diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index e5d0b1e4..59539cc1 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -26,4 +26,4 @@ repos: - id: mypy args: ['--show-error-codes', '--warn-unused-ignores'] exclude: 'bin/|docs/|examples/|experimental/|redun_server/|setup.py' - additional_dependencies: [types-freezegun, types-python-dateutil, types-requests] + additional_dependencies: [types-freezegun, types-python-dateutil, types-requests, types-psycopg2] diff --git a/redun/__init__.py b/redun/__init__.py index b8bae472..03047c58 100644 --- a/redun/__init__.py +++ b/redun/__init__.py @@ -13,6 +13,11 @@ except (ImportError, ModuleNotFoundError): # Skip gcp_batch executor if google-cloud-batch is not installed. pass +try: + from redun.executors.postgres import PgExecutor +except (ImportError, ModuleNotFoundError): + # Skip pg executor if psycopg2 is not installed. + pass from redun.executors.local import LocalExecutor from redun.file import Dir, File, ShardedS3Dataset from redun.handle import Handle diff --git a/redun/cli.py b/redun/cli.py index a27401b7..ee7019e8 100644 --- a/redun/cli.py +++ b/redun/cli.py @@ -1378,6 +1378,18 @@ def get_command_parser(self) -> argparse.ArgumentParser: ) server_parser.set_defaults(func=self.server_command) + # PgExecutor worker spawner + pg_executor_parser = subparsers.add_parser( + "pg-executor-worker", + help="Start worker process for the given executor of type 'pg'.", + ) + pg_executor_parser.add_argument( + "name", + help="Name or alias of the excutor", + default="default", + ) + pg_executor_parser.set_defaults(func=self.pg_executor_command) + return parser def help_command(self, args: Namespace, extra_args: List[str], argv: List[str]) -> None: @@ -3096,3 +3108,9 @@ def server_command(self, args: Namespace, extra_args: List[str], argv: List[str] env={k: str(v) for (k, v) in compose_env.items() if v is not None}, shell=True, ) + + def pg_executor_command(self, args: Namespace, extra_args: List[str], argv: List[str]) -> None: + from redun import PgExecutor + + config: Config = setup_config(args.config) + PgExecutor.run_worker(config["executors"][args.name]) diff --git a/redun/executors/postgres.py b/redun/executors/postgres.py new file mode 100644 index 00000000..112bd442 --- /dev/null +++ b/redun/executors/postgres.py @@ -0,0 +1,745 @@ +import contextlib +import logging +import os +import random +import sys +import threading +import time +import traceback +import typing +import uuid +from collections import OrderedDict +from functools import wraps +from multiprocessing import Process, Queue +from typing import Any, Callable, Dict, Generator, List, Optional, Tuple + +import psycopg2 +import psycopg2.errors +import psycopg2.extras +from psycopg2 import sql + +from redun.executors.base import Executor, load_task_module, register_executor +from redun.scripting import exec_script, get_task_command +from redun.task import get_task_registry +from redun.utils import pickle_dumps, pickle_loads + +if typing.TYPE_CHECKING: + from redun.scheduler import Job, Scheduler + +log = logging.getLogger(__name__) + +encode_obj = pickle_dumps +decode_obj = pickle_loads + + +def _processify(func: Callable) -> Callable: + """Decorator to run a function as a process. + Be sure that every argument and the return value + is *pickable*. + The created process is joined, so the code does not + run in parallel. + """ + # stolen from https://gist.github.com/schlamar/2311116 + + def process_func(q, *args, **kwargs): + try: + ret = func(*args, **kwargs) + except Exception: + ex_type, ex_value, tb = sys.exc_info() + error = ex_type, ex_value, "".join(traceback.format_tb(tb)) + ret = None + else: + error = None + + q.put((ret, error)) + + # register original function with different name + # in sys.modules so it is pickable + process_func.__name__ = func.