diff --git a/invokeai/app/invocations/baseinvocation.py b/invokeai/app/invocations/baseinvocation.py index 6094c868d9e..11d9d400476 100644 --- a/invokeai/app/invocations/baseinvocation.py +++ b/invokeai/app/invocations/baseinvocation.py @@ -71,6 +71,9 @@ class FieldDescriptions: safe_mode = "Whether or not to use safe mode" scribble_mode = "Whether or not to use scribble mode" scale_factor = "The factor by which to scale" + blend_alpha = ( + "Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B." + ) num_1 = "The first number" num_2 = "The second number" mask = "The mask to use for the operation" diff --git a/invokeai/app/invocations/latent.py b/invokeai/app/invocations/latent.py index e12cc18f42d..f65a95999d9 100644 --- a/invokeai/app/invocations/latent.py +++ b/invokeai/app/invocations/latent.py @@ -4,6 +4,7 @@ from typing import List, Literal, Optional, Union import einops +import numpy as np import torch import torchvision.transforms as T from diffusers.image_processor import VaeImageProcessor @@ -720,3 +721,81 @@ def invoke(self, context: InvocationContext) -> LatentsOutput: latents = latents.to("cpu") context.services.latents.save(name, latents) return build_latents_output(latents_name=name, latents=latents, seed=None) + + +@title("Blend Latents") +@tags("latents", "blend") +class BlendLatentsInvocation(BaseInvocation): + """Blend two latents using a given alpha. Latents must have same size.""" + + type: Literal["lblend"] = "lblend" + + # Inputs + latents_a: LatentsField = InputField( + description=FieldDescriptions.latents, + input=Input.Connection, + ) + latents_b: LatentsField = InputField( + description=FieldDescriptions.latents, + input=Input.Connection, + ) + alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha) + + def invoke(self, context: InvocationContext) -> LatentsOutput: + latents_a = context.services.latents.get(self.latents_a.latents_name) + latents_b = context.services.latents.get(self.latents_b.latents_name) + + if latents_a.shape != latents_b.shape: + raise "Latents to blend must be the same size." + + # TODO: + device = choose_torch_device() + + def slerp(t, v0, v1, DOT_THRESHOLD=0.9995): + """ + Spherical linear interpolation + Args: + t (float/np.ndarray): Float value between 0.0 and 1.0 + v0 (np.ndarray): Starting vector + v1 (np.ndarray): Final vector + DOT_THRESHOLD (float): Threshold for considering the two vectors as + colineal. Not recommended to alter this. + Returns: + v2 (np.ndarray): Interpolation vector between v0 and v1 + """ + inputs_are_torch = False + if not isinstance(v0, np.ndarray): + inputs_are_torch = True + v0 = v0.detach().cpu().numpy() + if not isinstance(v1, np.ndarray): + inputs_are_torch = True + v1 = v1.detach().cpu().numpy() + + dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) + if np.abs(dot) > DOT_THRESHOLD: + v2 = (1 - t) * v0 + t * v1 + else: + theta_0 = np.arccos(dot) + sin_theta_0 = np.sin(theta_0) + theta_t = theta_0 * t + sin_theta_t = np.sin(theta_t) + s0 = np.sin(theta_0 - theta_t) / sin_theta_0 + s1 = sin_theta_t / sin_theta_0 + v2 = s0 * v0 + s1 * v1 + + if inputs_are_torch: + v2 = torch.from_numpy(v2).to(device) + + return v2 + + # blend + blended_latents = slerp(self.alpha, latents_a, latents_b) + + # https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699 + blended_latents = blended_latents.to("cpu") + torch.cuda.empty_cache() + + name = f"{context.graph_execution_state_id}__{self.id}" + # context.services.latents.set(name, resized_latents) + context.services.latents.save(name, blended_latents) + return build_latents_output(latents_name=name, latents=blended_latents)