
JSON Schema Extensions
Austin Wright 2022-10-24

This paper describes an update to JSON Schema semantics to permit generic extensions to
the media type, in a way that’s interoperable between multiple implementations.

Part one will describe the problems being solved, and the functional requirements that solve
them, including forward compatibility and reverse compatibility.

Part two will describe interoperability requirements that provide these guarantees.

Part three suggests how this affects releases and changes that come after.

Part four describes standard extensions: common features implemented in a standard way, but
that aren’t necessary to guarantee interoperability.

Part five describes extensions that implement obsolete or deprecated behaviors, not
recommended for use in new schemas, but that maximize backwards compatibility with older
schemas.

README

• This is a draft, while there is one core concept (the “indeterminate” state), this also describes
many other ideas that might or might not be any good.

• Most of the concepts here are not significant changes in behavior, however there are stricter
definitions. Some terms have been recycled to subtly different purposes (especially
“assertion” and “argument”). “sibling arguments” “keyword arguments” and “argument
keywords” are supposed to be different things but even I might be confusing them in one or
two places. Ask if in doubt.

• This shouldn’t be read as an endorsement of which features are “more important” or “less
important” to JSON Schema. It merely describes requirements that must be in place before
the interoperability of other features (e.g. annotations, $schema) is guaranteed. (e.g. HTTP
defines cookies in a non-core specification, that doesn’t mean they’re unimportant, they’re
just not essential to understanding the different parts of an HTTP message.)

• Vocabulary note: “accept” and “reject” are outcomes, “validate” is a process that may
accept or reject. “Author” is someone writing a schema.

1. Functional Requirements
The current JSON Schema specification is difficult to evolve, and while the $schema and
$vocabulary keywords have found some use in mitigating these problems, forward and reverse
compatibility is still a significant burden.

Implementations are burdened by backwards compatibility
JSON Schema does not discuss backwards compatibility: behavior specified in obsolete
documents that no longer appears, but is still used in the wild. Support for these behaviors is
left up to individual implementations, because different implementations are built to satisfy
different needs.

One popular strategy is to implement each publication separately, and use some heuristic to
select one of them—often reading the $schema keyword, analyzing the meta-schema (if
available), or a “version” provided out-of-band. This is also not guaranteed because “$schema”
is optional, or if provided, it doesn’t have to be a known meta-schema, and even if the
unknown meta-schema is machine readable, the version that the meta-schema was written
against may be different than the schema!

This approach is quite burdensome for implementors, and concerns arise around the question
of “which meta-schemas should the validator support”—and what that even means. How
should validators handle schemas that are “too old?”

Multi-consumer schemas need strong interoperability guarantees
The very assumption that validators can implement their own backwards compatibility scheme
fails when one schema is intended for use by a wide variety of validators (multi-consumer
schemas). For example, a description of an API written using JSON Schema. Schema authors
may encounter two classes of problems:

First, implementations may disagree on the validity of an instance due to specification changes
over time. If Alice’s validator ignores the “comprehensibility” keyword (because it is too new or
too old), but Bob’s supports it, schemas with this keyword will show contradictory validation
results (Alice and Bob will think the same document is valid and invalid, respectively).

Second, compatibility between revisions of the specification must overlap in a uniform and
predictable way. For example, if Alice’s validator only supports 2021 meta-schemas and later
(because it’s impractical to support older meta-schemas), and Bob’s validator only supports
2020 and earlier (because it is now unmaintained), then there is no way to publish a schema
that works for both of them.

Behavior was removed when it was considered bad practice. However, the purpose of a
specification is to promote an interoperable ecosystem, not necessarily to describe the ideal. A
standard must describe backwards compatibility, too.

Robustness Principle: Be Liberal In What You Accept
Suppose the year is 2040, JSON Schema adds a "comprehensibility" keyword. But you’re still
using a validator from 2036, so it ignores this keyword. Your validator says your jetcar
registration form is valid, but the flying vehicle office says it isn’t. What’s going on here?

One of the most prevalent problems in authoring the specification is that it isn’t possible to
change the features of the specification without changing some validation results. This is due
to an early design decision that “unknown” keywords are “ignored” much the same way as
HTTP and mail ignores unknown headers.

HTTP and mail can do this because the base message carries useful semantics, and clients
can decide if they will act on the additional headers provided, if any. When the header is
understood, you can see from the response that it was processed.

In HTTP, this is usually signaled in the status code. Depending on the method, media type, and
requested features the server understands, it will send back different status codes. If the server
doesn’t understand the method, it will send 501 Not Implemented; and if it honors a Range
request, it will send 206 (Partial Content). The “206” status lets the client know that the
“Range” extension is in use!

In contrast, when JSON Schema adds a new keyword, validators do not signal if the new
keyword is being honored. Honored keywords in valid instances are indistinguishable from
ignored keywords.

