From dfda7c18da020bb2fa7b53b50b4812875af0ccad Mon Sep 17 00:00:00 2001 From: Panagiotis Koromilas <43955360+pakoromilas@users.noreply.github.com> Date: Tue, 10 Sep 2024 14:40:06 +0300 Subject: [PATCH] SSL theory 2021-2024 part a --- README.md | 64 +++++++++++++++++++++++++++++++++++++++++-------------- 1 file changed, 48 insertions(+), 16 deletions(-) diff --git a/README.md b/README.md index 048f7a9..f55a865 100644 --- a/README.md +++ b/README.md @@ -47,39 +47,71 @@ Markdown format: -## Theory +## Theory + +#### 2019 - A Theoretical Analysis of Contrastive Unsupervised Representation Learning. [[pdf]](https://arxiv.org/pdf/1902.09229.pdf) - Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saunshi. *ICML 2019* - +#### 2020 +- Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere. + [[pdf]](https://arxiv.org/pdf/2005.10242) + - Tongzhou Wang, Phillip Isola. *ICML 2020* +- Understanding Self-supervised Learning with Dual Deep Networks. + [[pdf]](https://arxiv.org/pdf/2010.00578.pdf) + - Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. +- For self-supervised learning, Rationality implies generalization, provably. + [[pdf]](https://arxiv.org/pdf/2010.08508.pdf) + - Yamini Bansal, Gal Kaplun, and Boaz Barak. + +#### 2021 - Towards the Generalization of Contrastive Self-Supervised Learning. [[pdf]](https://arxiv.org/pdf/2111.00743.pdf) - Weiran Huang, Mingyang Yi, and Xuyang Zhao. - - Understanding the Behaviour of Contrastive Loss. [[pdf]](https://arxiv.org/pdf/2012.09740.pdf) - Feng Wang and Huaping Liu. *CVPR 2021* - - Predicting What You Already Know Helps: Provable Self-Supervised Learning. [[pdf]](https://arxiv.org/pdf/2008.01064.pdf) - Jason D. Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. - - Contrastive learning , multi-view redundancy , and linear models. [[pdf]](https://arxiv.org/pdf/2008.10150.pdf) - Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. - -- Understanding Self-supervised Learning with Dual Deep Networks. - [[pdf]](https://arxiv.org/pdf/2010.00578.pdf) - - Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. - -- For self-supervised learning, Rationality implies generalization, provably. - [[pdf]](https://arxiv.org/pdf/2010.08508.pdf) - - Yamini Bansal, Gal Kaplun, and Boaz Barak. - -- Can Pretext-Based Self-Supervised Learning Be Boosted by Downstream Data? A Theoretical Analysis. +- Contrastive Learning Inverts the Data Generating Process. + [[pdf]](Contrastive Learning Inverts the Data Generating Process) + - Roland S. Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, Wieland Brendel. **ICML 2021** + + +#### 2022 +- Contrastive Learning Can Find An Optimal Basis For Approximately View-Invariant Functions. [[pdf]](https://arxiv.org/pdf/2103.03568.pdf) - Jiaye Teng, Weiran Huang, and Haowei He. *AISTATS 2022* - + +#### 2023 +- Can Pretext-Based Self-Supervised Learning Be Boosted by Downstream Data? A Theoretical Analysis. + [[pdf]](https://openreview.net/pdf?id=AjC0KBjiMu) + - Daniel D. Johnson, Ayoub El Hanchi, Chris J. Maddison. *ICLR 2023* +- On the Stepwise Nature of Self-Supervised Learning. + [[pdf]](https://arxiv.org/pdf/2303.15438) + - James B. Simon, Maksis Knutins, Liu Ziyin, Daniel Geisz, Abraham J. Fetterman, Joshua Albrecht. *ICML 2023* +- What shapes the loss landscape of self supervised learning? + [[pdf]](https://openreview.net/pdf?id=3zSn48RUO8M) + - Liu Ziyin, Ekdeep Singh Lubana, Masahito Ueda, Hidenori Tanaka. *ICLR 2023* + + +#### 2024 +- Bridging Mini-Batch and Asymptotic Analysis in Contrastive Learning: From InfoNCE to Kernel-Based Losses. + [[pdf]](https://arxiv.org/pdf/2405.18045) + [[code]](https://github.com/pakoromilas/DHEL-KCL) + - Panagiotis Koromilas, Giorgos Bouritsas, Theodoros Giannakopoulos, Mihalis Nicolaou, Yannis Panagakis. *ICML 2024* +- Matrix Information Theory for Self-Supervised Learning. + [[pdf]](https://arxiv.org/pdf/2305.17326) + - Yifan Zhang, Zhiquan Tan, Jingqin Yang, Weiran Huang, Yang Yuan. *ICML 2024* +- Information Flow in Self-Supervised Learning. + [[pdf]](https://arxiv.org/pdf/2309.17281) + - Zhiquan Tan, Jingqin Yang, Weiran Huang, Yang Yuan, Yifan Zhang. *ICML 2024* + + ## Computer Vision ### Survey