diff --git a/pkg/math/matrix/matrix.go b/pkg/math/matrix/matrix.go index 8e4d50c..fd0daf7 100644 --- a/pkg/math/matrix/matrix.go +++ b/pkg/math/matrix/matrix.go @@ -95,7 +95,7 @@ func (m Matrix) Conjugate() Matrix { return out } -// Dagger returns conjugate transpose matrix +// Dagger returns conjugate transpose matrix. func (m Matrix) Dagger() Matrix { p, q := m.Dimension() diff --git a/pkg/quantum/gate/gate.go b/pkg/quantum/gate/gate.go index 172d6c6..35c14c1 100644 --- a/pkg/quantum/gate/gate.go +++ b/pkg/quantum/gate/gate.go @@ -27,6 +27,11 @@ func Empty(n ...int) []matrix.Matrix { return make([]matrix.Matrix, n[0]) } +// Theta returns 2 * pi / 2**k +func Theta(k int) float64 { + return 2 * math.Pi / math.Pow(2, float64(k)) +} + func U(theta, phi, lambda float64) matrix.Matrix { v := complex(theta/2, 0) return matrix.Matrix{ @@ -35,39 +40,6 @@ func U(theta, phi, lambda float64) matrix.Matrix { } } -func RX(theta float64) matrix.Matrix { - v := complex(theta/2, 0) - return matrix.Matrix{ - []complex128{cmplx.Cos(v), -1i * cmplx.Sin(v)}, - []complex128{-1i * cmplx.Sin(v), cmplx.Cos(v)}, - } -} - -func RY(theta float64) matrix.Matrix { - v := complex(theta/2, 0) - return matrix.Matrix{ - []complex128{cmplx.Cos(v), -1 * cmplx.Sin(v)}, - []complex128{cmplx.Sin(v), cmplx.Cos(v)}, - } -} - -func RZ(theta float64) matrix.Matrix { - v := complex(0, theta/2) - return matrix.Matrix{ - []complex128{cmplx.Exp(-1 * v), 0}, - []complex128{0, cmplx.Exp(v)}, - } -} - -func R(k int) matrix.Matrix { - p := 2 * math.Pi / math.Pow(2, float64(k)) - e := cmplx.Exp(complex(0, p)) - return matrix.Matrix{ - []complex128{1, 0}, - []complex128{0, e}, - } -} - func I(n ...int) matrix.Matrix { return matrix.TensorProductN(matrix.Matrix{ []complex128{1, 0}, @@ -119,6 +91,38 @@ func T(n ...int) matrix.Matrix { }, n...) } +func R(theta float64) matrix.Matrix { + e := cmplx.Exp(complex(0, theta)) + return matrix.Matrix{ + []complex128{1, 0}, + []complex128{0, e}, + } +} + +func RX(theta float64) matrix.Matrix { + v := complex(theta/2, 0) + return matrix.Matrix{ + []complex128{cmplx.Cos(v), -1i * cmplx.Sin(v)}, + []complex128{-1i * cmplx.Sin(v), cmplx.Cos(v)}, + } +} + +func RY(theta float64) matrix.Matrix { + v := complex(theta/2, 0) + return matrix.Matrix{ + []complex128{cmplx.Cos(v), -1 * cmplx.Sin(v)}, + []complex128{cmplx.Sin(v), cmplx.Cos(v)}, + } +} + +func RZ(theta float64) matrix.Matrix { + v := complex(0, theta/2) + return matrix.Matrix{ + []complex128{cmplx.Exp(-1 * v), 0}, + []complex128{0, cmplx.Exp(v)}, + } +} + func Controlled(u matrix.Matrix, n int, c []int, t int) matrix.Matrix { g := I([]int{n}...) f := fmt.Sprintf("%s%s%s", "%0", strconv.Itoa(n), "s") @@ -288,13 +292,13 @@ func CS(n, c, t int) matrix.Matrix { return ControlledS(n, []int{c}, t) } -func ControlledR(k, n int, c []int, t int) matrix.Matrix { +func ControlledR(theta float64, n int, c []int, t int) matrix.Matrix { g := I([]int{n}...) d, _ := g.Dimension() f := fmt.Sprintf("%s%s%s", "%0", strconv.Itoa(n), "s") - p := 2 * math.Pi / math.Pow(2, float64(k)) - e := cmplx.Exp(complex(0, p)) + // exp(i * theta) + e := cmplx.Exp(complex(0, theta)) for