The “robustness principle” doesn’t imply that unknown fields be ignored; it endorses graceful
degradation, which JSON schema does not do as well as HTTP or mail.

Validators may have incomplete understandings, and different
validators different understandings
When authoring a schema, assume that it has a single, definite meaning; even if not every part
is known to a given validator. In the context of a specific validator, a schema whose behavior is
not completely known, may be called incomplete.

Forward Compatibility Principle
For lack of a better term, this means that the widest possible range of values should be
reserved for future use, and there should be a disincentive to using reserved values until they’re
defined. Because once some behavior is defined and starts being used, it cannot be un-
defined.

Thus, if in doubt, unused values should be reserved and handled as a special case, rather than
being ignored.

For example, there’s no reason an argument keyword should be permitted by itself without a
validation keyword that reads it. This likely indicates a typo. If a good reason is found, it can be
permitted later. But if it starts out permitted, it is more difficult to prohibit after the fact.

If a behavior is being reserved for future use, this is a type of undefined behavior called
reserved. Nobody should write schemas using reserved behavior until it’s been defined at a

later time, and if encountered, validators must treat the schema as if it’s incomplete (the
behavior may have since been defined).

Infrequently, there may be multiple ways an implementation may implement a behavior. This is
a different type of undefined (undefined by the specification) called implementation-defined. If a
specification calls for implementation-defined behavior, this is often a sign that the scope of
the specification is too broad.

Strict handling of keywords and arguments alike
Currently, keywords with an unknown name are ignored, but known keywords with an invalid
value usually error. This is an odd combination not found in most protocols: it is more typical to
ignore all unknown values, or error on all unknown values.

In JSON Schema, validation keywords are closer to method calls in a programming language:
ignoring a keyword as if it doesn’t exist is almost never intended by the author.

This also applies to the property value of the keyword (the keyword argument); it would make
little sense to ignore a keyword if its argument goes outside the defined range.

If this is the rule that applies to keyword arguments, then it should also apply to sibling
arguments. If a schema adds a newly defined sibling argument, it is likely there for an important
reason, it should not be ignored just because it’s too new.

Typos
Unlike in HTTP, mail, or even many calls to a JSON API, JSON Schema documents are often
authored by hand. A typo in the keyword name can be dangerous, effectively disabling it
without warning.

Most (respectable) programming languages have some amount of redundancy builtin to their
syntax, which will cause an error if there is a typo. For example, referencing a variable that has
not been initialized.

The “$defs” and “$comment” keywords have removed most of the incentives for schema
authors to invent their own properties, so the only remaining reasons that an unknown property
might be encountered is (1) it is a typo, (2) it is an new keyword the schema depends on, or (3)
it’s an older schema and $defs/$comment wasn’t standardized yet.

If there is some reason authors need to invent a keyword, there should be some way to declare
this in the schema.

The “$schema” keyword
Originally, the “$schema” keyword allows a schema to specify a “meta-schema” that it should
be valid against. At minimum it was a curiosity that shows JSON Schema is self-descriptive.
Combined with annotations, it could be used to give semantics to custom keywords in a
schema, although no mechanism for this was defined initially.

Later, the $schema keyword had come to be used by implementations to selectively enable or
disable features only found in obsolete drafts, or to switch between entire implementations.

Eventually the $vocabulary keyword could be embedded in meta-schemas, making them
machine-readable.

This keyword has several weaknesses:

• JSON Schema is not “$schema-aware” so it’s not possible to write a schema that changes
meta-schemas, that is also valid against those meta-schemas.

• It is not possible to write a schema that combines the characteristics of multiple meta-
schemas, the same way that a JSON document can be described my multiple profiles.

• Meta-schemas seem to be useful to determine if the schema that you’re authoring will be
compatible with a validator. But if a meta-schema is supposed to accept schemas that the
validator supports, this means that different validators will have different meta-schemas,
each unique to the features that they support, and can be no “standard" meta-schema.

• If a meta-schema describes a schema to a validator, this limits the usability of the schema to
the validators that understand the semantics of, or that can read, that meta-schema.

The “$vocabulary” keyword
While the $schema keyword allows a schema to express some information about how the
schema itself is written, the keyword was not defined thoroughly enough to be useful in
validation: The normative interpretation of a schema is the specification, not the meta-schema.

To answer this, the $vocabulary keyword allowed meta-schemas to be machine readable. That
is, if a validator doesn’t have knowledge of how to handle a meta-schema, it can read the
meta-schema for instructions. This provides the useful feature of being able to write extensions
for JSON Schema that are not standardized, and some ability for validators to differentiate
among different versions of non-core keywords.

This keyword has several weaknesses:

One, it cannot not cross $ref or sub-schema boundaries (as far as I can tell). You cannot import
vocabularies by referencing another meta-schema in your meta-schema (e.g. {“$ref”:
“draft-07/schema”} is not meaningful), nor can you use it inside allOf. However, this
limitation is easily relaxed.

