diff --git a/EuclideanGeometry/Foundation/Axiom/Linear/Ray_ex.lean b/EuclideanGeometry/Foundation/Axiom/Linear/Ray_ex.lean index d1314925..8630b428 100644 --- a/EuclideanGeometry/Foundation/Axiom/Linear/Ray_ex.lean +++ b/EuclideanGeometry/Foundation/Axiom/Linear/Ray_ex.lean @@ -50,21 +50,13 @@ theorem Ray.toDir_of_rev_eq_neg_toDir {ray : Ray P} : ray.reverse.toDir = - ray. theorem Ray.toProj_of_rev_eq_toProj {ray : Ray P} : ray.reverse.toProj = ray.toProj := by --@HeRunming: Simply imitate the proof of theorem "eq_toProj_of_smul" in Vector.lean -- `??? Why not use that toProj is the quotient of toDir` see the definition of toProj - unfold Ray.reverse - unfold Ray.toDir - unfold Ray.toProj - apply Quotient.sound - unfold HasEquiv.Equiv instHasEquiv PM.con PM - simp only [Con.rel_eq_coe, Con.rel_mk] - unfold EuclidGeom.Ray.toDir + apply (Dir.eq_toProj_iff ray.reverse.toDir ray.toDir).mpr right rfl -- Given a segment, the vector associated to the reverse of the reversed segment is the negative of the vector associated to the segment. theorem Seg.toVec_of_rev_eq_neg_toVec (seg : Seg P) : seg.reverse.toVec = - seg.toVec := by - unfold toVec reverse - simp only [reverse] - rw[neg_vec] + simp only [reverse,toVec,neg_vec] -- Given a nondegenerate segment, the nondegenerate vector associated to the reversed nondegenerate segment is the negative of the nondegenerate vector associated to the nondegenerate segment. theorem Seg_nd.toVec_nd_of_rev_eq_neg_toVec_nd (seg_nd : Seg_nd P) : seg_nd.reverse.toVec_nd = - seg_nd.toVec_nd := by @@ -74,29 +66,14 @@ theorem Seg_nd.toVec_nd_of_rev_eq_neg_toVec_nd (seg_nd : Seg_nd P) : seg_nd.reve -- Given a nondegenerate segment, the direction of the reversed nondegenerate segment is the negative direction of the nondegenerate segment. theorem Seg_nd.toDir_of_rev_eq_neg_toDir (seg_nd : Seg_nd P) : seg_nd.reverse.toDir = - seg_nd.toDir := by -- `exists a one=line proof?` - unfold toDir - symm - have :seg_nd.reverse.toVec_nd.1=(-1)•seg_nd.toVec_nd.1:=by - rw[neg_smul,one_smul] - rw[Seg_nd.toVec_nd_of_rev_eq_neg_toVec_nd] - rfl - apply @neg_normalize_eq_normalize_smul_neg _ _ (-1) - rw[this] - simp only [ne_eq, neg_smul, one_smul] - norm_num + rw[toDir,toDir,←neg_normalize_eq_normalize_eq,Seg_nd.toVec_nd_of_rev_eq_neg_toVec_nd] -- Given a nondegenerate segment, the projective direction of the reversed nondegenerate segment is the negative projective direction of the nondegenerate segment. theorem Seg_nd.toProj_of_rev_eq_toProj (seg_nd : Seg_nd P) : seg_nd.reverse.toProj = seg_nd.toProj := by --`follows from teh previous lemma directly?