__name__ + "__processify_func" + setattr(sys.modules[__name__], process_func.__name__, process_func) + + @wraps(func) + def wrapper(*args, **kwargs): + q = Queue() + p = Process(target=process_func, args=[q] + list(args), kwargs=kwargs) + p.start() + ret, error = q.get() + p.join() + + if error: + ex_type, ex_value, tb_str = error + message = "%s (in subprocess)\n%s" % (ex_value, tb_str) + raise ex_type(message) + + return ret + + return wrapper + + +def create_queue_table(opt: Dict, table: str) -> None: + """Create table to be used as message queue for the executor.""" + + _sql = sql.SQL( + """ + CREATE TABLE IF NOT EXISTS {table} ( + id int not null primary key generated always as identity, + payload bytea, + executor_key UUID, + created_at timestamptz default now() + ); + + CREATE INDEX IF NOT EXISTS {idx_key} + ON {table}(executor_key); + + CREATE INDEX IF NOT EXISTS {idx_created} + ON {table}(created_at); + """ + ).format( + table=sql.Identifier(table), + idx_key=sql.Identifier("idx__" + table + "__executor_key"), + idx_created=sql.Identifier("idx__" + table + "__created_at"), + ) + try: + with get_cursor(opt) as cur: + cur.connection.autocommit = True + cur.execute(_sql) + except psycopg2.errors.UniqueViolation: + pass + + +@contextlib.contextmanager +def get_cursor(opt: Dict) -> Generator["psycopg2.cursor", None, None]: + """Context manager to get a database cursor and close it after use. + + Cursor autocommit is off. If needed, turn it on yourself with + `cursor.connection.autocommit = True`. + + Args: + opt: The arguments passed to psycopg2.connect(**opt). + + Yields: + cursor: Database cursor that can be used while the context is active. + """ + conn = psycopg2.connect(**opt) + cur = conn.cursor() + try: + yield cur + finally: + cur.close() + conn.close() + + +def run_worker_single( + cur: "psycopg2.cursor", queue: str, result_queue: Optional[str] = None +) -> int: + """Fetch a batch of tasks from the queue and run them, optionally returning + result on different queue. + + The function is fetched, deleted and executed under a single transaction. + This means that if the worker crashes, the transaction removing the items + from the queue will be automatically rolled back, so a different worker may + retry and execute it. + + If the function code itself errors out, the error should be returned in + place of the result, as part of the result payload. This is handled by + `submit_encoded_tasks()`. + + Args: + cur: database cursor to be used + queue: name of queue table where the tasks are read from + result_queue: if set, task results are placed on this second queue. + + Returns: + int: the number of tasks executed in this batch, or 0 if none. + """ + + order = random.choice(["ASC", "DESC"]) + sql_begin = sql.SQL( + """ + BEGIN; + DELETE FROM {queue} + USING ( + SELECT * FROM {queue} + ORDER BY created_at {order} + LIMIT 1 + FOR UPDATE SKIP LOCKED + ) q + WHERE q.id = {queue}.id RETURNING {queue}.*; + """ + ).format(queue=sql.Identifier(queue), order=sql.SQL(order)) + + cur.execute(sql_begin) + v = cur.fetchall() + if v: + for item in v: + _pk, payload, executor_key, created_at = item + rv = decode_and_run(_pk, payload, executor_key) + if result_queue: + rv = encode_obj(rv) + submit_encoded_tasks(cur, result_queue, executor_key, [rv]) + cur.execute("COMMIT;") + + # no result - try later + return len(v) + + +@contextlib.contextmanager +def fetch_results( + cur: "psycopg2.cursor", queue: str, executor_key: uuid.UUID, limit: int = 100 +) -> Generator[Optional[List], None, None]: + """Context manager for fetching results from a queue under transaction. + + The transaction that deletes messages from the queue is finalized when the + context exists normally. + + If the code under this context crashes, the transaction is automatically + rolled back, and the message that caused the error is put back on the + queue. + + Args: + cur: database cursor to be used. + queue: name of queue table where the tasks are read from. + executor_key: only results with this key are returned. + limit (int, optional): Maximum number of rows to fetch in one go + + Yields: + List[Object]: Yields a single list of results, + or None if we can't find any. + """ + sql_begin = sql.SQL( + """ + BEGIN; + DELETE FROM {queue} + USING ( + SELECT * FROM {queue} + WHERE executor_key = %s + FOR UPDATE SKIP LOCKED + LIMIT {limit} + ) q + WHERE q.id = {queue}.id RETURNING {queue}.