Two, it is not clear that $vocabulary applies to core keywords. A single “core” vocabulary is
assumed at runtime to “bootstrap” the core keywords including $schema and $vocabulary. It’s
possible different or better defined handling could be defined, for vocabularies to override the
behavior of core keywords, or define “super-core keywords” that configure the behavior of
other core keywords. But it seems this would require much additional complexity that should
be avoided if possible.

Three, it requires authors to write a meta-schema for schemas whenever an extension is
needed. And JSON Schema semantics preclude embedding meta-schemas inside schemas.
So using custom extensions require loading at least two separate schema documents into your
validator (the schema and its meta-schema).

Reusability across dialects and versions
Some software applications implement different subsets of JSON Schema, or define their own
custom extensions. For example, not implementing $ref; or defining a new data type that’s
separate from the six JSON types.

Despite these differences, these environments still have much in common, and schema like
{“type”: “number”} should be re-usable and behave the same, regardless of if the schema
is “for” MongoDB or OpenAPI. It should still be possible to write a schema that works in both
environments, if you’re only using features common to both.

Self-describing vs. Meta-describing

To invent a couple terms, a data format is self-describing when the format encodes information
about how to read it into the format. It is meta-describing when you must know information
out-of-band in order to use it.

For example in JSON, it is possible to distinguish numbers from strings: the JSON types are
self-describing. But without knowing the application, you don’t know what number is for what
purpose: the rest of the semantics are described by the application, separate from JSON.

In contrast, in ASN.1, you need a schema to read the message and distinguish numbers from
strings. The type system is meta-described.

With JSON Schema, you should be able to distinguish validation keywords and arguments
from other keywords, without needing a (meta-)schema to do so.

Conclusion
1. It should be possible to identify keywords that affect validation, and ignore keywords

unrelated to validation, by following the media type.

2. For validation purposes, an unknown keyword and unknown/invalid arguments are the
same class of exception: the schema author is asking for validation behavior not known to
the validator.

3. Features should deployed on a granular level. If two schemas need the same behavior
(“test the instance is a string”), the “same” keyword should express this.

2. Required Implementation Behavior
A schema should be just self-descriptive enough that a validator "knows what it doesn’t know."
It should be possible to distinguish keywords that perform validation from those that don’t, and
to distinguish validation keywords it knows from those it doesn’t. Keywords that may impact
validation, but whose exact behavior is not known to the validator, must not return valid or
invalid; for graceful degradation, these must cause an indeterminate result.

Keywords may be defined by a variety of sources—in the core functionality, the semantics of
the $schema keyword, a registry, or out-of-band. In the case of the $schema keyword, as a
“control keyword”, it can potentially “redefine” other keywords with newer or different
meanings.

However to start, let’s define the base case behavior, starting with the semantics of minimal
schemas.

Reading the Schema

This section restates how schemas already work, but in slightly more formal
terms; and specifies that unknown properties are different than validation
keywords.

Fundamentally, a schema describes a valid set and an invalid set of JSON instances. A schema
may describe other data, too (providing annotations for an instance, or schema metadata).

These sets are enumerated by assertions: functions whose input is a JSON document, and
whose output is accepting/rejecting (or valid/invalid). The valid set and invalid set are defined
as the inverse of the assertion function: the “valid set” consists of all instances that the
assertion accepts; and the “invalid set” consists of all instances that the assertion rejects.

Assertions have the same function signature as state machines, and the same operators
(union, intersection, difference, symmetric difference, concatenation, and brzozowski derivative
all apply). However, they may be arbitrarily computationally expensive .
1

Decoding the assertion from the schema begins by parsing the JSON.

• If the schema is the boolean “true”, this represents a single assertion that accepts; i.e. the
set of all JSON documents.

• If the schema is the boolean “false”, this represents a single assertion that rejects; i.e. the
empty set.

• If the schema is an object, this represents the intersection of any number of assertions, each
encoded as a keyword. (The intersection of zero assertions is permitted, which is the
complete set of JSON documents.)

• The behavior of any other type (null, string, number, array) is reserved.

 Assertions may even be turing-complete, though the handling of an assertion that never 1

returns is outside the scope of this document.

Keywords are notated using properties in an object. A keyword consists of one property whose
key is the keyword name, and whose value is the keyword argument, a value within a domain of
values expected for the keyword; and any number of other properties in the same object, the
sibling arguments, whose names and domains are associated with the keyword. These
arguments completely define the validation behavior of the assertion; they are bound to the
keyword (i.e. curried) to produce the assertion.

