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1 Motivation
Bitwise operations are one of the most fundamental building blocks of algorithms and data structures. They can
be used for a wide variety of applications, ranging from representing and manipulating sets of integers efficiently, to
implementations of cryptographic primitives, to fast searches. Their wide availability, law-abiding behaviour and
efficiency are the key reasons why they are widely used, and widely depended on.

At present, Plutus lacks meaningful support for bitwise operations, which significantly limits what can be usefully
done on-chain. While it is possible to mimic some of these capabilities with what currently exists, and it is always
possible to introduce new primitives for any task, this is extremely unsustainable, and often leads to significant
inefficiencies and duplication of effort.

We describe a list of bitwise operations, as well as their intended semantics, designed to address this problem.

2 Example applications
We provide a range of applications that could be useful or beneficial on-chain, but are difficult or impossible to
implement without some, or all, of the primitives we propose.

2.1 Succinct data structures
Due to the on-chain size limit, many data structures become impractical or impossible, as they require too much
space either for their elements, or their overheads, to allow them to fit alongside the operations we want to perform
on them. Succinct data structures could serve as a solution to this, as they represent data in an amount of space
much closer to the entropy limit and ensure only constant overheads. There are several examples of these, and all
rely on bitwise operations for their implementations.

For example, consider wanting to store a set of BuiltinIntegers on-chain. Given current on-chain primitives,
the most viable option involves some variant on a BuiltinList of BuiltinIntegers; however, this is unviable in
practice unless the set is small. To see why, suppose that we have an upper limit of k on the BuiltinIntegers we
want to store; this is realistic in practically all cases. To store n BuiltinIntegers under the above scheme requires

n ·
(⌈

log2(k)

64

⌉
· 64 + c

)
bits, where c denotes the constant overhead for each cons cell of the BuiltinList holding the data. If the set being
represented is dense (meaning that the number of entries is a sizeable fraction of k), this cost becomes intolerable
quickly, especially when taking into account the need to also store the operations manipulating such a structure
on-chain with the script where the set is being used.

If we instead represented the same set as a bitmap based on BuiltinByteString, the amount of space required
would instead be ⌈

k

8

⌉
· 8 +

⌈
log2(k)

64

⌉
· 64

bits. This is significantly better unless n is small. Furthermore, this representation would likely be more efficient
in terms of time in practice, as instead of having to crawl through a cons-like structure, we can implement set
operations on a memory-contiguous byte string:
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• The cardinality of the set can be computed as a population count. This can have terrifyingly efficient im-
plementations: the Muła-Kurz-Lemire algorithm (the current state of the art) can process four kilobytes per
loop iteration, which amounts to over four thousand potential stored integers.

• Insertion or removal is a bit set or bit clear respectively.

• Finding the smallest element is a find-first-one.

• Testing for membership is a check to see if the bit is set.

• Set intersection is bitwise and.

• Set union is bitwise inclusive or.

• Set symmetric difference is bitwise exclusive or.

A potential implementation could use a range of techniques to make these operations extremely efficient, by
relying on SWAR (SIMD-within-a-register) techniques if portability is desired, and SIMD instructions for maximum
speed. This would allow both potentially large integer sets to be represented on-chain without breaking the size
limit, and nodes to efficiently compute with such, reducing the usage of resources by the chain. Lastly, in practice, if
compression techniques are used (which also rely on bitwise operations!), the number of required bits can be reduced
considerably in most cases without compromising performance: the current state-of-the-art (Roaring Bitmaps) can
be used as an example of the possible gains.

In order to make such techniques viable, bitwise primitives are mandatory. Furthermore, succinct data structures
are not limited to sets of integers, but all require bitwise operations to be implementable.

2.2 On-chain vectors
For linear structures on-chain, we are currently limited to BuiltinList and BuiltinMap, which don’t allow constant-
time indexing. This is a significant restriction, especially when many data structures and algorithms rely on the
broad availability of a constant-time-indexable linear structure, such as a C array or Haskell Vector. While we
could introduce a primitive of this sort, this is a significant undertaking, and would require both implementing and
costing a possibly large API.