*; + """ + ).format(queue=sql.Identifier(queue), limit=sql.Literal(limit)) + + cur.execute(sql_begin, (executor_key,)) + rows = cur.fetchall() + if not rows: + yield None + else: + yield [decode_obj(row[1]) for row in rows] + cur.execute("COMMIT;") + + +def run_worker_until_empty( + cur: "psycopg2.cursor", + queue: str, + result_queue: Optional[str] = None, + max_tasks: int = 1000, + max_time: int = 3600, +): + """Continuously run worker until we're out of messages. + + Args: + cur: database cursor to be used + queue: name of queue table where the tasks are read from + result_queue: if set, task results are placed on this second queue. + Returns: + int: number of tasks finished + """ + finished_tasks = 0 + t0 = time.time() + while ( + (just_finished := run_worker_single(cur, queue, result_queue)) > 0 + and finished_tasks < max_tasks + and time.time() - t0 < max_time + ): + finished_tasks += just_finished + return finished_tasks + + +def decode_and_run(_pk: int, payload: bytes, executor_key: uuid.UUID): + """Decode a queued payload into function and args, run the function, and + return the results or errors. + + Args: + _pk: Primary key of queue entry row. + payload (bytes): The encoded contents of the task to run. Expected to + be a pickled dict with fields `func`, `args` and `kwargs`. + executor_key (UUID): A copy of the key to be saved in the result + object. + + Returns: + Dict: Object containing task metadata (under `task_args`) and function + result (under `result`) or error (under `error`) + """ + ret_obj = {"_pk": _pk, "size": len(payload), "executor_key": executor_key} + try: + obj = decode_obj(payload) + ret_obj["task_args"] = obj + + func = obj["func"] + args = obj.get("args", tuple()) + kw = obj.get("kw", dict()) + ret_obj["result"] = func(*args, **kw) + return ret_obj + except Exception as e: + log.error("ERROR in task id = %s err = %s", _pk, str(e)) + traceback.print_exception(*sys.exc_info()) + ret_obj["error"] = e + return ret_obj + + +def encode_run_params(func: Callable, args: Tuple, kw: Dict) -> bytes: + """Encode object in the format expected by `decode_and_run`. + + Args: + func (Callable): function to run + args (Tuple): Positional arguments to pass fo `func` + kw (Dict): Keyword arguments to pass to `func` + + Returns: + bytes: A pickled Dict containing keys `func`, `args`, `kw` + """ + obj: Dict[str, object] = {"func": func} + obj["args"] = args + obj["kw"] = kw + return encode_obj(obj) + + +def wait_until_notified( + cur: "psycopg2.cursor", queue: str, timeout: int = 60, extra_read_fd: Optional[int] = None +): + """Use Postgres-specific commands LISTEN, UNLISTEN to hibernate the + process until there is new data to be read from the table queue. To + achieve this, we use `select` on the database connection object, to sleep + until there is new data to be read. + + Inspired by: + https://gist.github.com/kissgyorgy/beccba1291de962702ea9c237a900c79 + + Args: + cur: Database cursor we use to run LISTEN/UNLISTEN + queue: table queue name + timeout: Max seconds to wait. Defaults to 60. + extra_read_fd: FD which, if set, will be passed to + `select` alongside the database connection. Can be used to signal + early return, so this function can return immediately for worker + shutdown. + """ + import select + + chan = queue + "_channel" + sql_listen = sql.SQL("LISTEN {chan}; COMMIT;").format(chan=sql.Identifier(chan)) + sql_unlisten = sql.SQL("UNLISTEN {chan}; COMMIT;").format(chan=sql.Identifier(chan)) + + cur.execute(sql_listen) + conn = cur.connection + timeout = int(timeout * (0.5 + random.random())) + if extra_read_fd: + fds = select.select((conn, extra_read_fd), (), (), timeout) + if extra_read_fd in fds[0]: + os.read(extra_read_fd, 1) + else: + select.select((conn,), (), (), timeout) + conn.notifies.clear() + cur.execute(sql_unlisten) + + +def run_worker_forever(opt: Dict, queue: str, result_queue: Optional[str] = None): + """Start and restart worker processes, forever. + + Args: + opt: The arguments passed to psycopg2.connect(**opt). + queue: name of queue table where the tasks are read from + result_queue: if set, task results are placed on this second queue. + """ + while True: + try: + _run_worker_batch(opt, queue, result_queue) + except Exception as error: + log.exception(error) + log.error("error while running worker process: %s", str(error)) + time.sleep(1.0) + + +@_processify +def _run_worker_batch( + opt: Dict, + queue: str, + result_queue: Optional[str] = None, + tasks_before_halt: int = 1000, + time_before_halt: int = 3600, +): + """Run a single python worker sub-process until it either runs the + required number of tasks, or for the required amount of time, or it + crashes or errors out. + + Args: + opt, queue, result_queue: same as `run_worker_forever` + tasks_before_halt: function exists after running at least this number + of tasks. + time_before_halt: seconds after which the runner will stop, regardless + of the number of completed tasks. + """ + t0 = time.time() + finished_tasks = 0 + with get_cursor(opt) as cur: + while finished_tasks < tasks_before_halt and time.time() - t0 < time_before_halt: + finished_tasks += run_worker_until_empty( + cur, queue, result_queue, tasks_before_halt, time_before_halt + ) + wait_until_notified(cur, queue) + + +def submit_encoded_tasks( + cur: "psycopg2.cursor", queue: str, executor_key: uuid.UUID, payloads: List[bytes] +): + """Inserts some payloads into the queue, then notifies any listeners of + that queue. + + **WARNING**: This function requires the caller to run + `cur.execute('commit')` and finish the transaction. This is done so the + caller can control when their own transaction finishes, without using a + sub-transaction. + + Args: + cur (Cursor): Database cursor we use to run INSERT and NOTIFY + queue: table queue name + payloads (List[bytes]): A list of the payloads to enqueue. + executor_key: UUID to be set on the queue column + + Returns: + List[int]: primary keys of all the inserted rows + """ + chan = queue + "_channel" + sql_notify = sql.SQL("NOTIFY {chan};").format(chan=sql.Identifier(chan)) + sql_insert = sql.SQL( + """ + INSERT INTO {queue} (payload, executor_key) + VALUES (%s, %s) RETURNING id; + """ + ) + + ids = [] + for payload in payloads: + cur.execute(sql_insert.format(queue=sql.Identifier(queue)), (payload, executor_key)) + rv = cur.fetchone() + assert rv + _id = rv[0] + ids.append(_id) + cur.execute(sql_notify) + return ids + + +def submit_task(opt: Dict, queue: str, executor_key: uuid.UUID, func: Callable, *args, **kw): + """Submit a task `func(*args, **kw)` to queue `queue`. + + Args: + opt: The arguments passed to psycopg2.connect(**opt). + queue: name of queue table where the tasks are read from. + executor_key: results can be fetched from the result queue (configured + on the executor) using this key. + func, args, kw: the task, executed as `func(*args, **kw)` + """ + with get_cursor(opt) as cur: + rv = submit_encoded_tasks(cur, queue, executor_key, [encode_run_params(func, args, kw)])[0] + cur.execute("commit") + return rv + + +def exec_task( + job_id: int, + module_name: str, + task_fullname: str, + args: Tuple, + kwargs: dict, + **extra, +) -> Any: + """ + Execute a task in the worker process. + """ + # stolen from local_executor.py + load_task_module(module_name, task_fullname) + task = get_task_registry().get(task_fullname) + return task.func(*args, **kwargs) + + +def exec_script_task( + job_id: int, + module_name: str, + task_fullname: str, + args: Tuple, + kwargs: dict, + **extra, +) -> bytes: + """ + Execute a script task from the task registry. + """ + # stolen from local_executor.py + load_task_module(module_name, task_fullname) + task = get_task_registry().get(task_fullname) + command = get_task_command(task, args, kwargs) + return exec_script(command) + + +@register_executor("pg") +class PgExecutor(Executor): + """Distributed executor using PostgreSQL tables as queues. + + Inspired by: + https://www.crunchydata.com/blog/message-queuing-using-native-postgresql + + Configuration arguments: + - `dsn`, `dbname`, `user`, `password`, `host`, `port` + - passed directly to psycopg2 connection + - can be different from redun backend database + - `queue_args`, `queue_results` + - override table names used as message queues for sending arguments and + receiving results + - `scratch_root` + """ + + DEFAULT_QUEUE_ARGS = "pg_executor__args" + DEFAULT_QUEUE_RESULTS = "pg_executor__results" + + @staticmethod + def _extract_psycopg2_connect_options(config: Dict): + return dict( + ( + (k, v) + for (k, v) in config.items() + if k in ["dbname", "user", "password", "host", "port", "dsn"] + ) + ) + + def __init__( + self, + name: str, + scheduler: Optional["Scheduler"] = None, + config: Optional[Dict] = None, + ): + super().__init__(name, scheduler=scheduler) + config = config or dict() + name = name or "default" + log.info("starting worker for executor name=%s config=%s", name, config) + self._executor_key = uuid.uuid4() + self._scratch_root = config.get("scratch_root", "/tmp") + self._queue_args = config.get( + "queue_args", + PgExecutor.DEFAULT_QUEUE_ARGS, + ) + self._queue_results = config.get( + "queue_results", + PgExecutor.DEFAULT_QUEUE_RESULTS, + ) + assert self._queue_args, "queue_args not configured" + assert self._queue_results, "queue_results not configured" + self._conn_opt = PgExecutor._extract_psycopg2_connect_options(config) + assert self._conn_opt is not None, "no psycopg2 connect options given!" + + self._is_running = False + self._pending_jobs: Dict[str, "Job"] = OrderedDict() + self._thread: Optional[threading.Thread] = None + + self._thread_signal_read_fd: Optional[int] = None + self._thread_signal_write_fd: Optional[int] = None + + @staticmethod + def run_worker(config: Dict): + """Create queue tables and start a single worker process for this + executor, then wait for it to finish.""" + conn_opt = PgExecutor._extract_psycopg2_connect_options(config) + queue_args = config.get( + "queue_args", + PgExecutor.DEFAULT_QUEUE_ARGS, + ) + queue_results = config.get( + "queue_results", + PgExecutor.DEFAULT_QUEUE_RESULTS, + ) + assert queue_args, "queue_args not configured" + assert queue_results, "queue_results not configured" + + scratch_root = config.get("scratch_root", "/tmp") + os.makedirs(scratch_root, exist_ok=True) + psycopg2.extras.register_uuid() + create_queue_table(conn_opt, queue_args) + create_queue_table(conn_opt, queue_results) + run_worker_forever(conn_opt, queue_args, queue_results) + + def stop(self) -> None: + """ + Stop Executor and monitoring thread, + and clear out queue tables. + """ + was_running = self._is_running + # first, turn off the monitor + self._is_running = False + if self._thread_signal_write_fd: + os.write(self._thread_signal_write_fd, b"x") + + # Try to clear out the current key from the queue tables. + if was_running: + # Do args first, to starve the workers, then the