Arguments may have a domain. For example, the “minimum” keyword is only defined over
numbers. Therefore, {“minimum”: “foo”} will not be recognized as the “minimum”
keyword. (It may be technically possible to define two keywords with the same name, if the
domain of their arguments do not overlap. But this is practically the same as one keyword that
accepts both domains.)

In order to separate “assertions-producing” properties from other properties, the validator
iterates over each of the properties in the object and categorizes them into one of four
categories:

1. Control keywords are properties that potentially effect how the rest of the schema is read.
They may indicate behavior that's defined in a new version of JSON Schema, change
features available, or how other properties are categorized. “$” keywords often fall into this
category.

2. Validation keywords are properties that encode an assertion; they exclude JSON
documents from the valid set, depending on their arguments (the keyword argument or
sibling arguments). Sibling arguments may be validation keywords, or argument keywords.

3. Argument keywords are properties that are read and used by a sibling validation keyword,
but do not validate instances by themselves. They are defined only in the presence of a
validation keyword that reads them, which means it is invalid to list an argument keyword
by itself. It is also invalid for two validation keywords to read an argument keyword for
different purposes. They are read from the same object (a sibling property) and do not cross
schema/object boundaries.

4. Non-validation keywords are properties that do not directly play a part in validating
instances, although they may hold schemas used indirectly for validation, or produce
annotation results that affect the end application. These includes the annotation-only
keywords.

Note how some validation keywords might also be arguments to another keyword; these
properties are “arguments” and “sibling arguments”—but with respect to these categories,
they are not “argument keywords.” For example, “patternProperties” is a validation keyword,
and also an argument to “additionalProperties”.

Schemas with unknown properties (properties not known to fall into any category) are called
incomplete. Since incomplete schemas have some amount of unknown behavior, they cannot
be used to compute closed sets of JSON documents. Validators attempting to use an
incomplete schema may emit an error.

The open set of valid instances

This adds the concept of “open sets” and “closed sets” of JSON documents,
which are differently useful in different situations.

Normally, assertions have a domain of all JSON instances. But in a validator, assertions may
only be defined over a subset of JSON instances, including none at all. Assertions that are not
defined over all JSON instances are called incomplete. This usually happens because a
subschema in an argument is itself incomplete.

When a schema is incomplete (it contains an unknown keyword), then “closed” (exhaustive)
sets of instances cannot be computed. In category theory terms: an assertion is incomplete
when the image of its inverse is a strict subset of the set of JSON documents.

However, sophisticated validators may still describe an open set of instances: a set of known
valid instances, but not necessarily all of the instances that the schema intended. This allows a
sophisticated validator to return valid, invalid, or indeterminate, depending on the instance.

For example, given the schema:

{ type: “object”, properties: { “foo”: {comprehensibility: 10} } }

So long as an object does not contain the “foo” property, a sophisticated validator could
determine it is valid. However objects that do contain “foo” would be outside the domain of the
assertion, so attempts to validate these instances would be indeterminate: they might be valid
or invalid, pending the definition of the “comprehensibility” keyword.

Validators are not required to support open sets; if the schema uses keywords outside of the
required keywords (see below), they may simply error.

Strict/non-strict modes
The handling of valid instances differently from incomplete schemas may be referred to as
"strict handling." Most authors will immediately benefit from strict handling: there’s not a need
to write schemas with unknown properties, these are usually typos.

However strict handling may break a small number of 3rd party schemas that invented property
names for various reasons (comments, or making a place for named subschemas). The
introduction of a feature flag can keep reverse compatibility these cases:

• In non-strict mode, any properties that are unknown are reclassified as argument keywords.
(Or non-validation keywords.)

The following rollout is recommended for validator packages:

1. A new minor (feature) release of the package should add a “test strict” function that tests if
the schema is “complete” and how properties in the schemas were categorized; and an
option to enable strict handling. Applications can then opt-into strict mode and handle
invalid schemas appropriately.

2. The next major (breaking) release of the package enables strict mode by default.

"Non-strict" schemas are easily fixed by renaming invented keywords to use the standard
keyword name for their purpose. This change keeps compatibility with the original validator it
was written for, too.

Schemas that require strict validators may use the errorAssert keyword (see below).

Required Keywords
Certain keywords MUST be implemented to claim “JSON Schema” compatibility, particularly
enough to fully support “structural validation.”

Authors can rely on these keywords to do all the same things they could do with ABNF, and be
confident that it will accept/reject without error. This is an important guarantee for standards
specifications wishing to describe JSON using JSON Schema.

(For software packages that use JSON Schema features but don’t need these keywords,
because of cost or lack of need, we can invent a generic name, e.g. JSON meta-framework.)

Within the category of validation keywords, there’s a few subclasses: context-free “structural”
validation keywords, and error handling “greasing” keywords.

Required Control Keywords
Control keywords are used to configure certain aspects of schema authoring (especially URI
references), or declare/import extensions to the required JSON Schema behavior.

