
JSON Schema: Use Cases and Requirements

Abstract
To foster development of JSON Schema, this document contains a list of use cases and
requirements that may be used to inform its development and evolution.

Note to Readers
The issues list for this document can be found at

.

For additional information, see .

To provide feedback, use this issue tracker, the communication methods listed on the
homepage, or email the document editors.

Workgroup:
Author:

JSON Schema
 A. Wright, Ed.

https://github.com/json-schema-org/json-
schema-spec/issues

https://json-schema.org/

Table of Contents
1. Scope and Motivation

2. Conventions and Terminology

3. Objectives

3.1. Validation

3.2. Annotation

3.3. Internet

3.4. Out of scope

4. Use Cases

4.1. Structural validation

4.2. Semantic annotation

4.3. Domain-specific language

4.4. A common vocabulary

4.5. Model-Driven UI constraints

4.6. Fuzzing, enumeration, and generation

Wright Informational Page 1

https://github.com/json-schema-org/json-schema-spec/issues
https://github.com/json-schema-org/json-schema-spec/issues
https://json-schema.org/

1. Scope and Motivation
JSON Schema is a JSON media type for defining the structure of JSON data. JSON Schema
is intended to define validation, documentation, hyperlink navigation, and interaction
control of JSON data.

This document elaborates in detail what this means, and the specific use cases that shall
be supported.

2. Conventions and Terminology
Objectives specify the class of problems that are in the scope of the specification.

Use Cases catalog a variety of personal objectives that users may have, due to various
motivations and constraints, that the specification shall accommodate, but without
proscribing a specific design or implementation.

Requirements list functional, non-functional, and quality requirements, the use cases they
may be derived from/related to, and reference how each use case is implemented.
Requirements are not detailed at this time but may be specified in the future.

4.7. Embedded database constraints

4.8. Partial validation

4.9. Machine-readable profiles of Web resources

4.10. Hypermedia

4.11. Results and Reporting

4.12. Extension points

4.13. External validation

4.14. Intra-document data consistency validation

4.15. Inter-database consistency validation

4.16. Linting

5. Security Considerations

6. Informative References

Author's Address

JSON Schema February 2023

Wright Informational Page 2

3. Objectives
JSON Schema shall be built to support the following objectives, supporting expansion into
uses not currently described by any use case, but which fall within the objectives.

3.1. Validation

The first objective of JSON Schema is to describe sets of JSON documents; specifically, to
notate a language of JSON documents using a machine-readable, set-builder notation. This
covers the key use case of validating input using a validator, as well as numerous other
tools that depend on describing to each other which kinds of JSON documents are and are
not acceptable.

3.2. Annotation

The second objective of JSON Schema is to map an input JSON document to an arbitrary
output described by the user. Annotations may be combined with validation (in the same
schema) to specify the domain of inputs for which an output is defined. This covers the key
use case of documenting the meaning of properties and values in JSON documents, and
other uses where the input document is being interpreted in some fashion.

3.3. Internet

JSON is a technology standardized as a part of a larger ecosystem of Internet technology,
and likewise, JSON Schema may also specify its role in this ecosystem; for example, use
in HTTP, or the meaning of media type parameters.

3.4. Out of scope

Use cases or requirements that do not advance these objectives are likely out of scope,
and better suited in separate work that references JSON Schema.

For example, a method of describing an API interface would exceed the scope of JSON
Schema, although JSON Schema may be used as a part of such a description, such as
when the API is using JSON and needs a way to describe these JSON documents.

4. Use Cases
JSON Schema shall written to standardize these use cases, or shall accommodate
implementations targeted at these uses.

4.1. Structural validation

Structural validation refers to the "structure" that a JSON document is supposed to follow,
such as which properties must exist, what types of values are expected where, and what
they must look like. Constraints cannot read values elsewhere in the document (e.g. to
compare two values for equality), though constraints may depend on "where" the value is
found (e.g. specific properties or array items must be a number).

JSON Schema February 2023

Wright Informational Page 3

4.3. Domain-specific language

Developers may write an application that uses a JSON Schema internally as a domain-
specific language, so that the schema is only used inside a single application by a single
party. By using a declarative language, the application requirements can be optimized
better than a human could do.