results. + self._clear_queue_table(self._queue_args) + self._clear_queue_table(self._queue_results) + + if ( + self._thread + and self._thread.is_alive() + and threading.get_ident() != self._thread.ident + ): + self._thread.join() + + # Run the clear operations again, since the monitor might have done + # more work since we initially stopped it. + if was_running: + # Do args first, to starve the workers, then the results. + self._clear_queue_table(self._queue_args) + self._clear_queue_table(self._queue_results) + + def _clear_queue_table(self, queue: str): + """Clear out all rows from the table that have our executor key.""" + + # Since we have no cancellation functionality, in-flight + # tasks will still have locked rows in the table; so we + # use `fetch_results()` to remove them one batch at a time. + with get_cursor(self._conn_opt) as cur: + empty = False + total_count = 0 + while not empty: + with fetch_results(cur, queue, self._executor_key) as results: + if results: + total_count += len(results) + else: + empty = True + if total_count > 0: + log.warning( + "deleted %s pending tasks from queue %s", + total_count, + queue, + ) + # Now that we don't have extra rows hanging around, we can + # do `delete from {table}` and it will wait on all the active + # transactions. + sql_delete = sql.SQL( + """ + DELETE FROM {table} where executor_key = %s; + """ + ).format( + table=sql.Identifier(queue), + ) + cur.execute(sql_delete, (self._executor_key,)) + deleted = cur.rowcount + if deleted: + log.warning( + "deleted %s running tasks from queue %s", + deleted, + queue, + ) + + def _start(self) -> None: + """ + Start monitoring thread. Workers need to be started separately, on + different processes, using `PgExecutor.run_worker()`. + """ + if not self._is_running: + os.makedirs(self._scratch_root, exist_ok=True) + psycopg2.extras.register_uuid() + create_queue_table(self._conn_opt, self._queue_args) + create_queue_table(self._conn_opt, self._queue_results) + + ( + self._thread_signal_read_fd, + self._thread_signal_write_fd, + ) = os.pipe() + self._is_running = True + self._thread = threading.Thread( + target=self._monitor, + daemon=False, + ) + self._thread.start() + + def _monitor(self) -> None: + """ + Thread for monitoring task ack. Uses single long-running database + connection. + """ + assert self._scheduler + + try: + with get_cursor(self._conn_opt) as cur: + while self._is_running: + while self._monitor_one(cur): + pass + if self._is_running: + wait_until_notified( + cur, + self._queue_results, + extra_read_fd=self._thread_signal_read_fd, + ) + + except Exception as error: + self._scheduler.reject_job(None, error) + + self.stop() + + def _monitor_one(self, cur: "psycopg2.cursor"): + """Run a single batch of task monitoring. + + Args: + cur (Cursor): Database cursor to use for fetching results. + + Returns: + bool: True if we found something on the queue, meaning the caller + should immediately run this function again. + """ + assert self._scheduler + + with fetch_results(cur, self._queue_results, self._executor_key) as results: + if not results: + return False + + for result in results: + assert ( + result["executor_key"] == self._executor_key + ), "wrong executor key for result!" + job_id = result["task_args"]["kw"]["job_id"] + job = self._pending_jobs.pop(job_id) + + if "error" in result: + self._scheduler.reject_job(job, result["error"]) + elif "result" in result: + self._scheduler.done_job(job, result["result"]) + else: + raise RuntimeError("monitor: invalid result: " + str(result)) + + return True + + def _submit(self, exec_func: Callable, job: "Job") -> None: + assert job.args + self._start() + + args, kwargs = job.args + self._pending_jobs[job.id] = job + submit_task( + self._conn_opt, + self._queue_args, + self._executor_key, + exec_func, + job_id=job.id, + module_name=job.task.load_module, + task_fullname=job.task.fullname, + args=args, + kwargs=kwargs, + ) + + def