Control keywords can potentially affect each other.

$id
This keyword changes the base URI within the rest of the schema, that URI References are
resolved against; and it provides a “self” link relation that other schemas (even subschemas in
the same document) may use.

If it is itself a URI Reference, this is resolved against the schema/document base URI (as
specified in RFC3986: the base URI of the parent schema, if any, or the URI that the document
was retrieved from, if any; or else an application-specific URI).

And it is only defined when the resolved URI is “absolute” i.e. “fragmentless” (as is required in
an HTTP request).

$anchor
This keyword names a schema so that it may be referenced in a fragment identifier. It is similar
to the id= attribute in HTML.

Required Structural Validation Keywords
The required keywords include all the structural validation keywords: all the keywords
necessary to describe any context-free grammar that’s valid JSON and where two semantically
identical documents are not distinguished (e.g. whitespace differences, or escaped characters
in strings).

By defining “structural validation” this way, we can objectively verify that the
builtin set of core functionality is comprehensive and is unlikely to need changes
in order to accommodate some unforeseen use case.

By limiting structural validation to context-free grammars, validators can evaluate instances in
O(m) time, by using a non-deterministic pushdown automaton, or even a regular expression.

• type, allOf, anyOf, oneOf, someOf, const, enum, assert

• minimum, exclusiveMinimum, maximum, exclusiveMaximum, multipleOf

• pattern, minLength, maxLength

• items, prefixItems, concat, repeatMin, repeatMax

• properties, patternProperties, additionalProperties, required

• $ref

Notes for some of these keywords:

$ref
Only defined for values that resolve to URIs known to the validator.

assert
Argument is a subschema. Accepts iff the subschema accepts the instance. This is a terse
alternative to { allOf: [subschema] }.

concat
Argument is an array of subschemas. Accepts arrays iff there is any way to split the instance
into segments (one per subschema), such that subschema accepts the corresponding
segment. It is required to describe some types of regular array patterns.

someOf
Argument is an array of subschemas. Accepts when one or more of its subschemas accepts
the instance. It is required to describe some types of regular array patterns.

repeatMin, repeatMax
Required for describing repeating patterns of items within a single array.

Required Greasing Validation Keywords

This introduces new keywords not used for any validation purpose, but that verify
implementations are compliant with the spec. They must exist in all compliant
implementations, otherwise they would lose their usefulness.

Three “validation” keywords are defined that validate the sub-schema against the instance, but
may discard the validation result, and instead act on the error result.

Note that these keywords could cause a validator to legitimately accept or reject an instance,
depending on the functionality it supports. This is acceptable in this case because that’s the
author’s intention.

errorTry
The “errorTry” keyword applies the subschema to the instance, except if there is an
indeterminate result, it instead uses the result of the subschema in “errorCatch” (or a valid
result, if this is not defined).

This keyword can force all of the unknown properties within the subschema to be ignored:

{errorTry: subschema}

There may need to be two variations of this keyword; one that handles an
indeterminate result, and another that runs the assertion in “non-strict” mode.
These may be slightly different if a validator doesn’t attempt to validate
incomplete schemas. (See “open set” above.)

errorCatch
This indicates a schema that will be validated only if the subschema in the “errorTry” keyword
cannot be evaluated. Its default value is empty: if no errorCatch is provided, then errorTry
catches all errors.

This keyword may be used of force errors to instead return invalid:

{errorTry: subschema, errorCatch: false}

errorAssert
This keyword “asserts” that a schema is incomplete. It accepts any value, then attempts to
read the argument as a sub-schema, and rejects if the sub-schema is complete (a valid
schema).

In conjunction with the “not” keyword, it can be used to test that valid results only come from
validators that implement strict keyword handling:

{ not: { errorAssert: { errorThrow: true } } }

Placing this in a schema is an effective way of preventing obsolete JSON Schema validators
from saying that an invalid instance is actually valid. (Which is typically preferable to a validator
accepting what’s actually an invalid instance.)

errorThrow
This keyword is undefined but reserved, for the purpose of testing what implementations do
when encountering an unknown keyword.

Identifying Annotation Keywords
To maximize forward compatibility, there has to be a way to indicate that a keyword has no
effect on validation, so that new annotation keywords that the validator doesn’t understand
doesn’t interfere in its validation result.

The simplest way to do this is to introduce a naming scheme, much like the $ prefix does.

So, annotation keywords are any keywords known to be annotation keywords, or any keyword
prefixed with an “@“. You can think of it as meaning “annotation,” or like the @ error
suppression operator in PHP.

When any keyword is prefixed with an “@“, this suppresses the assertion (and the validation
result). Annotation-only keywords should use an “@“ so that validators that don’t implement
the keyword will not error.