While for variable-length data, we don’t have any alternatives if constant-time indexing is a goal, for fixed-
length (or limited-length at least) data, there is a possibility, based on a similar approach taken by the finitary
library. Essentially, given finitary data, we can transform any item into a numerical index, which is then stored
by embedding into a byte array. As the indexes are of a fixed maximum size, this can be done efficiently, but
only if there is a way of converting indices into bitstrings, and vice versa. Such a construction would allow using
a (wrapper around) BuiltinByteString as a constant-time indexable structure of any finitary type. This is not
much of a restriction in practice, as on-chain, fixed-width or size-bounded types are preferable due to the on-chain
size limit.

Currently, all the pieces to make this work already exist: the only missing piece is the ability to convert indices
(which would have to be BuiltinIntegers) into bit strings (which would have to be BuiltinByteStrings) and
back again. With this capability, it would be possible to use these techniques to implement something like an array
or vector without new primitive data types.

2.3 Binary representations and encodings
On-chain, space is at a premium. One way that space can be saved is with binary representations, which can
potentially represent something much closer to the entropy limit, especially if the structure or value being represented
has significant redundant structure. While some possibilities for a more efficient ‘packing’ already exist in the form
of BuiltinData, it is rather idiosyncratic to the needs of Plutus, and its decoding is potentially quite costly.

Bitwise primitives would allow more compact binary encodings to be defined, where complex structures or
values are represented using fixed-size BuiltinByteStrings. The encoders and decoders for these could also be
implemented more efficiently than currently possible, as there exist numerous bitwise techniques for this.

3 Goals
To ensure a focused and meaningful proposal, we specify our goals below.
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3.1 Useful primitives
The primitives provided should enable implementations of algorithms and data structures that are currently impos-
sible or impractical. Furthermore, the primitives provided should have a high power-to-weight ratio: having them
should enable as much as possible to be implemented.

3.2 Maintaining as many algebraic laws as possible
Bitwise operations, via Boolean algebras, have a long and storied history of algebraic laws, dating back to important
results by the like of de Morgan, Post and many others. These algebraic laws are useful for a range of reasons: they
guide implementations, enable easier testing (especially property testing) and in some cases much more efficient
implementations. To some extent, they also formalize our intuition about how these operations ‘should work’. Thus,
maintaining as many of these laws in our implementation, and being clear about them, is important.

3.3 Allowing efficient, portable implementations
Providing primitives alone is not enough: they should also be efficient. This is not least of all because many would
associate ‘primitive operation’ with a notion of being ‘close to the machine’, and therefore fast. Thus, it is on us to
ensure that the implementations of the primitives we provide have to be implementable in an efficient way, across
a range of hardware.

3.4 Clear indication of failure
While totality is desirable, in some cases, there isn’t a sensible answer for us to give. A good example is a division-
by-zero: if we are asked to do such a thing, the only choice we have is to reject it. However, we need to make it as
easy as possible for someone to realize why their program is failing, by emitting a sensible message which can later
be inspected.

4 Non-goals
We also specify some specific non-goals of this proposal.

4.1 No metaphor-mixing between numbers and bits
A widespread legacy of C is the mixing of treatment of numbers and blobs of bits: specifically, the allowing of
logical operations on representations of numbers. This applies to Haskell as much as any other language: according
to the Haskell Report, it is in fact required that any type implementing Bits implement Num first. While GHC
Haskell only mandates Eq, it still defines Bits instances for types clearly meant to represent numbers. This is a bad
choice, as it creates complex situations and partiality in several cases, for arguably no real gain other than C-like
bit twiddling code.

Even if two types share a representation, their type distinctness is meant to be a semantic or abstraction
boundary: just because a number is represented as a blob of bits does not necessarily mean that arbitrary bit
manipulations are sensible. However, by defining such a capability, we create several semantic problems:

• Some operations end up needing multiple definitions to take this into account. A good example are shifts:
instead of simply having left or right shifts, we now have to distinguish arithmetic versus logical shifts, simply
to take into account that a shift can be used on something which is meant to be a number, which could be
signed. This creates unnecessary complexity and duplication of operations.

• As Plutus BuiltinIntegers are of arbitrary precision, certain bitwise operations are not well-defined on them.
A good example is bitwise complement: the bitwise complement of 0 cannot be defined sensibly, and in fact,
is partial in its Bits instance.

