forked from jinuvision/autocv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conv_blocks.py
350 lines (321 loc) · 13 KB
/
conv_blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Convolution blocks for mobilenet."""
import contextlib
import functools
import tensorflow as tf
slim = tf.contrib.slim
def _fixed_padding(inputs, kernel_size, rate=1):
"""Pads the input along the spatial dimensions independently of input size.
Pads the input such that if it was used in a convolution with 'VALID' padding,
the output would have the same dimensions as if the unpadded input was used
in a convolution with 'SAME' padding.
Args:
inputs: A tensor of size [batch, height_in, width_in, channels].
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
rate: An integer, rate for atrous convolution.
Returns:
output: A tensor of size [batch, height_out, width_out, channels] with the
input, either intact (if kernel_size == 1) or padded (if kernel_size > 1).
"""
kernel_size_effective = [kernel_size[0] + (kernel_size[0] - 1) * (rate - 1),
kernel_size[0] + (kernel_size[0] - 1) * (rate - 1)]
pad_total = [kernel_size_effective[0] - 1, kernel_size_effective[1] - 1]
pad_beg = [pad_total[0] // 2, pad_total[1] // 2]
pad_end = [pad_total[0] - pad_beg[0], pad_total[1] - pad_beg[1]]
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg[0], pad_end[0]],
[pad_beg[1], pad_end[1]], [0, 0]])
return padded_inputs
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def _split_divisible(num, num_ways, divisible_by=8):
"""Evenly splits num, num_ways so each piece is a multiple of divisible_by."""
assert num % divisible_by == 0
assert num / num_ways >= divisible_by
# Note: want to round down, we adjust each split to match the total.
base = num // num_ways // divisible_by * divisible_by
result = []
accumulated = 0
for i in range(num_ways):
r = base
while accumulated + r < num * (i + 1) / num_ways:
r += divisible_by
result.append(r)
accumulated += r
assert accumulated == num
return result
@contextlib.contextmanager
def _v1_compatible_scope_naming(scope):
if scope is None: # Create uniqified separable blocks.
with tf.variable_scope(None, default_name='separable') as s, \
tf.name_scope(s.original_name_scope):
yield ''
else:
# We use scope_depthwise, scope_pointwise for compatibility with V1 ckpts.
# which provide numbered scopes.
scope += '_'
yield scope
@slim.add_arg_scope
def split_separable_conv2d(input_tensor,
num_outputs,
scope=None,
normalizer_fn=None,
stride=1,
rate=1,
endpoints=None,
use_explicit_padding=False):
"""Separable mobilenet V1 style convolution.
Depthwise convolution, with default non-linearity,
followed by 1x1 depthwise convolution. This is similar to
slim.separable_conv2d, but differs in tha it applies batch
normalization and non-linearity to depthwise. This matches
the basic building of Mobilenet Paper
(https://arxiv.org/abs/1704.04861)
Args:
input_tensor: input
num_outputs: number of outputs
scope: optional name of the scope. Note if provided it will use
scope_depthwise for deptwhise, and scope_pointwise for pointwise.
normalizer_fn: which normalizer function to use for depthwise/pointwise
stride: stride
rate: output rate (also known as dilation rate)
endpoints: optional, if provided, will export additional tensors to it.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
Returns:
output tesnor
"""
with _v1_compatible_scope_naming(scope) as scope:
dw_scope = scope + 'depthwise'
endpoints = endpoints if endpoints is not None else {}
kernel_size = [3, 3]
padding = 'SAME'
if use_explicit_padding:
padding = 'VALID'
input_tensor = _fixed_padding(input_tensor, kernel_size, rate)
net = slim.separable_conv2d(
input_tensor,
None,
kernel_size,
depth_multiplier=1,
stride=stride,
rate=rate,
normalizer_fn=normalizer_fn,
padding=padding,
scope=dw_scope)
endpoints[dw_scope] = net
pw_scope = scope + 'pointwise'
net = slim.conv2d(
net,
num_outputs, [1, 1],
stride=1,
normalizer_fn=normalizer_fn,
scope=pw_scope)
endpoints[pw_scope] = net
return net
def expand_input_by_factor(n, divisible_by=8):
return lambda num_inputs, **_: _make_divisible(num_inputs * n, divisible_by)
@slim.add_arg_scope
def expanded_conv(input_tensor,
num_outputs,
expansion_size=expand_input_by_factor(6),
stride=1,
rate=1,
kernel_size=(3, 3),
residual=True,
normalizer_fn=None,
project_activation_fn=tf.identity,
split_projection=1,
split_expansion=1,
split_divisible_by=8,
expansion_transform=None,
depthwise_location='expansion',
depthwise_channel_multiplier=1,
endpoints=None,
use_explicit_padding=False,
padding='SAME',
scope=None):
"""Depthwise Convolution Block with expansion.
Builds a composite convolution that has the following structure
expansion (1x1) -> depthwise (kernel_size) -> projection (1x1)
Args:
input_tensor: input
num_outputs: number of outputs in the final layer.
expansion_size: the size of expansion, could be a constant or a callable.
If latter it will be provided 'num_inputs' as an input. For forward
compatibility it should accept arbitrary keyword arguments.