Usage with validation keywords
It’s occasionally handy with validation keywords too. For example, “@oneOf”:

{ “@oneOf”: [ 
	 { “required”: [“label”], “@description”: “Human-readable
title” }, 
	 { “required”: [“tag”], “@description”: “Machine-readable
title” }, 
] }

This schema has the effect of producing one description or another, or potentially no
description at all, in which case the oneOf will still accept.

“format”
Likewise, “@format” would unambiguously be an annotation keyword; the “format” keyword
would make sense as a validation keyword that errors if the argument is not understood.

{ “format”: “http://example.com/postal-tracking-no” } 
// indeterminate: error: unknown format

{ “@format”: “http://example.com/postal-tracking-no” } 
// valid

(If making “format” a validation keyword again is too much to bear, consider introducing
“stringFormat” and “numberFormat” keywords that only apply to strings and numbers,
respectively.)

Note “format” makes sense as an extension, not a core/required keyword (see “Formats”
below for rationale).

Other Non-Validation Keywords
This subcategory includes keywords that don’t perform validation and don’t produce
annotations. They usually provide a place to store some value or schema when there’s no other
good place to.

$defs, definitions
A key-value map of schemas. They are not applied to the instance by this keyword, however
since their values are understood as a schema, they may be referenced elsewhere in the
document from $ref.

$comment
An arbitrary value, for discussing how the schema is written (rather than the meaning of
instances)

Meta-schemas
Validators may describe the range of behavior that they implement in the form of a meta-
schema. The valid set of a meta-schema represents the schemas that a specific validator is
able to produce closed sets for.

This set of schemas is not necessarily closed; if the validator supports processing open sets, it
may be possible to write schemas that use unknown keywords that can still be processed by
the validator.

For example, this schema accepts all instances, but are not likely found in any validator’s set of
valid schemas:

{ “$defs”: 
 “foo”: {$anchor: “foo”, comprehensibility: 10} 
}

It is possible for an application to statically analyze this schema and determine that it is
complete, but no combination of currently known keywords can do this. The validator would
have to walk the keywords from the root, and look for $ref keywords, then dereference and
recursively walk them.

3. Evolving the JSON Schema Standards
This considers how updates to JSON Schema might be published, that don’t impose
requirements on validators.

Core Semantics
The core semantics would be published in a single media type specification. It contains the
bare minimum rules that must be implemented for validators to not produce inaccurate results,
regardless of future revisions or extensions.

• The core mechanic: A schema describes a closed set of JSON documents

• The ability to use a JSON Schema to produce an open set of JSON documents

• The definition of validation, assertions, and keywords

• Detecting extensions and experiments

• (Maybe) The definition of annotations, and their relationship to resources & profiles

• Minimum required validation functionality

• The media type definition, including fragment identifiers

• A standard keyword/extension registry

Revisions to Core Semantics
Revisions to the core semantics document should be infrequent, usually just to update best
practices. Small changes that don’t impact validators or interoperability may be held as errata.

Behavior/semantics changes are possible, but reverse compatibility must be supported.
Updates would completely replace the old document, and would have to be backwards
compatible with it.

Standard Extensions

Standard extensions are features that are used in multiple different environments, and so
should be written in a standard way. The extensions in section 4. Standard Extensions in
particular will be so ubiquitous that they should be considered essential, only excepting one or
two niche cases.

There would be a registry of keywords, which lists the standard keywords and points to the
document that defines them.

Revisions to standard extensions
Published extensions may be revised to add keywords, or expand the range of legal arguments
to a keyword. These types of changes will not break schemas in the wild.

Changing the behavior of already-published keywords may be done in two situations, with
great care: either the behavior not used in the wild, or the official behavior is so undesirable or
inconsistent, that it’s just easier to change the standard definition to match what's seen in the
wild.

A control keyword could technically work as a way to change how an existing keyword
behaves. However, it is usually simpler and more straightforward to copy & rename the
keyword, rather than introduce a control keyword.

User Extensions
User extensions are extensions to a schema that are not standardized. It may be a one-off
experiment by a single party, or a use so niche that there’s no benefit to standardization.

These keywords are written as a URI:

{ 
 “http://example.com/kw/comprehensibility”: 10 
}

Despite the naming scheme, they are handled the same way by validators. Validators do not
make a distinction between standard extensions and user extensions.

Todo: there should be a way to declare two keywords have the same behavior, in case a user
keyword is standardized with a different name.

Test Suites
Tests should be developed and published per specification document, even historical ones.
This allows tracking of how features evolve over publications, and testing compatibility with
historical publications together at the same time.

4. Standard Extensions
This section lists a number of RECOMMENDED extensions that provide useful features in a
standard fashion, but that are not always applicable to all environments. (Usually this means
environments with constrained memory usage, applications requiring performance guarantees,
or handling schemas written by untrusted parties.)