• Certain bitwise operations on BuiltinInteger would have quite undesirable semantic changes in order to
be implementable. A good example are bitwise rotations: we should be able to ‘decompose’ a rotation left
or right by n into two rotations (by m1 and m2 such that m1 + m2 = n) without changing the outcome.
However, because trailing zeroes are not tracked by the implementation, this can fail depending on the choice
of decomposition, which seems needlessly annoying for no good reason.
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• Certain bitwise operations on BuiltinInteger would require additional arguments and padding to define
them sensibly. Consider bitwise logical AND: in order to perform this sensibly on BuiltinIntegers we would
need to specify what ‘length’ we assume they have, and some policy of ‘padding’ when the length requested
is longer than one, or both, arguments. This feels unnecessary, and it isn’t even clear exactly how we should
do this: for example, how would negative numbers be padded?

These complexities, and many more besides, are poor choices, owing more to the legacy of C than any real useful
functionality. Furthermore, they feel like a casual and senseless undermining of type safety and its guarantees for
very small and questionable gains. Therefore, defining bitwise operations on BuiltinInteger is not something we
wish to support.

There are legitimate cases where a conversion from BuiltinInteger to BuiltinByteString is desirable; this
conversion should be provided, and be both explicit and specified in a way that is independent of the machine or the
implementation of BuiltinInteger, as well as total and round-tripping. Arguably, it is also desirable to provide
built-in support for BuiltinByteString literals specified in a way convenient to their treatment as blobs of bytes
(for example, hexadecimal or binary notation), but this is outside the scope of this proposal.

5 Proposed operations
We propose several classes of operations. Firstly, we propose two operations for inter-conversion between
BuiltinByteString and BuiltinInteger, whose semantics are specified in Subsection 6.2:

integerToByteString :: BuiltinInteger -> BuiltinByteString: Convert a number to a bitwise representa-
tion.

byteStringToInteger :: BuiltinByteString -> BuiltinInteger: Reinterpret a bitwise representation as a
number.

We also propose several logical operations on BuiltinByteStrings, whose semantics are specified in Subsec-
tion 6.3:

andByteString :: BuiltinByteString -> BuiltinByteString -> BuiltinByteString: Perform a bitwise log-
ical AND on arguments of the same length, producing a result of the same length, erroring otherwise.

iorByteString :: BuiltinByteString -> BuiltinByteString -> BuiltinByteString: Perform a bitwise log-
ical IOR on arguments of the same length, producing a result of the same length, erroring otherwise.

xorByteString :: BuiltinByteString -> BuiltinByteString -> BuiltinByteString: Perform a bitwise log-
ical XOR on arguments of the same length, producing a result of the same length, erroring otherwise.

complementByteString :: BuiltinByteString -> BuiltinByteString: Complement all the bits in the argu-
ment, producing a result of the same length.

Lastly, we define the following additional operations, whose semantics are specified in Subsection 6.4:

shiftByteString :: BuiltinByteString -> BuiltinInteger -> BuiltinByteString: Performs a bitwise shift
of the first argument by the absolute value of the second argument, with padding, the direction being indicated
by the sign of the second argument.

rotateByteString :: BuiltinByteString -> BuiltinInteger -> BuiltinByteString: Performs a bitwise ro-
tation of the first argument by the absolute value of the second argument, the direction being indicated by
the sign of the second argument.

popCountByteString :: BuiltinByteString -> BuiltinInteger: Returns the number of 1 bits in the argu-
ment.

testBitByteString :: BuiltinByteString -> BuiltinInteger -> BuiltinBool: If the position given by the
second argument is not in bounds for the first argument, error; otherwise, if the bit given by that position is
1, return True, and False otherwise.
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writeBitByteString :: BuiltinByteString -> BuiltinInteger -> BuiltinBool -> BuiltinByteString: If
the position given by the second argument is not in bound for the first argument, error; otherwise, set the bit
given by that position to 1 if the third argument is True, and 0 otherwise.

findFirstSetByteString :: BuiltinByteString -> BuiltinInteger: Return the lowest index such that
testBitByteString with the first argument and that index would be True. If no such index exists, return
−1 instead.

