Bitwise primitives proposal for Plutus

Koz Ross
February 18, 2022

1 Motivation

Bitwise operations are one of the most fundamental building blocks of algorithms and data structures. They can
be used for a wide variety of applications, ranging from representing and manipulating sets of integers efficiently, to
implementations of cryptographic primitives, to fast searches. Their wide availability, law-abiding behaviour and
efficiency are the key reasons why they are widely used, and widely depended on.

At present, Plutus lacks meaningful support for bitwise operations, which significantly limits what can be usefully
done on-chain. While it is possible to mimic some of these capabilities with what currently exists, and it is always
possible to introduce new primitives for any task, this is extremely unsustainable, and often leads to significant
inefficiencies and duplication of effort.

We describe a list of bitwise operations, as well as their intended semantics, designed to address this problem.

2 Goals

To ensure a focused and meaningful proposal, we specify our goals below.

2.1 Useful primitives

The primitives provided should enable implementations of algorithms and data structures that are currently impos-
sible or impractical. Furthermore, the primitives provided should have a high power-to-weight ratio: having them
should enable as much as possible to be implemented.

2.2 Maintaining as many algebraic laws as possible

Bitwise operations, via Boolean algebras, have a long and storied history of algebraic laws, dating back to important
results by the like of de Morgan, Post and many others. These algebraic laws are useful for a range of reasons: they
guide implementations, enable easier testing (especially property testing) and in some cases much more efficient
implementations. To some extent, they also formalize our intuition about how these operations ‘should work’. Thus,
maintaining as many of these laws in our implementation, and being clear about them, is important.

2.3 Allowing efficient, portable implementations

Providing primitives alone is not enough: they should also be efficient. This is not least of all because many would
associate ‘primitive operation’ with a notion of being ‘close to the machine’, and therefore fast. Thus, it is on us to
ensure that the implementations of the primitives we provide have to be implementable in an efficient way, across
a range of hardware.

3 Non-goals

We also specify some specific non-goals of this proposal.

3.1 No partial operations

Partiality is an undesirable property in any language and any functionality. This is especially true of bitwise
operations, which are fairly low-level and need highly-predictable semantics to allow implementers to use them with
confidence and know exactly what answers to expect. Furthermore, especially off-chain, dealing with partiality is
annoying and difficult to track down issues with: MLabs in particular have lost endless hours with division-by-zero
bugs.

3.2 No metaphor-mixing between numbers and bits

A widespread legacy of C is the mixing of treatment of numbers and blobs of bits: specifically, the allowing of
logical operations on representations of numbers. This applies to Haskell as much as any other language: according
to the Haskell Report, it is in fact required that any type implementing Bits implement Num first. While GHC
Haskell only mandates Eq, it still defines Bits instances for types clearly meant to represent numbers. This is a bad
choice, as it creates complex situations and partiality in several cases, for arguably no real gain other than C-like
bit twiddling code.

Even if two types share a representation, their type distinctness is meant to be a semantic or abstraction
boundary: just because a number is represented as a blob of bits does not necessarily mean that arbitrary bit
manipulations are sensible. However, by defining such a capability, we create several semantic problems:

e Some operations end up needing multiple definitions to take this into account. A good example are shifts:
instead of simply having left or right shifts, we now have to distinguish arithmetic versus logical shifts, simply
to take into account that a shift can be used on something which is meant to be a number, which could be
signed. This creates unnecessary complexity and duplication of operations.

e As Plutus BuiltinIntegers are of arbitrary precision, certain bitwise operations are not well-defined on them.
A good example is bitwise complement: the bitwise complement of 0 cannot be defined sensibly, and in fact,
is partial in its Bits instance.

¢ Certain bitwise operations on BuiltinInteger would have quite undesirable semantic changes in order to
be implementable. A good example are bitwise rotations: we should be able to ‘decompose’ a rotation left
or right by n into two rotations (by m; and ms such that m; + ms = n) without changing the outcome.
However, because trailing zeroes are not tracked by the implementation, this can fail depending on the choice
of decomposition, which seems needlessly annoying for no good reason.