More specifically, structural validation is any validation that can be performed with a
context-free grammar that follows JSON semantics, such that any forms that are equal
according to JSON will produce the same result.

Validators that support structural validation can entirely replace generic grammar
languages such as , and will guarantee compliance with JSON semantics.
Likewise, schemas whose validation rules are limited to structural validation can be
executed using a deterministic pushdown automata, guaranteeing a result in proportional
time without error.

The following features of JSON are structural validation:

JSON primitive type (string, object, etc)

Minimum or maximum in a linear range of values

Minimum or maximum lengths (number of characters, digits, items, or properties)

Literal/constant values or alternate/enumerated values

Pattern matching strings by a regular expression (including object keys)

Logic operators (union, intersection, difference)

Descent into object properties and array items (recursively)

Multiple forms that are value-equal according to JSON are not distinguishable under this
use-case. This includes the ordering of properties in an object, character escapes in
strings, and whitespace.

ABNF [RFC5234]

4.2. Semantic annotation

There is a need to annotate values within a JSON document: for machine readability, and
for documentation purposes. Given a document and directions for annotating it, you should
should be able to:

document the meaning of a property,

suggest a default value for new documents of a given type,

fill in missing values (in objects or arrays) with values of equivalent meaning,

generate a list of hyperlinks,

or declare relationships between data.

A schema may be used to describe a machine-readable of JSON
document. Even when two schemas identify the same set of JSON documents; depending
on the context, a given JSON document may be a profile of one but not the other.

profile [RFC6906]

JSON Schema February 2023

Wright Informational Page 4

Application authors may use a schema to define custom hooks and processing for the JSON
(without need for standardizing the customization).

The only interoperability consideration here is that updates to the validator library must
not change the validation result of any JSON documents, unless the developer specifically
opts into such a breaking change (e.g. by upgrading the library to a new major version
number).

4.4. A common vocabulary

A development team maintains two similar applications, but for different platforms, in
different languages. The application downloads and reads from a common repository of
JSON documents. They want to make sure that both applications accept or reject JSON
with identical behavior, so they write a single JSON Schema and deploy it to both
applications.

The only interoperability consideration here is that the two applications, given the same
schema, must both be reasonably expected to support the same behavior and operate in
the same manner.

4.5. Model-Driven UI constraints

When a server declares constraints that a submission must meet, there is a need for the
user interface to receive these constraints to provide model-driven validation of
permissible values, making the form more accessible to the user.

For example, if a value is specified to be a date, the form field where the value is specified
can provide immediate feedback if an invalid date is entered, and even offer a date picker
to help the user input a correct value.

Weak interoperability requirements can hamper the user experience within this use case.
If the schema is ambiguous in any way, or is up to the discretion of the customer's user-
agent, some customers may have a difficult time submitting a correct request.

4.6. Fuzzing, enumeration, and generation

Security applications need to generate examples of JSON documents within the valid set,
and outside the valid set.

4.7. Embedded database constraints

A database that uses JSON may need a way to declare, enforce, or guarantee certain
constraints on the JSON document being stored. The database may also use JSON Schema
as a way to annotate certain fields as having a special meaning for uniqueness or indexing
purposes.

JSON Schema February 2023

Wright Informational Page 5

4.9. Machine-readable profiles of Web resources

A Web server that offers a JSON document should be able to link to a profile document
that describes the meaning of the data in a machine-readable form.

4.10. Hypermedia

Generic user-agents must be able to make use of the schema as it evolves, including Web
browsers, spiders, and automated tooling. It should support loose coupling (like an HTML
homepage); so a schema should be able to change, add, and remove features with
minimal breakage for compatible clients.

4.11. Results and Reporting

The party that is providing the schema and input may not be the same party that is
performing the validation; in this case, there should be a standard way to abstract away
the validator interface, and report the results of a validation operation (validation result,
annotations, and errors).