i := 0; i < d; i++ { bits := []rune(fmt.Sprintf(f, strconv.FormatInt(int64(i), 2))) @@ -316,8 +320,8 @@ func ControlledR(k, n int, c []int, t int) matrix.Matrix { return g } -func CR(k, n, c, t int) matrix.Matrix { - return ControlledR(k, n, []int{c}, t) +func CR(theta float64, n, c, t int) matrix.Matrix { + return ControlledR(theta, n, []int{c}, t) } // Swap returns unitary matrix of Swap operation. @@ -355,7 +359,7 @@ func QFT(n int) matrix.Matrix { k := 2 for j := i + 1; j < n; j++ { - g = g.Apply(CR(k, n, j, i)) + g = g.Apply(CR(Theta(k), n, j, i)) k++ } } @@ -363,8 +367,8 @@ func QFT(n int) matrix.Matrix { return g } -// ControlledModExp2 returns unitary matrix of controlled modular exponentiation operation. |j>|k> -> |j>|a**(2**j) * k mod N> -// len(t) must be larger than log2(N) +// ControlledModExp2 returns unitary matrix of controlled modular exponentiation operation. |j>|k> -> |j>|a**(2**j) * k mod N>. +// len(t) must be larger than log2(N). func ControlledModExp2(n, a, j, N, c int, t []int) matrix.Matrix { m := I([]int{n}...) d, _ := m.Dimension() diff --git a/pkg/quantum/gate/gate_test.go b/pkg/quantum/gate/gate_test.go index a68afea..7d3325d 100644 --- a/pkg/quantum/gate/gate_test.go +++ b/pkg/quantum/gate/gate_test.go @@ -208,7 +208,7 @@ func TestC(t *testing.T) { {gate.C(gate.X(), 2, 0, 1), gate.CNOT(2, 0, 1)}, {gate.C(gate.Z(), 2, 0, 1), gate.CZ(2, 0, 1)}, {gate.C(gate.S(), 2, 0, 1), gate.CS(2, 0, 1)}, - {gate.C(gate.R(100), 2, 0, 1), gate.CR(100, 2, 0, 1)}, + {gate.C(gate.R(gate.Theta(4)), 2, 0, 1), gate.CR(gate.Theta(4), 2, 0, 1)}, {gate.C(gate.X(), 3, 0, 2), gate.CNOT(3, 0, 2)}, {gate.C(gate.X(), 3, 0, 1), gate.CNOT(3, 0, 1)}, {gate.C(gate.X(), 3, 1, 0), gate.CNOT(3, 1, 0)}, @@ -291,14 +291,14 @@ func TestIsUnitary(t *testing.T) { {gate.Y(), true}, {gate.Z(), true}, {gate.U(1, 2, 3), true}, - {gate.R(4), true}, + {gate.R(gate.Theta(4)), true}, {gate.RX(1.23), true}, {gate.RY(1.23), true}, {gate.RZ(1.23), true}, {gate.ControlledS(2, []int{0}, 1), true}, - {gate.ControlledR(10, 2, []int{0}, 1), true}, + {gate.ControlledR(gate.Theta(4), 2, []int{0}, 1), true}, {gate.CS(2, 0, 1), true}, - {gate.CR(10, 2, 0, 1), true}, + {gate.CR(gate.Theta(4), 2, 0, 1), true}, {gate.QFT(2), true}, {gate.New( []complex128{1, 2}, diff --git a/q.go b/q.go index 1eca225..bfc2dfa 100644 --- a/q.go +++ b/q.go @@ -115,12 +115,12 @@ func (q *Q) Reset(qb ...Qubit) { } } -func (q *Q) I(qb ...Qubit) *Q { - return q.Apply(gate.I(), qb...) +func (q *Q) U(theta, phi, lambda float64, qb ...Qubit) *Q { + return q.Apply(gate.U(theta, phi, lambda), qb...) } -func (q *Q) H(qb ...Qubit) *Q { - return q.Apply(gate.H(), qb...) +func (q *Q) I(qb ...Qubit) *Q { + return q.Apply(gate.I(), qb...) } func (q *Q) X(qb ...Qubit) *Q { @@ -135,6 +135,10 @@ func (q *Q) Z(qb ...Qubit) *Q { return q.Apply(gate.Z(), qb...) } +func (q *Q) H(qb ...Qubit) *Q { + return q.Apply(gate.H(), qb...) +} + func (q *Q) S(qb ...Qubit) *Q { return q.Apply(gate.S(), qb...) } @@ -143,8 +147,8 @@ func (q *Q) T(qb ...Qubit) *Q { return q.Apply(gate.T(), qb...) } -func (q *Q) U(theta, phi, lambda float64, qb ...Qubit) *Q { - return q.Apply(gate.U(theta, phi, lambda), qb...) +func (q *Q) R(theta float64, qb ...Qubit) *Q { + return q.Apply(gate.R(theta), qb...) } func (q *Q) RX(theta float64, qb ...Qubit) *Q { @@ -199,26 +203,27 @@ func (q *Q) C(m matrix.Matrix, control, target Qubit) *Q { return q.Controlled(m, []Qubit{control}, target) } -func (q *Q) ControlledR(k int, control []Qubit, target Qubit) *Q { +func (q *Q) ControlledNot(control []Qubit, target Qubit) *Q { n := q.NumberOfBit() - g := gate.ControlledR(k, n, Index(control...), target.Index()) + g := gate.ControlledNot(n, Index(control...), target.Index()) q.qb.Apply(g) return q } -func (q *Q) CR(k int, control, target Qubit) *Q { - return q.ControlledR(k, []Qubit{control}, target) +func (q *Q) CNOT(control, target Qubit) *Q { + return q.ControlledNot([]Qubit{control}, target) } -func (q *Q) InverseCR(k int, control, target Qubit) *Q { - n := q.NumberOfBit() - g := gate.ControlledR(k, n, []int{control.Index()}, target.Index()).Dagger() - q.qb.Apply(g) - return q +func (q *Q) CCNOT(control0, control1, target Qubit) *Q { + return q.ControlledNot([]Qubit{control0, control1}, target) +} + +func (q *Q) CCCNOT(control0, control1, control2, target Qubit) *Q { + return q.ControlledNot([]Qubit{control0, control1, control2}, target) } -func (q *Q) InvCR(k int, control, target Qubit) *Q { - return q.InverseCR(k, control, target) +func (q *Q) Toffoli(control0, control1, target Qubit) *Q { + return q.CCNOT(control0, control1, target) } func (q *Q) ControlledZ(control []Qubit, target Qubit) *Q { @@ -236,27 +241,30 @@ func (q *Q) CCZ(control0, control1, target Qubit) *Q { return q.ControlledZ([]Qubit{control0, control1}, target) } -func (q *Q) ControlledNot(control []Qubit, target Qubit) *Q { +func (q *Q) ControlledR(theta float64, control []Qubit, target Qubit) *Q { n := q.NumberOfBit() - g := gate.ControlledNot(n, Index(control...), target.Index()) + g := gate.ControlledR(theta, n, Index(control...), target.Index()) q.qb.Apply(g) return q } -func (q *Q) CNOT(control, target Qubit) *Q { - return q.ControlledNot([]Qubit{control}, target) +func (q *Q) CR(theta float64, control, target Qubit) *Q { + return q.ControlledR(theta, []Qubit{control}, target) } -func (q *Q) CCNOT(control0, control1, target Qubit) *Q { - return q.ControlledNot([]Qubit{control0, control1}, target) +func (q *Q) ControlledModExp2(a, j, N int, control Qubit, target []Qubit) *Q { + n := q.NumberOfBit() + g := gate.ControlledModExp2(n, a, j, N, control.Index(), Index(target...)) + q.qb.Apply(g) + return q } -func (q *Q) CCCNOT(control0, control1, control2, target Qubit) *Q { - return q.ControlledNot([]Qubit{control0, control1, control2}, target) -} +func (q *Q) CModExp2(a, N int, control []Qubit, target []Qubit) *Q { + for i := 0; i < len(control); i++ { + q.ControlledModExp2(a, i, N, control[i], target) + } -func (q *Q) Toffoli(control0, control1, target Qubit) *Q { - return q.CCNOT(control0, control1, target) + return q } func (q *Q) Condition(condition bool, m matrix.Matrix, qb ...Qubit) *Q { @@ -275,21 +283,6 @@ func (q *Q) ConditionZ(condition bool, qb ...Qubit) *Q { return