¢ Certain bitwise operations on BuiltinInteger would require additional arguments and padding to define
them sensibly. Consider bitwise logical AND: in order to perform this sensibly on BuiltinIntegers we would
need to specify what ‘length’ we assume they have, and some policy of ‘padding’ when the length requested
is longer than one, or both, arguments. This feels unnecessary, and isn’t even clear exactly how this should
be done: for example, how would negative numbers be padded?

These complexities, and many more besides, are poor choices, owing more to the legacy of C than any real useful
functionality. Furthermore, they feel like a casual and senseless undermining of type safety and its guarantees for
very small and questionable gains. Therefore, defining bitwise operations on BuiltinInteger is not something we
wish to support.

There are legitimate cases where a conversion from BuiltinInteger to BuiltinByteString is desirable; this
conversion should be provided, and be both explicit and specified in a way that is independent of the machine or the
implementation of BuiltinInteger, as well as total and round-tripping. Arguably, it is also desirable to provide
built-in support for BuiltinByteString literals specified in a way convenient to their treatment as blobs of bytes
(for example, hexadecimal or binary notation), but this is outside the scope of this proposal.

4 Proposed operations

We propose several classes of operations. Firstly, we propose two operations for inter-conversion between
BuiltinByteString and BuiltinInteger, whose semantics are specified in Subsection 5.2:

integerToByteString :: BuiltinInteger -> BuiltinByteString: Convert a number to a bitwise representa-
tion.

byteStringToInteger :: BuiltinByteString -> BuiltinInteger: Reinterpret a bitwise representation as a
number.

We also propose several logical operations on BuiltinByteStrings, whose semantics are specified in Subsec-
tion 5.3:

andByteString :: BuiltinByteString -> BuiltinByteString -> BuiltinByteString: Perform a bitwise log-
ical AND on the arguments, producing a result whose size is the maximum of the sizes of its arguments.

iorByteString :: BuiltinByteString -> BuiltinByteString -> BuiltinByteString: Perform a bitwise log-
ical IOR on the arguments, producing a result whose size is the maximum of the sizes of its arguments.

xorByteString :: BuiltinByteString -> BuiltinByteString -> BuiltinByteString: Perform a bitwise log-
ical XOR on the arguments, producing a result whose size is the maximum of the sizes of its arguments.

complementByteString :: BuiltinByteString -> BuiltinByteString: Complement all the bits in the argu-
ment, producing a result whose size is the same as the argument.

Lastly, we define the following additional operations, whose semantics are specified in Subsection 5.4:

shiftByteString :: BuiltinByteString -> BuiltinInteger -> BuiltinByteString: Performs a bitwise shift
of the first argument by the absolute value of the second argument, with padding, the direction being indicated
by the sign of the second argument.

rotateByteString :: BuiltinByteString -> BuiltinInteger -> BuiltinByteString: Performs a bitwise ro-
tation of the first argument by the absolute value of the second argument, the direction being indicated by
the sign of the second argument.

popCountByteString :: BuiltinByteString -> BuiltinInteger: Returns the number of 1 bits in the argu-
ment.

isBitSetByteString :: BuiltinByteString -> BuiltinInteger -> BuiltinBool: If the bit at the position
given by the second argument in the first argument is 1, return True, and False otherwise.

isBitClearByteString :: BuiltinByteString -> BuiltinInteger -> BuiltinBool: If the bit at the position
given by the second argument in the first argument is 0, return True, and False otherwise.

4.1 Why these operations?

As stated in Subsection 3.2, there needs to be a well-defined interface between the ‘world’ of BuiltinInteger
and BuiltinByteString. To provide this, we require integerToByteString and byteStringToInteger, which is
designed to roundtrip (that is, describe an isomorphism). Furthermore, by spelling out a precise description of the
conversions in Subsection 5.2, we make this predictable and portable.