$schema
The $schema keyword provides a way to to import a common “dialect” of keywords. The
argument is a URI specifying how to (re)define the semantics of all non “$” keywords, even for
keywords that otherwise would have a different definition. (And in very special cases, even
some “$” keywords.)

Whenever meta-schemas are used to validate schemas, they merely describe the
behavior that a specific validator understands. Asserting that a schema conforms
to a meta-schema will necessarily make that schema less interoperable!

The rule that a validator must completely understand the validation behavior still applies by
default, though this too may have exceptions.

Note the meta-schema is not the final authority in the validity of a schema, there
may still be application-level errors. For example, unknown keywords in a
schema may be best implemented as an application error, rather than in the
meta-schema; however see the Academic Notes section.

The referenced resource does not necessarily need to be a JSON Schema, it may be any
resource that provides these same semantics.

This keyword could also be defined to be strictly descriptive (as originally
defined) but it’s unlikely that would be more useful. An “@schema” keyword
could do that.

The “$” keywords are also called “core keywords” but I would like to suggest
calling them “system keywords”. I’ve avoided both terms in this document.

“$schema” is only defined over arguments whose URI is meaningful to the validator, so if an
unknown value is passed in, this would stop validation. This means that if the $schema
keyword is not strictly necessary for ensuring correct validation behavior, an annotation-only
variation should be used instead.

$vocabulary
This is technically an extension to the $schema keyword.

This will read the meta-schema referenced by that $schema keyword, and selectively enable
extensions depending on the contents of $vocabulary in that meta-schema.

unevaluatedProperties
This it is not included in the required set, because it’s not immediately apparent if it actually
enables new kinds of validation, or if it’s just an authoring convenience for what is already
possible.

uniqueItems
This is a way to verify that an array represents a set with only unique items; no two items are
identical.

It is excluded from the required set because it cannot be evaluated in better than O(m²) time or
or O(m) memory (m = size of instance).

Formats
“format” applies an arbitrary rule to the instance.

It accepts a format name in its keyword argument, and is only defined over format names
known to the validator, meaning that unknown arguments will raise an error.

User formats could be specified by passing a URI; how to validate a user format could be
specified as a regular expression or function, passed out-of-band to the validator.

If validation is not needed, use “@format” to suppress validation, but keep the other semantics
and annotations.

Annotations
The behavior of annotation keywords as a whole, as well as the standard meaning of individual
annotations, may be defined as an extension. This is because almost all support for
annotations can be determined from the validation result. (If a validator doesn’t support an
annotation as used in a schema, it will usually be obvious to the consuming application.)

• title

• description

• default

• deprecated

• readOnly

• writeOnly

• examples

5. Obsolete Behavior Compatibility
This section lists a number of OPTIONAL extensions that validators may implement, to maximize
backwards compatibility with schemas “in the wild”: those written according to previous drafts
or popular nonstandard extensions, that would otherwise be incomplete.

Typically, when there’s a mechanism to do so, validators should generate a deprecation
warning indicating that the schema is not interoperable.

These extensions are “optional” because there is no interoperability benefit to saying
“recommended”. The benefit, if any, is only to the implementation supporting it; there is little
negative externality being avoided by using “recommended”.

Implementing all of these should preserve backwards compatibility for schemas since draft-03.

Special cases of $schema
$schema may define special behaviors for previously published meta-schemas, when the
extensions below do not suffice.

Boolean exclusiveMinimum/exclusiveMaximum
If the schema matches:

requiredProperties: { 
	 “minimum”: { type: “number” }, 
	 “exclusiveMinimum”: { type: “boolean” } 
}

Then “minimum” is an alias for “exclusiveMinimum”.

This same pattern also applies to “maximum”.

Boolean “required”
When used within a subschema of the “properties” keyword, this is the same as listing the
name of the respective property in the “required” keyword that is sibling to “properties”.

“divisibleBy”
An alias for “multipleOf”.

Only defined if “multipleOf” is not used.

“disallow”
Reject if the instance is one of the types listed in the argument. Operates similar to “type”.

“extends”
I don't know what this was ever intending to do. Apparently it works like $ref but isn’t the same
thing.

“dependencies”
This may be an alias for “dependentSchemas" or “dependentRequired” depending on the
argument.

Only defined if “dependentSchemas” and “dependentRequired” are both not used.

“id”
An alias for “$id”.

Only defined if “$id” is not used. (This means both “id” and “$id” in the same schema is
undefined.)

Fragment in “$id”
The “$id” keyword is undefined for values that resolve to a fragment URI; this extension defines
that behavior.

An alias for $id and $anchor, split at the first “#” character.

(Tests: write a test for {“id”: “foo.json#bar#2”} the extra “#” character may not match
the anchor-name syntax, though it is a legal URI.)

6. Notes and Observations

A keyword for strict handling of unknown properties?
This extension model may seem to have much in common with
{“additionalProperties”: false}, or {unevaluatedProperties: false},
although frustratingly, it is not exactly the same thing.