` - apply @eq_toProj_of_smul _ _ (-1) - rw[neg_smul,one_smul] - rw[Seg_nd.toVec_nd_of_rev_eq_neg_toVec_nd] - apply neg_eq_iff_eq_neg.mp - rfl - - - - + apply (Dir.eq_toProj_iff seg_nd.reverse.toDir seg_nd.toDir).mpr + right + rw[Seg_nd.toDir_of_rev_eq_neg_toDir] -- Given a segment and a point, the point lies on the segment if and only if it lies on the reverse of the segment. theorem Seg.lies_on_iff_lies_on_rev {A : P} {seg : Seg P} : A LiesOn seg ↔ A LiesOn seg.reverse := by @@ -136,14 +113,12 @@ theorem Ray.eq_source_iff_lies_on_and_lies_on_rev {A : P} {ray : Ray P} : A = ra simp only [le_refl, zero_smul, true_and] rw[h,vec_same_eq_zero] use 0 - simp only [le_refl, Dir.toVec_neg_eq_neg_toVec, smul_neg, zero_smul, neg_zero, true_and] - simp only [Ray.reverse] + simp only [le_refl, Dir.toVec_neg_eq_neg_toVec, smul_neg, zero_smul, neg_zero, true_and,Ray.reverse] rw[h,vec_same_eq_zero] simp only [and_imp] rintro ⟨a,⟨anneg,h⟩⟩ ⟨b,⟨bnneg,h'⟩⟩ - simp only [Ray.reverse] at h' - simp only [Dir.toVec_neg_eq_neg_toVec, smul_neg] at h' - rw[h,←add_zero a,← sub_self b,add_sub,sub_smul] at h' + simp only [Ray.reverse,Dir.toVec_neg_eq_neg_toVec, smul_neg,h] at h' + rw[←add_zero a,← sub_self b,add_sub,sub_smul] at h' simp only [sub_eq_neg_self, mul_eq_zero] at h' have h'': a+b=0:=by contrapose! h' @@ -191,77 +166,43 @@ theorem lies_on_iff_lies_on_toRay_and_rev_toRay {A : P} {seg_nd : Seg_nd P} : A apply Seg.lies_on_iff_lies_on_rev.mp trivial rintro ⟨⟨a,anneg,h⟩,b,bnneg,h'⟩ - unfold Dir.toVec Ray.toDir Seg_nd.toRay at h h' - rw[Seg_nd.toDir_of_rev_eq_neg_toDir] at h' - have tria:(-Seg_nd.toDir seg_nd).1=(-1)•(Seg_nd.toDir seg_nd).1:=by - rw[Dir.toVec_neg_eq_neg_toVec _] - rw[neg_one_smul] - unfold Dir.toVec at tria - rw[tria] at h' - simp only [Seg_nd.toDir] at h h' - have trib:b • -1 • (Vec_nd.normalize (Seg_nd.toVec_nd seg_nd)).1=(-b)• (Vec_nd.normalize (Seg_nd.toVec_nd seg_nd)).1:=by - simp only [neg_smul, one_smul, smul_neg, Complex.real_smul] - unfold Dir.toVec at trib - rw[trib] at h' - set v:=(Vec_nd.normalize (Seg_nd.toVec_nd seg_nd)).1 with v_def - unfold Dir.toVec at v_def + rw[←Seg_nd.toDir_eq_toRay_toDir] at h h' + simp only [Seg_nd.toRay] at h h' + rw[Seg_nd.toDir_of_rev_eq_neg_toDir,Dir.toVec_neg_eq_neg_toVec,smul_neg] at h' simp only [Seg_nd.reverse,Seg.reverse] at h' - rw[←v_def] at h h' - have asumbv:(a+b)•v=VEC seg_nd.1.source seg_nd.1.target:=by - rw[← vec_add_vec _ A _,←neg_vec seg_nd.1.target A,h,h',add_smul] - simp - have tri1:VEC seg_nd.1.source seg_nd.1.target=seg_nd.toVec_nd.1:=by + have asumbvec:(a+b)•seg_nd.toDir.toVec_nd.1=seg_nd.toVec_nd.1:=by + simp only [Seg_nd.toVec_nd,Dir.toVec_nd] + rw[add_smul,←h,←vec_add_vec seg_nd.1.source A seg_nd.1.target,←neg_vec seg_nd.1.target A,h',neg_neg] + have asumbeqnorm:a+b=(Vec_nd.norm seg_nd.toVec_nd):=by + rw [←Vec_nd.norm_smul_normalize_eq_self seg_nd.toVec_nd] at asumbvec + apply eq_of_smul_Vec_nd_eq_smul_Vec_nd asumbvec + use a*(Vec_nd.norm seg_nd.toVec_nd)⁻¹ + have :VEC seg_nd.1.source seg_nd.1.target=seg_nd.toVec_nd:=by rfl - rw[tri1,←Vec_nd.norm_smul_normalize_eq_self seg_nd.toVec_nd] at asumbv - have tri2:(a+b-(Vec.norm seg_nd.toVec_nd))•(seg_nd.toDir).1=0:=by - rw[sub_smul,asumbv] - simp - have asumb:a+b=(Vec.norm seg_nd.toVec_nd):=by - have asumb:a+b-(Vec.norm seg_nd.toVec_nd)=0:=by - rcases smul_eq_zero.mp tri2 with hyp1|hyp2 - exact hyp1 - exfalso - apply Dir.toVec_ne_zero seg_nd.toDir - assumption - linarith - have norm_pos_vec:0