Our choice of logical AND, IOR, XOR and complement as the primary logical operations is driven by a mixture
of prior art, utility and convenience. These are the typical bitwise logical operations provided in hardware, and in
most programming languages, leading to most algorithm descriptions relying on bitwise implementations assuming
them as primitive. While we could reduce this number (and, in fact, due to Post, we know that there exist two sole
sufficient operators), this would be both inconvenient and inefficient. As an example, consider implementing XOR
using AND, IOR and complement: this would translate z XOR y into

(COMPLEMENT z AND y) IOR (z AND COMPLEMENT y)

This is both needlessly complex and also inefficient, as it requires copying the arguments twice, only to throw
away both copies.

Like our ‘baseline’ bitwise operations above, shifts and rotations are widely used, and considered as primitive.
While popCountByteString could theoretically be simulated using isBitSetByteString and a fold, this is quite
inefficient: the most efficient method for this operation would involve using something like the Harley-Seal algorithm,
which requires a large lookup table. Furthermore, population counting is so commonly needed that at least one
major hardware platform (x86) provides it as a hardware primitive.

Having both isBitSetByteString and isBitClearByteString is arguably somewhat redundant. However, it
allows us the benefit of totality without confounding answers: you can never get True from either of them on an
invalid index, and for any valid index, only one of them will return True.

Primitive Linear in

integerToByteString Argument (only one)
byteStringToInteger Argument (only one)
andByteString Longer argument
iorByteString Longer argument
xorByteString Longer argument
complementByteString Argument (only one)
shiftByteString BuiltinByteString argument
rotateByteString BuiltinByteString argument
popCountByteString Argument (only one)

isBitSetByteString BuiltinByteString argument
isBitClearByteString BuiltinByteString argument

Table 1: Primitives and which argument they are linear in

4.2 Costing

All of the primitives we describe are linear in one of their arguments. For a more precise description, see Table 1.

5 Semantics

5.1 Preliminaries

We define Nt = {2 € N | 2 # 0}. We assume that BuiltinInteger is a faithful representation of Z. A bit sequence

$ = S$pSp—_1-..80 is a sequence such that for all 4 € {0,1,...,n}, s; € {0,1}. A bit sequence s = $,8,-1...5¢ is a
byte sequence if n = 8k — 1 for some k € N. We denote the empty bit sequence (and, indeed, byte sequence as well)
by 0.

We intend that BuiltinByteStrings represent byte sequences, with the sequence of bits being exactly as the
description above. For example, given the byte sequence 0110111100001100, the BuiltinByteString corresponding
to it would be "o\f".

Let i € NT. We define the sequence binary(i) = (do, mo), (d1,m1),... as
1. mp =17 mod 2, dy = % if 4 is even, and % if it is odd.

djo1 e g djoi—1 ..
2. mj =dj_; mod 2, d; = =+ if d; is even, and ~=— if it is odd.

5.2 Representation of BuiltinInteger as BuiltinByteString and conversions
We describe the translation of BuiltinInteger into BuiltinByteString which is implemented as the
integerToByteString primitive. Informally, we represent BuiltinIntegers with the least significant bit at bit
position 0, using a twos-complement representation. More precisely, let ¢ € NT. We represent 7 as the bit sequence
S = SpSp_1-...S0, such that:

LY ieq00,m} Si -2/ =i and

2. s, =0.

3. Let binary(j) = (do, mo), (d1,m1),.... For any j € {0,1,...,n — 1}, s; = m;; and

4. n+ 1 = 8k for the smallest k € NT consistent with the previous requirements.

For 0, we represent it as the sequence 00000000 (one zero byte). We represent any i € {x € Z | x < 0} as the
twos-complement of the representation of its additive inverse. We observe that any such sequence is by definition

a byte sequence.
To interpret a byte sequence s = $,5,—1...S9 as a BuiltinInteger, we use the following process:

1. If s is 00000000, then the result is 0.

2. Otherwise, if s, = 1, let s’ be the twos-complement of s. Then the result is the additive inverse of the result
of interpreting s’.