This extension model is more akin to saying “There should be some set of (zero or more) JSON
Schemas that together annotate every property in the schema, and if there’s not, that’s an
error.” No schema by itself errors on an unknown property, the lack of ability to parse a portion
of the JSON document does.

The “unevaluatedProperties” keyword may actually be suitable (I need to double-check), but it
may also may not be generic enough: We may know a keyword’s role in annotations but not its
role in validation, and unevaluatedProperties cannot distinguish between these cases.

There is also no easy way to describe recursion; the “required” keywords may be described as
a meta-schema, but anything more complicated than this means that each validator has its
own meta-schema that describes the behavior it implements.

Meta-schemas describe the behavior that a validator implements, which is not
necessarily the behavior that the schema is using.

There ought to be a way to list multiple JSON Schemas, instead of taking the union
(alternation) of the objects as a whole (“an object with a ‘foo’ keyword, or a ‘bar’ keyword”),
you take the union of their properties.

“There exists some set derivative objects (one per subschema) where every property in the
instance is assigned to one of the derivative objects, such that every derivative object is valid
against a different sub-schema.”

Example:

A.json:

{ properties: { 
	 “foo”: { type: “string” }, 
 	 “bar”: { type: “string” }, 
}

B.json:

{ properties: { 
	 “foo”: { type: “number” }, 
 	 “bar”: { type: “number” }, 
}

 
allOf A.json, B.json: “foo” or “bar” always invalid 
anyOf A.json, B.json: “foo” and “bar” must both the same type 
union A.json, B.json: “foo” or “bar” may each be a number or string

This “union” keyword may more completely solve the problem that “unevaluatedProperties”
was trying to solve.

Two remaining backwards compatibility cases
I’m aware of only two remaining cases that’s not addressed elsewhere in this document.

First is $ref. Properties in any schema containing the $ref keyword were at one time supposed
to be ignored, and the contents of the target substituted in. This was changed because this
rule was widely ignored, and it was easier to make $ref a regular keyword like all the others,
and this makes more sense anyways. It is also unlikely that schemas put validation keywords
next to $ref and expected these to be ignored.

Second is “integer”. At one point it did not permit a decimal point, now it refers to
“mathematical” integers which may. If the idea was that JSON should have separate types for
floats and integers, then they should not overlap, but they did (“number” includes “integer”).
And you can’t forget about the scientific notation format, which has an “e”. Overall this was
never implemented consistently and was never interoperable. Of the implementations that
depend on integers not having a decimal point, very few of them probably read instances that
provide a decimal number. The few implementations that need to prohibit or permit decimal
points should use “numberFormat”.

Set operations on assertions
Up to now most validators assume that an “assertion that is always valid” is the same as “no
assertion” or ignoring the assertion.

This assumption only holds for the intersection operation.

JSON Schema doesn’t use any operations besides intersection, but it’s plausible that union,
difference, etc could become useful, in which case this assumption may no longer hold.

Annotating API keywords?
The $vocabulary keyword is solving a problem highly related to those seen in other APIs. It, or
a similar keyword, ought to be able to specify the semantics of any JSON property, without
specifying its format, validation, or anything else about it. This could be an annotation-only
version of $ref (“@ref” ? “@$ref” ?) or format (or “@format”).

Post-parsing validation

Most applications don’t care about how the JSON document is actually encoded—they care
about how the application reads the data.

For example, expressing that the number will be converted to a float64, and that number must
be a whole number within Number.MAX_SAFE_INTEGER.

This is probably outside the scope of this interoperability scheme, but it could be, is still related
to interoperability in a sense.

The multiple uses of $schema
This keyword has historically been used for many different uses:

1. A schema annotates the definitions of keywords for authoring convenience.

2. A validator declares the schemas that it is compatible with.

3. A schema declares the minimum functionality it requires to work.

4. A schema internally asserts it is using keywords correctly, to catch authoring errors.

5. Import a dialect that replaces the definitions of keywords.

Of these, uses 1-4 are accomplished by other mechanisms in this paper, so the use of
$schema is reduced in scope to use 5 (importing a dialect).

Supersets of the JSON data model
This is technically outside the scope of JSON Schema, but maybe some thought could be
given to handling supersets of JSON Schema. If you were to write a program that compiled a
JSON Schema into an ABNF that consumes CBOR—how would that work? Could you have
CBOR-specific keywords?

This is especially necessary because most implementations validate native memory structures
and not raw JSON—meaning things like NaN, undefined, and recursive pointers and loops
can appear and cause unexpected results.

	1. Functional Requirements
	2. Required Implementation Behavior
	3. Evolving the JSON Schema Standards
	4. Standard Extensions
	5. Obsolete Behavior Compatibility
	6. Notes and Observations