5.1 Why these operations?
As stated in Subsection 4.1, there needs to be a well-defined interface between the ‘world’ of BuiltinInteger
and BuiltinByteString. To provide this, we require integerToByteString and byteStringToInteger, which is
designed to roundtrip (that is, describe an isomorphism). Furthermore, by spelling out a precise description of the
conversions in Subsection 6.2, we make this predictable and portable.

Our choice of logical AND, IOR, XOR and complement as the primary logical operations is driven by a mixture
of prior art, utility and convenience. These are the typical bitwise logical operations provided in hardware, and in
most programming languages; for example, in the x86 instruction set, the following bitwise operations have existed
since the 8086:

AND: Bitwise AND.

OR: Bitwise IOR.

NOT: Bitwise complement.

XOR: Bitwise XOR.

Likewise, on the ARM instruction set, the following bitwise operations have existed since ARM2:

AND: Bitwise AND.

ORR: Bitwise IOR.

EOR: Bitwise XOR.

ORN: Bitwise IOR with complement of the second argument.

BIC: Bitwise AND with complement of the second argument.

Going ‘up a level’, the C and Forth programming languages (according to C89 and ANS Forth respectively)
define bitwise AND (denoted & and AND respectively), bitwise IOR (denoted | and OR respectively), bitwise XOR
(denoted ̂ and XOR respectively) and bitwise complement (denoted ̃ and NOT respectively) as the primitive bitwise
operations. This is followed by basically all languages ‘higher-up’ than C and Forth: Haskell’s Bits type class
defines these same four as .&., .|., xor and complement.

This ubiquity in choices leads to most algorithm descriptions that rely on bitwise operations to assume that
these four are primitive, and thus, constant-time and cost. While we could reduce this number (and, in fact, due
to Post, we know that there exist two sole sufficient operators), this would be both inconvenient and inefficient. As
an example, consider implementing XOR using AND, IOR and complement: this would translate x XOR y into

(COMPLEMENT x AND y) IOR (x AND COMPLEMENT y)

This is both needlessly complex and also inefficient, as it requires copying the arguments twice, only to throw
away both copies.

Like our ‘baseline’ bitwise operations above, shifts and rotations are widely used, and considered as primitive.
For example, x86 platforms have had the following available since the 8086:

RCL: Rotate left.

RCR: Rotate right.

SHL: Shift left.
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SHR: Shift right.

Likewise, ARM platforms have had the following available since ARM2:

ROR: Rotate right.

LSL: Shift left.

LSR: Shift right.

While C and Forth both have shifts (denoted with << and >> in C, and LSHIFT and RSHIFT in Forth), they don’t
have rotations; however, many higher-level languages do: Haskell’s Bits type class has rotate, which enables both
left and right rotations.

While popCountByteString could in theory be simulated using testBitByteString and a fold, this is quite
inefficient: the best way to simulate this operation would involve using something similar to the Harley-Seal algo-
rithm, which requires a large lookup table, making it impractical on-chain. Furthermore, population counting is
important for several classes of succinct data structure (particularly rank-select dictionaries and bitmaps), and is
in fact provided as part of the SSE4.2 x86 instruction set as a primitive POPCNT.

In order to usefully manipulate individual bits, both testBitByteString and writeBitByteString are needed.
They can also be used as part of specifying, and verifying, that other bitwise operations, both primitive and
non-primitive, are behaving correctly. They are also particularly essential for binary encodings.

findFirstSetByteString is an essential primitive for several succinct data structures: both Roaring Bitmaps
and rank-select dictionaries rely on it being efficient for much of their usefulness. Furthermore, this operation is
provided in hardware by several instruction sets: on x86, there exist (at least) BSF, BSR, LZCNT and TZCNT, which
allow finding both the first and last set bits, while on ARM, there exists CLZ, which can be used to simulate finding
the first set bit. The instruction also exists in higher-level languages: for example, GHC’s FiniteBits type class
has countTrailingZeros and countLeadingZeros. The main reason we propose taking ‘finding the first set bit’
as primitive, rather than ‘counting leading zeroes’ or ‘counting trailing zeroes’ is that finding the first set bit is
required specifically for several succinct data structures.