q.Condition(condition, gate.Z(), qb...) } -func (q *Q) ControlledModExp2(a, j, N int, control Qubit, target []Qubit) *Q { - n := q.NumberOfBit() - g := gate.ControlledModExp2(n, a, j, N, control.Index(), Index(target...)) - q.qb.Apply(g) - return q -} - -func (q *Q) CModExp2(a, N int, control []Qubit, target []Qubit) *Q { - for i := 0; i < len(control); i++ { - q.ControlledModExp2(a, i, N, control[i], target) - } - - return q -} - func (q *Q) Swap(qb ...Qubit) *Q { n := q.NumberOfBit() l := len(qb) @@ -310,7 +303,7 @@ func (q *Q) QFT(qb ...Qubit) *Q { k := 2 for j := i + 1; j < l; j++ { - q.CR(k, qb[j], qb[i]) + q.CR(gate.Theta(k), qb[j], qb[i]) k++ } } @@ -323,7 +316,7 @@ func (q *Q) InverseQFT(qb ...Qubit) *Q { for i := l - 1; i > -1; i-- { k := l - i for j := l - 1; j > i; j-- { - q.InvCR(k, qb[j], qb[i]) + q.CR(-1*gate.Theta(k), qb[j], qb[i]) k-- } diff --git a/q_test.go b/q_test.go index 432a729..43e0977 100644 --- a/q_test.go +++ b/q_test.go @@ -221,6 +221,20 @@ func ExampleQ_Apply() { // [11][ 3]( 0.7071 0.0000i): 0.5000 } +func ExampleQ_U() { + qsim := q.New() + + q0 := qsim.Zero() + qsim.U(math.Pi, 0, math.Pi, q0) + + for _, s := range qsim.State() { + fmt.Println(s) + } + + // Output: + // [1][ 1]( 1.0000 0.0000i): 1.0000 +} + func ExampleQ_I() { qsim := q.New() @@ -305,18 +319,18 @@ func ExampleQ_T() { // [1][ 1]( 0.7071 0.7071i): 1.0000 } -func ExampleQ_U() { +func ExampleQ_R() { qsim := q.New() - q0 := qsim.Zero() - qsim.U(math.Pi, 0, math.Pi, q0) + q0 := qsim.One() + qsim.R(2*math.Pi/4, q0) for _, s := range qsim.State() { fmt.Println(s) } // Output: - // [1][ 1]( 1.0000 0.0000i): 1.0000 + // [1][ 1]( 0.0000 1.0000i): 1.0000 } func ExampleQ_RX() { @@ -874,10 +888,10 @@ func Example_qFT() { q2 := qsim.Zero() qsim.H(q0) - qsim.CR(2, q1, q0) - qsim.CR(3, q2, q0) + qsim.CR(gate.Theta(2), q1, q0) + qsim.CR(gate.Theta(3), q2, q0) qsim.H(q1) - qsim.CR(2, q2, q1) + qsim.CR(gate.Theta(2), q2, q1) qsim.H(q2) qsim.Swap(q0, q2) @@ -1014,16 +1028,17 @@ func Example_shorFactoring51() { qsim.CNOT(q2, q6) qsim.CNOT(q3, q7) + // inverse QFT qsim.Swap(q0, q1, q2, q3) qsim.H(q3) - qsim.CR(2, q3, q2) + qsim.CR(-1*gate.Theta(2), q3, q2) qsim.H(q2) - qsim.CR(3, q3, q1) - qsim.CR(2, q2, q1) + qsim.CR(-1*gate.Theta(3), q3, q1) + qsim.CR(-1*gate.Theta(2), q2, q1) qsim.H(q1) - qsim.CR(4, q3, q0) - qsim.CR(3, q2, q0) - qsim.CR(2, q1, q0) + qsim.CR(-1*gate.Theta(4), q3, q0) + qsim.CR(-1*gate.Theta(3), q2, q0) + qsim.CR(-1*gate.Theta(2), q1, q0) qsim.H(q0) m := qsim.Measure(q0, q1, q2, q3).BinaryString() @@ -1070,11 +1085,12 @@ func Example_shorFactoring85() { qsim.CNOT(q2, q6) qsim.CNOT(q3, q7) + // inverse QFT qsim.Swap(q0, q1, q2, q3) qsim.H(q3) - qsim.CR(2, q3, q2).H(q2) - qsim.CR(3, q3, q1).CR(2, q2, q1).H(q1) - qsim.CR(4, q3, q0).CR(3, q2, q0).CR(2, q1, q0).H(q0) + qsim.CR(-1*gate.Theta(2), q3, q2).H(q2) + qsim.CR(-1*gate.Theta(3), q3, q1).CR(-1*gate.Theta(2), q2, q1).H(q1) + qsim.CR(-1*gate.Theta(4), q3, q0).CR(-1*gate.Theta(3), q2, q0).CR(-1*gate.Theta(2), q1, q0).H(q0) m := qsim.Measure(q0, q1, q2, q3).BinaryString() s, r, d, ok := number.FindOrder(a, N, fmt.Sprintf("0.%s", m))