submit(self, job: "Job") -> None: + assert not job.task.script + self._submit(exec_task, job) + + def submit_script(self, job: "Job") -> None: + assert job.task.script + self._submit(exec_script_task, job) + + def scratch_root(self) -> str: + return self._scratch_root diff --git a/redun/tests/test_pg_executor.py b/redun/tests/test_pg_executor.py new file mode 100644 index 00000000..1a93c582 --- /dev/null +++ b/redun/tests/test_pg_executor.py @@ -0,0 +1,117 @@ +import os +import subprocess +import time + +from redun import File, Scheduler +from redun.cli import RedunClient +from redun.config import Config +from redun.executors.postgres import PgExecutor +from redun.tests.utils import use_tempdir + + +def test_pg_executor_config(scheduler: Scheduler) -> None: + """ + Check correct parsing of config object + """ + + config_string = """ +[executors.default] +type = pg +dsn = postgresql://postgres:postgres@localhost:5432/postgres +scratch_root = /tmp/xyz + +[executors.alt_connection] +type = pg +dbname = postgres +user = postgres +password = postgres +host = postgres +port = 5432 + +[executors.alt_queues] +type = pg +dsn = postgresql://postgres:postgres@localhost:5432/postgres +queue_args = custom_queue_args +queue_results = custom_queue_results +""" + + config = Config() + config.read_string(config_string) + scheduler = Scheduler(config=config) + + assert isinstance(scheduler.executors["default"], PgExecutor) + assert isinstance(scheduler.executors["alt_connection"], PgExecutor) + assert isinstance(scheduler.executors["alt_queues"], PgExecutor) + + assert scheduler.executors["default"].scratch_root() == "/tmp/xyz" + assert scheduler.executors["alt_connection"].scratch_root() == "/tmp" + + assert scheduler.executors["default"]._conn_opt == { + "dsn": "postgresql://postgres:postgres@localhost:5432/postgres", + } + assert scheduler.executors["alt_connection"]._conn_opt["port"] == "5432" + + assert scheduler.executors["default"]._queue_args == PgExecutor.DEFAULT_QUEUE_ARGS + assert scheduler.executors["default"]._queue_results == PgExecutor.DEFAULT_QUEUE_RESULTS + + assert scheduler.executors["alt_queues"]._queue_args == "custom_queue_args" + assert scheduler.executors["alt_queues"]._queue_results == "custom_queue_results" + + +@use_tempdir +def test_pg_executor_simple_workflow(scheduler, testdb) -> None: + """ + Run PgExecutor on simple workflow + """ + + File("workflow.py").write( + """ +from redun import task + +@task +def main(): + return 10 +""" + ) + + os.makedirs(".redun") + File(".redun/redun.ini").write( + f""" +[backend] +db_uri = {testdb} +automigrate = True + +[executors.default] +type = pg +dsn = {testdb} +""" + ) + + File("worker.py").write( + """ +import workflow + +from redun.cli import RedunClient +client = RedunClient() +client.execute(["redun", "pg-executor-worker", "default"]) +""" + ) + + worker = subprocess.Popen(["python", "worker.py"]) + # make sure worker is still running after 1s, in case we have syntax errors in it, + # otherwise `run` command sleeps forever + time.sleep(1.0) + assert worker.poll() is None, "worker died" + try: + client = RedunClient() + assert client.execute(["redun", "run", "workflow.py", "main"]) == 10 + finally: + worker.kill() + + # try again, but this time, start the worker after the scheduler + worker = subprocess.Popen("sleep 1.5 && python worker.py", shell=True) + try: + client = RedunClient() + assert client.execute(["redun", "run", "workflow.py", "main"]) == 10 + finally: + worker.kill() diff --git a/requirements-dev.txt b/requirements-dev.txt index 7268402d..e344a5b1 100644 --- a/requirements-dev.txt +++ b/requirements-dev.txt @@ -14,3 +14,5 @@ pygraphviz kubernetes==22.6 google-cloud-batch==0.9.0 google-cloud-compute==1.11.0 +psycopg2>=2.8 +types-psycopg2