
https://www.jenkins.io/
https://hub.docker.com/
https://github.com/EOSC-synergy/sqa-composer-templates/blob/main/tooling.json
https://pylint.org/
https://github.com/hadolint/hadolint
https://github.com/checkstyle/checkstyle
https://github.com/zaach/jsonlint
https://bandit.readthedocs.io/
https://pycodestyle.pycqa.org/en/latest/
https://github.com/licensee/licensee

Tool Criteria Programming
Language Repo URL or documentation Summary

tox

QC.Sty,
QC.Uni,
QC.Fun,
QC.Sec,
QC.Doc

https://tox.wiki/en/lat
est/ Automated test framework

https://tox.wiki/en/latest/

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

References
INDIGO-DataCloud collaboration, Initial Plan for Software Management and Pilot
Services
Members of the INDIGO-DataCloud collaboration
(2015) https://owncloud.indigo-datacloud.eu/index.php/s/yDklCrWjKnjutVA

EOSC-SYNERGY. EU DELIVERABLE: D3.1 Software Maturity baseline
Mario David, Isabel Campos, Valentin Kozlov, Amanda Calatrava, EOSC-SYNERGY
Digital.CSIC (2020-06-29) https://doi.org/gm97ww
DOI: 10.20350/digitalcsic/12607

The Open Source De�nition, URL: https://opensource.org/osd
Open Source Initiative
https://opensource.org/osd

Information on RFC 2119 » RFC Editor https://www.rfc-editor.org/info/rfc2119

Licenses & Standards, URL: https://opensource.org/licenses
Open Source Initiative
https://opensource.org/licenses

Software citation principles
Arfon M Smith, Daniel S Katz, Kyle E Niemeyer, FORCE11 Software Citation Working Group
PeerJ Computer Science (2016-09-19) https://doi.org/bw3g
DOI: 10.7717/peerj-cs.86

What is test harness? - De�nition from WhatIs.com
SearchSoftwareQuality
https://searchsoftwarequality.techtarget.com/de�nition/test-harness

xUnit test patterns: refactoring test code
Gerard Meszaros
Addison-Wesley (2007)
ISBN: 9780131495050

Test-driven development: by example
Kent Beck
Addison-Wesley (2003)
ISBN: 9780321146533

OWASP Secure Coding Practices-Quick Reference Guide | OWASP Foundation
https://owasp.org/www-project-secure-coding-practices-quick-reference-
guide/migrated_content.html

Source Code Analysis Tools | OWASP Foundation https://owasp.org/www-
community/Source_Code_Analysis_Tools

OWASP Code Review Guide | OWASP Foundation https://owasp.org/www-project-code-
review-guide/migrated_content.html

Semantic Versioning 2.0.0, URL: https://semver.org
Tom Preston-Werner
https://semver.org

https://owncloud.indigo-datacloud.eu/index.php/s/yDklCrWjKnjutVA
https://doi.org/gm97ww
https://doi.org/10.20350/digitalcsic/12607
https://opensource.org/osd
https://www.rfc-editor.org/info/rfc2119
https://opensource.org/licenses
https://doi.org/bw3g
https://doi.org/10.7717/peerj-cs.86
https://searchsoftwarequality.techtarget.com/definition/test-harness
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/migrated_content.html
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-project-code-review-guide/migrated_content.html
https://semver.org/

14. EOSC-SYNERGY EU DELIVERABLE: D3.2 First prototype of the Service Integration platform
Pablo Orviz, Isabel Campos, EOSC-SYNERGY
Digital.CSIC (2020-10-08) https://doi.org/gm97w9
DOI: 10.20350/digitalcsic/12721

https://doi.org/gm97w9
https://doi.org/10.20350/digitalcsic/12721

