|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | +from typing import Any, Optional |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pytest |
| 7 | +import torch |
| 8 | + |
| 9 | +from tests.conftest import HfRunner |
| 10 | + |
| 11 | +from .mteb_utils import (RerankModelInfo, VllmMtebEncoder, |
| 12 | + mteb_test_rerank_models) |
| 13 | + |
| 14 | +RERANK_MODELS = [ |
| 15 | + RerankModelInfo("BAAI/bge-reranker-v2-gemma", |
| 16 | + architecture="GemmaForSequenceClassification"), |
| 17 | +] |
| 18 | + |
| 19 | +PROMPT = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'." # noqa: E501 |
| 20 | + |
| 21 | + |
| 22 | +class GemmaRerankerHfRunner(HfRunner): |
| 23 | + |
| 24 | + def __init__(self, |
| 25 | + model_name: str, |
| 26 | + dtype: str = "auto", |
| 27 | + *args: Any, |
| 28 | + **kwargs: Any) -> None: |
| 29 | + from transformers import AutoModelForCausalLM, AutoTokenizer |
| 30 | + super().__init__(model_name, dtype, auto_cls=AutoModelForCausalLM) |
| 31 | + self.tokenizer = AutoTokenizer.from_pretrained(model_name, |
| 32 | + padding_side='left') |
| 33 | + self.yes_loc = self.tokenizer.convert_tokens_to_ids("Yes") |
| 34 | + |
| 35 | + @torch.no_grad() |
| 36 | + def predict(self, prompts: list[list[str]], *args, |
| 37 | + **kwargs) -> torch.Tensor: |
| 38 | + |
| 39 | + def get_inputs(pairs, tokenizer, prompt=None): |
| 40 | + if prompt is None: |
| 41 | + prompt = PROMPT |
| 42 | + |
| 43 | + sep = "\n" |
| 44 | + prompt_inputs = tokenizer(prompt, |
| 45 | + return_tensors=None, |
| 46 | + add_special_tokens=False)["input_ids"] |
| 47 | + sep_inputs = tokenizer(sep, |
| 48 | + return_tensors=None, |
| 49 | + add_special_tokens=False)["input_ids"] |
| 50 | + inputs = [] |
| 51 | + for query, passage in pairs: |
| 52 | + query_inputs = tokenizer( |
| 53 | + f"A: {query}", |
| 54 | + return_tensors=None, |
| 55 | + add_special_tokens=False, |
| 56 | + truncation=True, |
| 57 | + ) |
| 58 | + passage_inputs = tokenizer( |
| 59 | + f"B: {passage}", |
| 60 | + return_tensors=None, |
| 61 | + add_special_tokens=False, |
| 62 | + truncation=True, |
| 63 | + ) |
| 64 | + item = tokenizer.prepare_for_model( |
| 65 | + [tokenizer.bos_token_id] + query_inputs["input_ids"], |
| 66 | + sep_inputs + passage_inputs["input_ids"], |
| 67 | + truncation="only_second", |
| 68 | + padding=False, |
| 69 | + return_attention_mask=False, |
| 70 | + return_token_type_ids=False, |
| 71 | + add_special_tokens=False, |
| 72 | + ) |
| 73 | + item["input_ids"] = item[ |
| 74 | + "input_ids"] + sep_inputs + prompt_inputs |
| 75 | + item["attention_mask"] = [1] * len(item["input_ids"]) |
| 76 | + inputs.append(item) |
| 77 | + return tokenizer.pad( |
| 78 | + inputs, |
| 79 | + padding=True, |
| 80 | + return_tensors="pt", |
| 81 | + ) |
| 82 | + |
| 83 | + scores = [] |
| 84 | + for query, doc, *_ in prompts: |
| 85 | + pairs = [(query, doc)] |
| 86 | + inputs = get_inputs(pairs, self.tokenizer) |
| 87 | + inputs = inputs.to(self.model.device) |
| 88 | + _n_tokens = inputs["input_ids"].shape[1] |
| 89 | + logits = self.model(**inputs, return_dict=True).logits |
| 90 | + _scores = (logits[:, -1, |
| 91 | + self.yes_loc].view(-1, ).float().sigmoid()) |
| 92 | + scores.append(_scores[0].item()) |
| 93 | + return torch.Tensor(scores) |
| 94 | + |
| 95 | + |
| 96 | +class GemmaMtebEncoder(VllmMtebEncoder): |
| 97 | + |
| 98 | + def __init__(self, *args, **kwargs): |
| 99 | + super().__init__(*args, **kwargs) |
| 100 | + self.prompt = PROMPT |
| 101 | + self.query_template = "A: {query}\n" |
| 102 | + self.document_template = "B: {doc}\n{prompt}" |
| 103 | + |
| 104 | + def predict( |
| 105 | + self, |
| 106 | + sentences: list[tuple[str, str, |
| 107 | + Optional[str]]], # query, corpus, prompt |
| 108 | + *args, |
| 109 | + **kwargs, |
| 110 | + ) -> np.ndarray: |
| 111 | + |
| 112 | + _sentences = [] |
| 113 | + for query, corpus, prompt in sentences: |
| 114 | + query = self.query_template.format(query=query) |
| 115 | + corpus = self.document_template.format(doc=corpus, prompt=prompt) |
| 116 | + _sentences.append((query, corpus, prompt)) |
| 117 | + |
| 118 | + return super().predict(_sentences, *args, **kwargs) |
| 119 | + |
| 120 | + |
| 121 | +@pytest.mark.parametrize("model_info", RERANK_MODELS) |
| 122 | +def test_rerank_models_mteb(vllm_runner, model_info: RerankModelInfo, |
| 123 | + monkeypatch) -> None: |
| 124 | + monkeypatch.setenv("VLLM_USE_V1", "0") |
| 125 | + |
| 126 | + assert model_info.architecture == "GemmaForSequenceClassification" |
| 127 | + |
| 128 | + vllm_extra_kwargs: dict[str, Any] = { |
| 129 | + "hf_overrides": { |
| 130 | + "architectures": ["GemmaForSequenceClassification"], |
| 131 | + "classifier_from_token": ["Yes"], |
| 132 | + "method": "no_post_processing", |
| 133 | + } |
| 134 | + } |
| 135 | + |
| 136 | + mteb_test_rerank_models(GemmaRerankerHfRunner, |
| 137 | + vllm_runner, |
| 138 | + model_info, |
| 139 | + vllm_extra_kwargs, |
| 140 | + vllm_mteb_encoder=GemmaMtebEncoder) |
0 commit comments