4.8. Partial validation

Due to technical limitations, some JSON parsers may only be able to understand a subset
of the JSON value space, and it makes sense to validate the value read by the application,
instead of the JSON document provided to the JSON parser. For example:

• Many JSON parsers cast the arbitrary-precision decimal numbers to an IEEE floating
point, validating the number after it has lost some precision.

• Some programming languages cannot distinguish between an ordered array of values
and a key-value map; or an empty array is identical to an empty object.

• Other validators may have a limited amount of memory and cannot support assertions
more complicated than a deterministic context-free grammar.

Users of these validators need a way to determine if the missing functionality is essential
to correctly validating input, and if not, get a validation result that would be correct but-for
the unimplemented functionality.

This should work both ways; an application should be able to use a third-party schema and
understand if the assertions go beyond what the environment supports; and an application
should be able to publish a schema that is compatible with the subset of the value space
that it supports. Consider if these are separate use cases.

4.12. Extension points

Not every feature needs to be supported by every implementation. To accommodate a wide
variety of niche audiences, it should be possible to specify features that are optional to
implement. This includes standardized features that are optional to implement, bespoke or
user-defined features that are not standardized, and new features added to future
publications of the specification. For forward compatibility, implementations that do not
support optional extensions must degrade in a predictable fashion.

JSON Schema February 2023

Wright Informational Page 6

[RFC5234]

4.13. External validation

Authors may embed resources of other media types, such as text documents, or base64 or
hex-encoded binary documents; and may wish to pass off validation of these documents to
another software tool.

4.14. Intra-document data consistency validation

A JSON document may carry relational data that must be internally consistent. Example
constraints include:

• One-to-one calculations, like that children's birthdates come after their parent's
birthdates;

• One-to-many calculations, like a reference to an anchor points to an anchor defined
somewhere in the same document.

4.15. Inter-database consistency validation

A JSON document may carry relational data that must be verified against outside data
sources. Example constraints include:

• References to a user ID points to a user in a central users database.
• A supplied email address has been verified by the user.

4.16. Linting

Sometimes it's desirable to require formatting that does not impact the application-level
meaning of the document, but instead specifies requirements purely for aesthetic or
compatibility reasons.

For example, for security reasons, an application may want to verify a JSON document
does not contain the string "</script" but is written instead with a character escape such
as "<\/script". This would ensure that, if the JSON were to be embedded in a <script>
tag, it could not close the tag and be interpreted as HTML.

This is not a standard part of JSON Schema because it may violate the semantics of JSON,
by adding an ability to distinguish between encodings which are supposed to be equal to
receiving applications.

6. Informative References

 and ,
, , , , January 2008,

.

5. Security Considerations
This document does not make any normative requirements.

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

JSON Schema February 2023

Wright Informational Page 7

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234

[RFC6906] , , ,
, March 2013, .

Wilde, E. "The 'profile' Link Relation Type" RFC 6906 DOI 10.17487/
RFC6906 <https://www.rfc-editor.org/info/rfc6906>

Author's Address

Austin Wright ()editor
 aaa@bzfx.net Email:

JSON Schema February 2023

Wright Informational Page 8

https://www.rfc-editor.org/info/rfc6906
mailto:aaa@bzfx.net

	JSON Schema: Use Cases and Requirements
	Abstract
	Note to Readers
	Table of Contents
	1. Scope and Motivation
	2. Conventions and Terminology
	3. Objectives
	3.1. Validation
	3.2. Annotation
	3.3. Internet
	3.4. Out of scope

	4. Use Cases
	4.1. Structural validation
	4.2. Semantic annotation
	4.3. Domain-specific language
	4.4. A common vocabulary
	4.5. Model-Driven UI constraints
	4.6. Fuzzing, enumeration, and generation
	4.7. Embedded database constraints
	4.8. Partial validation
	4.9. Machine-readable profiles of Web resources
	4.10. Hypermedia
	4.11. Results and Reporting
	4.12. Extension points
	4.13. External validation
	4.14. Intra-document data consistency validation
	4.15. Inter-database consistency validation
	4.16. Linting

	5. Security Considerations
	6. Informative References
	Author's Address