Default will expand the input by factor of 6.
stride: depthwise stride
rate: depthwise rate
kernel_size: depthwise kernel
residual: whether to include residual connection between input
and output.
normalizer_fn: batchnorm or otherwise
project_activation_fn: activation function for the project layer
split_projection: how many ways to split projection operator
(that is conv expansion->bottleneck)
split_expansion: how many ways to split expansion op
(that is conv bottleneck->expansion) ops will keep depth divisible
by this value.
split_divisible_by: make sure every split group is divisible by this number.
expansion_transform: Optional function that takes expansion
as a single input and returns output.
depthwise_location: where to put depthwise covnvolutions supported
values None, 'input', 'output', 'expansion'
depthwise_channel_multiplier: depthwise channel multiplier:
each input will replicated (with different filters)
that many times. So if input had c channels,
output will have c x depthwise_channel_multpilier.
endpoints: An optional dictionary into which intermediate endpoints are
placed. The keys "expansion_output", "depthwise_output",
"projection_output" and "expansion_transform" are always populated, even
if the corresponding functions are not invoked.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
padding: Padding type to use if `use_explicit_padding` is not set.
scope: optional scope.
Returns:
Tensor of depth num_outputs
Raises:
TypeError: on inval
"""
with tf.variable_scope(scope, default_name='expanded_conv') as s, \
tf.name_scope(s.original_name_scope):
prev_depth = input_tensor.get_shape().as_list()[3]
if depthwise_location not in [None, 'input', 'output', 'expansion']:
raise TypeError('%r is unknown value for depthwise_location' %
depthwise_location)
if use_explicit_padding:
if padding != 'SAME':
raise TypeError('`use_explicit_padding` should only be used with '
'"SAME" padding.')
padding = 'VALID'
depthwise_func = functools.partial(
slim.separable_conv2d,
num_outputs=None,
kernel_size=kernel_size,
depth_multiplier=depthwise_channel_multiplier,
stride=stride,
rate=rate,
normalizer_fn=normalizer_fn,
padding=padding,
scope='depthwise')
# b1 -> b2 * r -> b2
# i -> (o * r) (bottleneck) -> o
input_tensor = tf.identity(input_tensor, 'input')
net = input_tensor
if depthwise_location == 'input':
if use_explicit_padding:
net = _fixed_padding(net, kernel_size, rate)
net = depthwise_func(net, activation_fn=None)
if callable(expansion_size):
inner_size = expansion_size(num_inputs=prev_depth)
else:
inner_size = expansion_size
if inner_size > net.shape[3]:
net = split_conv(
net,
inner_size,
num_ways=split_expansion,
scope='expand',
divisible_by=split_divisible_by,
stride=1,
normalizer_fn=normalizer_fn)
net = tf.identity(net, 'expansion_output')
if endpoints is not None:
endpoints['expansion_output'] = net
if depthwise_location == 'expansion':
if use_explicit_padding:
net = _fixed_padding(net, kernel_size, rate)
net = depthwise_func(net)
net = tf.identity(net, name='depthwise_output')
if endpoints is not None:
endpoints['depthwise_output'] = net
if expansion_transform:
net = expansion_transform(expansion_tensor=net, input_tensor=input_tensor)
# Note in contrast with expansion, we always have
# projection to produce the desired output size.
net = split_conv(
net,
num_outputs,
num_ways=split_projection,
stride=1,
scope='project',
divisible_by=split_divisible_by,
normalizer_fn=normalizer_fn,
activation_fn=project_activation_fn)
if endpoints is not None:
endpoints['projection_output'] = net
if depthwise_location == 'output':
if use_explicit_padding:
net = _fixed_padding(net, kernel_size, rate)
net = depthwise_func(net, activation_fn=None)
if callable(residual): # custom residual
net = residual(input_tensor=input_tensor, output_tensor=net)
elif (residual and
# stride check enforces that we don't add residuals when spatial
# dimensions are None
stride == 1 and
# Depth matches
net.get_shape().as_list()[3] ==
input_tensor.get_shape().as_list()[3]):
net += input_tensor
return tf.identity(net, name='output')
def split_conv(input_tensor,
num_outputs,
num_ways,
scope,
divisible_by=8,
**kwargs):
"""Creates a split convolution.
Split convolution splits the input and output into
'num_blocks' blocks of approximately the same size each,
and only connects $i$-th input to $i$ output.
Args:
input_tensor: input tensor
num_outputs: number of output filters
num_ways: num blocks to split by.
scope: scope for all the operators.
divisible_by: make sure that every part is divisiable by this.
**kwargs: will be passed directly into conv2d operator
Returns:
tensor
"""
b = input_tensor.get_shape().as_list()[3]
if num_ways == 1 or min(b // num_ways,
num_outputs // num_ways) < divisible_by:
# Don't do any splitting if we end up with less than 8 filters
# on either side.
return slim.conv2d(input_tensor, num_outputs, [1, 1], scope=scope, **kwargs)
outs = []
input_splits = _split_divisible(b, num_ways, divisible_by=divisible_by)
output_splits = _split_divisible(
num_outputs, num_ways, divisible_by=divisible_by)
inputs = tf.split(input_tensor, input_splits, axis=3, name='split_' + scope)
base = scope
for i, (input_tensor, out_size) in enumerate(zip(inputs, output_splits)):
scope = base + '_part_%d' % (i,)
n = slim.conv2d(input_tensor, out_size, [1, 1], scope=scope, **kwargs)
n = tf.identity(n, scope + '_output')
outs.append(n)
return tf.concat(outs, 3, name=scope + '_concat')