5.2 Costing
All of the primitives we describe are linear in one of their arguments. For a more precise description, see Table 1.

Primitive Linear in
integerToByteString Argument (only one)
byteStringToInteger Argument (only one)

andByteString One argument (same length for both)
iorByteString One argument (same length for both)
xorByteString One argument (same length for both)

complementByteString Argument (only one)
shiftByteString BuiltinByteString argument
rotateByteString BuiltinByteString argument

popCountByteString Argument (only one)
testBitByteString BuiltinByteString argument
writeBitByteString BuiltinByteString argument

findFirstSetByteString Argument (only one)

Table 1: Primitives and which argument they are linear in

6 Semantics
6.1 Preliminaries
We define N+ = {x ∈ N | x ̸= 0}. We assume that BuiltinInteger is a faithful representation of Z. A bit sequence
s = snsn−1 . . . s0 is a sequence such that for all i ∈ {0, 1, . . . , n}, si ∈ {0, 1}. A bit sequence s = snsn−1 . . . s0 is a
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byte sequence if n = 8k − 1 for some k ∈ N. We denote the empty bit sequence (and, indeed, byte sequence as well)
by ∅.

We intend that BuiltinByteStrings represent byte sequences, with the sequence of bits being exactly as the
description above. For example, given the byte sequence 0110111100001100, the BuiltinByteString corresponding
to it would be "o\f".

Let i ∈ N+. We define the sequence binary(i) = (d0,m0), (d1,m1), . . . as

1. m0 = i mod 2, d0 = i
2 if i is even, and i−1

2 if it is odd.

2. mj = dj−1 mod 2, dj = dj−1

2 if dj is even, and dj−1−1
2 if it is odd.

6.2 Representation of BuiltinInteger as BuiltinByteString and conversions
We describe the translation of BuiltinInteger into BuiltinByteString which is implemented as the
integerToByteString primitive. Informally, we represent BuiltinIntegers with the least significant bit at bit
position 0, using a twos-complement representation. More precisely, let i ∈ N+. We represent i as the bit sequence
s = snsn−1 . . . s0, such that:

1.
∑

j∈{0,1,...,n} sj · 2j = i; and

2. sn = 0.

3. Let binary(j) = (d0,m0), (d1,m1), . . .. For any j ∈ {0, 1, . . . , n− 1}, sj = mj ; and

4. n+ 1 = 8k for the smallest k ∈ N+ consistent with the previous requirements.

For 0, we represent it as the sequence 00000000 (one zero byte). We represent any i ∈ {x ∈ Z | x < 0} as the
twos-complement of the representation of its additive inverse. We observe that any such sequence is by definition
a byte sequence.

To interpret a byte sequence s = snsn−1 . . . s0 as a BuiltinInteger, we use the following process:

1. If s is 00000000, then the result is 0.

2. Otherwise, if sn = 1, let s′ be the twos-complement of s. Then the result is the additive inverse of the result
of interpreting s′.

3. Otherwise, the result is
∑

i∈{0,1,...,n} si · 2i.

The above interpretation is implemented as the byteStringToInteger primitive. We observe that
byteStringToInteger and integerToByteString form an isomorphism. More specifically:
byteStringToInteger . integerToByteString =
integerToByteString . byteStringToInteger =
id

6.3 Bitwise logical operations on BuiltinByteString
Throughout, let s = snsn−1 . . . s0 and t = tmtm−1 . . . t0 be two byte sequences. Whenever we specify a mismatched
length error result, its error message must contain at least the following information:

• The name of the failed operation;

• The reason (mismatched lengths); and

• The lengths of the arguments.

