-
Notifications
You must be signed in to change notification settings - Fork 9
/
find_obj.py
184 lines (155 loc) · 6.01 KB
/
find_obj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
'''
Feature-based image matching sample.
Note, that you will need the https://github.com/Itseez/opencv_contrib repo for SIFT and SURF
USAGE
find_obj.py [--feature=<sift|surf|orb|akaze|brisk>[-flann]] [ <image1> <image2> ]
--feature - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
to feature name to use Flann-based matcher instead bruteforce.
Press left mouse button on a feature point to see its matching point.
'''
import numpy as np
import cv2
from common import anorm, getsize
FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing
FLANN_INDEX_LSH = 6
def init_feature(name):
chunks = name.split('-')
if chunks[0] == 'sift':
detector = cv2.SIFT()
norm = cv2.NORM_L2
elif chunks[0] == 'surf':
detector = cv2.SURF(800)
norm = cv2.NORM_L2
elif chunks[0] == 'orb':
detector = cv2.ORB(400)
norm = cv2.NORM_HAMMING
elif chunks[0] == 'akaze':
detector = cv2.AKAZE_create()
norm = cv2.NORM_HAMMING
elif chunks[0] == 'brisk':
detector = cv2.BRISK_create()
norm = cv2.NORM_HAMMING
else:
return None, None
if 'flann' in chunks:
if norm == cv2.NORM_L2:
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
else:
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
else:
matcher = cv2.BFMatcher(norm)
return detector, matcher
def filter_matches(kp1, kp2, matches, ratio = 0.75):
mkp1, mkp2 = [], []
for m in matches:
if len(m) == 2 and m[0].distance < m[1].distance * ratio:
m = m[0]
mkp1.append( kp1[m.queryIdx] )
mkp2.append( kp2[m.trainIdx] )
p1 = np.float32([kp.pt for kp in mkp1])
p2 = np.float32([kp.pt for kp in mkp2])
kp_pairs = zip(mkp1, mkp2)
return p1, p2, kp_pairs
def explore_match(win, img1, img2, kp_pairs, status = None, H = None):
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
vis = np.zeros((max(h1, h2), w1+w2), np.uint8)
vis[:h1, :w1] = img1
vis[:h2, w1:w1+w2] = img2
vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2BGR)
# if H is not None:
# corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]])
# corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) )
# cv2.polylines(vis, [corners], True, (255, 255, 255))
if status is None:
status = np.ones(len(kp_pairs), np.bool_)
p1 = np.int32([kpp[0].pt for kpp in kp_pairs])
p2 = np.int32([kpp[1].pt for kpp in kp_pairs]) + (w1, 0)
green = (0, 255, 0)
red = (0, 0, 255)
white = (255, 255, 255)
kp_color = (51, 103, 236)
for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
if inlier:
col = green
cv2.circle(vis, (x1, y1), 2, col, -1)
cv2.circle(vis, (x2, y2), 2, col, -1)
else:
col = red
r = 2
thickness = 3
cv2.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness)
cv2.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness)
cv2.line(vis, (x2-r, y2-r), (x2+r, y2+r), col, thickness)
cv2.line(vis, (x2-r, y2+r), (x2+r, y2-r), col, thickness)
vis0 = vis.copy()
for (x1, y1), (x2, y2), inlier in zip(p1, p2, status):
if inlier:
cv2.line(vis, (x1, y1), (x2, y2), green)
cv2.imshow(win, vis)
def onmouse(event, x, y, flags, param):
cur_vis = vis
if flags & cv2.EVENT_FLAG_LBUTTON:
cur_vis = vis0.copy()
r = 8
m = (anorm(p1 - (x, y)) < r) | (anorm(p2 - (x, y)) < r)
idxs = np.where(m)[0]
kp1s, kp2s = [], []
for i in idxs:
(x1, y1), (x2, y2) = p1[i], p2[i]
col = (red, green)[status[i]]
cv2.line(cur_vis, (x1, y1), (x2, y2), col)
kp1, kp2 = kp_pairs[i]
kp1s.append(kp1)
kp2s.append(kp2)
cur_vis = cv2.drawKeypoints(cur_vis, kp1s, flags=4, color=kp_color)
cur_vis[:,w1:] = cv2.drawKeypoints(cur_vis[:,w1:], kp2s, flags=4, color=kp_color)
cv2.imshow(win, cur_vis)
cv2.setMouseCallback(win, onmouse)
return vis
if __name__ == '__main__':
print __doc__
import sys, getopt
opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
opts = dict(opts)
feature_name = opts.get('--feature', 'sift')
try:
fn1, fn2 = args
except:
fn1 = '../data/box.png'
fn2 = '../data/box_in_scene.png'
img1 = cv2.imread(fn1, 0)
img2 = cv2.imread(fn2, 0)
detector, matcher = init_feature(feature_name)
if img1 is None:
print 'Failed to load fn1:', fn1
sys.exit(1)
if img2 is None:
print 'Failed to load fn2:', fn2
sys.exit(1)
if detector is None:
print 'unknown feature:', feature_name
sys.exit(1)
print 'using', feature_name
kp1, desc1 = detector.detectAndCompute(img1, None)
kp2, desc2 = detector.detectAndCompute(img2, None)
print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2))
def match_and_draw(win):
print 'matching...'
raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2
p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
if len(p1) >= 4:
H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
print '%d / %d inliers/matched' % (np.sum(status), len(status))
else:
H, status = None, None
print '%d matches found, not enough for homography estimation' % len(p1)
vis = explore_match(win, img1, img2, kp_pairs, status, H)
match_and_draw('find_obj')
cv2.waitKey()
cv2.destroyAllWindows()