3. Otherwise, the result is 32,c oy, 8i- 2t

The above interpretation is implemented as the byteStringToInteger primitive. = We observe that
byteStringToInteger and integerToByteString form an isomorphism. More specifically:

byteStringToInteger . integerToByteString =
integerToByteString . byteStringTolnteger =
id

5.3 Bitwise logical operations on BuiltinByteString

Throughout, let s = s,8,_1...80 and t = t;,t,;m_1 .. .19 be two byte sequences.

We describe the semantics of andByteString. For inputs s and ¢, the result is the byte sequence u =
Umax{n,m}Umax{n,m}—1 - - - o such that for all i € {0,1,..., max{n, m}}, we have

1 ¢<min{n,m}and s; =¢; =1
t; n<i1<m

U; = .
s; m<i<n

0 otherwise

For iorByteString, for inputs s and ¢, the result is the byte sequence u = Umax{n,m}Umax{n,m}—1--- %o such
that for all ¢ € {0,1,..., max{n, m}}, we have

1 i< min{n,m}and s; =1

1 ¢<min{n,m}andt; =1
U=t n<ir<m

s m<i<n

0 otherwise

For xorByteString, for inputs s and ¢, the result is the byte sequence u = Umax{n,m}Umax{n,m}—1-- - uo such
that for all ¢ € {0,1, ..., max{n, m}}, we have

1 i< min{n,m} and s; # ¢,
t; n<i1<m

Uy = .
si m<it<n

0 otherwise
We observe that each of andByteString, iorByteString and xorByteString describes a commutative and
associative operation. Furthermore, for each of these operations, (at least) @) is an identity element.

We now describe the semantics of complementByteString. For input s, the result is the byte sequence u =
Unln—1 ... U such that for all i € {0,1,...,n} we have

1 S¢=:0
Ui = .
0 otherwise
We observe that complementByteString is self-inverting. We also note the following equivalences hold; these
are the DeMorgan laws:

complementByteString (andByteString b b') =
iorByteString (complementByteString b) (complementByteString b')

complementByteString (iorByteString b b') =
andByteString (complementByteString b) (complementByteString b')

5.4 Mixed operations

Throughout this section, let s = $,8,-1...50 and t = t,,t,;,—1 .. . to be byte sequences, and let i € Z.

We describe the semantics of shiftByteString. Informally, these are logical shifts, with negative shifts ‘moving’
away from bit index 0, and positive shifts ‘moving‘ towards bit index 0. More precisely, given the argument s and
i, the result of shiftByteString is the byte sequence upuy,_1 ... ug, such that for all j € {0,1,...,n}, we have

Sj+i j—iE{O,L...,n}

u; =
J 0 otherwise

We observe that for k, ¢ with the same sign and any bs, we have

shiftByteString (shiftBytestring bs k) 1 = shiftByteString bs (k + 1)

We now describe rotateByteString, assuming the same inputs as the description of shiftByteString above.
Informally, the ‘direction’ of the rotations matches that of shiftByteString above. More precisely, the result of
rotateByteString on the given inputs is the byte sequence w,t,—1 ...ug such that for all j € {0,1,...,n}, we
have u; = $j4; mod (n+1)- We observe that for any k, £, and any bs, we have

rotateByteString (rotateByteString bs k) 1 = rotateByteString bs (k + 1)
We also note that
rotateByteString bs O = shiftByteString bs 0 = bs
For popCountByteString with argument s, the result is
> s
j€{0,1,...,n}
Informally, this is just the total count of 1 bits. We observe that for any bs and bs', we have

popCountByteString bs + popCountByteString bs' =
popCountByteString (appendByteString bs bs')

For isBitSetByteString on s and ¢, we return True if 0 < ¢ < n and s; = 1, and False otherwise. For
isBitClearByteString on the same arguments, we return True if 0 <4 < n and s; = 0, and False otherwise.