We describe the semantics of andByteString. For inputs s and t, if n ̸= m, the result is a mismatched length
error. Otherwise, the result is the byte sequence u = unun−1 . . . , u0 such that for all i ∈ {0, 1, . . . , n} we have

ui =

{
1 si = ti = 1

0 otherwise
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For iorByteString, for inputs s and t, if n ̸= m, the result is a mismatched length error. Otherwise, the result
is the byte sequence u = unun−1 . . . u0 such that for all i ∈ {0, 1, . . . , n} we have

ui =


1 si = 1

1 ti = 1

0 otherwise

For xorByteString, for inputs s and t, if n ̸= m, the result is a mismatched length error. Otherwise, the result
is the byte sequence u = unun−1 . . . u0 such that for all i ∈ {0, 1, . . . , n} we have

ui =

{
0 si = ti

1 otherwise

We observe that, for length-matched arguments, each of andByteString, iorByteString and xorByteString
describes a commutative and associative operation. Furthermore, for any given length k, each of these operations
have an identity element: for iorByteString, this is the bit sequence of length k where each element is 0, and for
andByteString and xorByteString, this is the bit sequence of length k where each element is 1. Lastly, for any
length k, the bit sequence of length k where each element is 0 is an absorbing element for andByteString, and the
bit sequence of length k where each element is 1 is an absorbing element for iorByteString.

We now describe the semantics of complementByteString. For input s, the result is the byte sequence u =
unun−1 . . . u0 such that for all i ∈ {0, 1, . . . , n} we have

ui =

{
1 si = 0

0 otherwise

We observe that complementByteString is self-inverting. We also note the following equivalences hold assuming
b and b' have the same length; these are the DeMorgan laws:
complementByteString (andByteString b b') =
iorByteString (complementByteString b) (complementByteString b')

complementByteString (iorByteString b b') =
andByteString (complementByteString b) (complementByteString b')

6.4 Mixed operations
Throughout this section, let s = snsn−1 . . . s0 and t = tmtm−1 . . . t0 be byte sequences, and let i ∈ Z.

We describe the semantics of shiftByteString. Informally, these are logical shifts, with negative shifts ‘moving’
away from bit index 0, and positive shifts ‘moving‘ towards bit index 0. More precisely, given the argument s and
i, the result of shiftByteString is the byte sequence unun−1 . . . u0, such that for all j ∈ {0, 1, . . . , n}, we have

uj =

{
sj+i j − i ∈ {0, 1, . . . , n}
0 otherwise

We observe that for k, ℓ with the same sign and any bs, we have
shiftByteString (shiftBytestring bs k) l = shiftByteString bs (k + l)

We now describe rotateByteString, assuming the same inputs as the description of shiftByteString above.
Informally, the ‘direction’ of the rotations matches that of shiftByteString above. More precisely, the result of
rotateByteString on the given inputs is the byte sequence unun−1 . . . u0 such that for all j ∈ {0, 1, . . . , n}, we
have uj = sj+i mod (n+1). We observe that for any k, ℓ, and any bs, we have
rotateByteString (rotateByteString bs k) l = rotateByteString bs (k + l)

We also note that
rotateByteString bs 0 = shiftByteString bs 0 = bs
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For popCountByteString with argument s, the result is∑
j∈{0,1,...,n}

sj

Informally, this is just the total count of 1 bits. We observe that for any bs and bs', we have
popCountByteString bs + popCountByteString bs' =
popCountByteString (appendByteString bs bs')

We now describe the semantics of testBitByteString and writeBitByteString. Throughout, whenever we
specify an out-of-bounds error result, its error message must contain at least the following information:

• The name of the failed operation;

• The reason (out of bounds access);

• What index was accessed out-of-bounds; and

• The valid range of indexes.

For testBitByteString with arguments s and i, if 0 ≤ i ≤ n, then the result is True if si = 1, and False
if si = 0; otherwise, the result is an out-of-bounds error. Let b :: BuiltinBool; for writeBitByteString with
arguments s, i and b, if 0 ≤ i ≤ n, then the result is the byte sequence unun−1 . . . u0 such that for all j ∈ {0, 1, . . . , n},
we have

uj =


1 i = j and b = True
0 i = j and b = False
sj otherwise

If i < 0 or i > n, the result is an out-of-bounds error.
Lastly, we describe the semantics of findFirstSetByteString. Given the argument s, if for any j ∈ {0, 1, . . . , n},

sj = 0, the result is −1; otherwise, the result is k such that all of the following hold:

• k ∈ {0, 1, . . . , n};

• sk = 1; and

• For all 0 ≤ k′ < k, sk′ = 0.
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