Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

requirements: update matplotlib requirement from <3.7.6 to <3.9.4 #520

Closed
wants to merge 1 commit into from

Conversation

dependabot[bot]
Copy link

@dependabot dependabot bot commented on behalf of github Dec 2, 2024

Updates the requirements on matplotlib to permit the latest version.

Release notes

Sourced from matplotlib's releases.

REL: 3.9.3

This is the third bugfix release of the 3.9.x series.

This release contains several bug-fixes and adjustments:

  • Fix axline with extremely small slopes
  • Fix axline with non-linear axis scales
  • Fix minimumSizeHint with Qt backend
  • Fix config directory usage when it's behind a symlink
  • Fix draggable legend when blitting is enabled
  • Fix high CPU utilization in the macosx backend
  • Fix multiple hatch edgecolors passed to contourf
  • Improve compatibility with pytest 8.2.0
Commits
  • 3ac0aea REL: 3.9.3
  • 3f7adbd Merge branch 'v3.9.2-doc' into v3.9.x
  • 4ca8d68 DOC: Create release notes for 3.9.3
  • 0cabfe2 Merge pull request #29195 from meeseeksmachine/auto-backport-of-pr-29191-on-v...
  • 562d458 Backport PR #29191: ci: Simplify 3.13t test setup
  • 0586854 Merge pull request #29176 from meeseeksmachine/auto-backport-of-pr-29148-on-v...
  • 84f2ae2 Merge pull request #29178 from meeseeksmachine/auto-backport-of-pr-29163-on-v...
  • dd57772 Backport PR #29163: ci: Remove outdated pkg-config package on macOS
  • c4bfd54 Backport PR #29148: Don't fail on equal-but-differently-named cmaps in qt fig...
  • d71ff49 Backport PR #29153: Bump codecov/codecov-action from 4 to 5 in the actions gr...
  • Additional commits viewable in compare view

You can trigger a rebase of this PR by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Updates the requirements on [matplotlib](https://github.com/matplotlib/matplotlib) to permit the latest version.
- [Release notes](https://github.com/matplotlib/matplotlib/releases)
- [Commits](matplotlib/matplotlib@v0.91.2...v3.9.3)

---
updated-dependencies:
- dependency-name: matplotlib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added the deps Dependencies version bump label Dec 2, 2024
Copy link

github-actions bot commented Dec 2, 2024

This PR causes the following changes to the html docs (ubuntu-latest-3.11):

diff -r docs-base/AutodiffComposition.html docs-head/AutodiffComposition.html
288,296c288,291
< to <code class="xref any docutils literal notranslate"><span class="pre">False</span></code>.</p>
< <blockquote>
< <div><p>Trainable biases <em>can</em> be specified explicitly in an AutodiffComposition by including a <a class="reference internal" href="ProcessingMechanism.html"><span class="doc">ProcessingMechanism</span></a>
< that projects to the relevant Mechanism (i.e., implementing that layer of the network to receive the biases)
< using a <a class="reference internal" href="MappingProjection.html"><span class="doc">MappingProjection</span></a> with a <a class="reference internal" href="MappingProjection.html#psyneulink.core.components.projections.pathway.mappingprojection.MappingProjection.matrix" title="psyneulink.core.components.projections.pathway.mappingprojection.MappingProjection.matrix"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">matrix</span></code></a> parameter that implements a diagnoal
< matrix with values corresponding to the initial value of the biases, and setting the <a class="reference internal" href="InputPort.html#psyneulink.core.components.ports.inputport.InputPort.default_input" title="psyneulink.core.components.ports.inputport.InputPort.default_input"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">default_input</span></code></a> Parameter of one of the ProcessingMechanism’s <a class="reference internal" href="Mechanism.html#psyneulink.core.components.mechanisms.mechanism.Mechanism_Base.input_ports" title="psyneulink.core.components.mechanisms.mechanism.Mechanism_Base.input_ports"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">input_ports</span></code></a> to <em>DEFAULT_VARIABLE</em>, and its <code class="xref any docutils literal notranslate"><span class="pre">default_variable</span></code>
< equal to 1. ProcessingMechanisms configured in this way are assigned <a class="reference internal" href="Composition.html#psyneulink.core.compositions.composition.NodeRole" title="psyneulink.core.compositions.composition.NodeRole"><code class="xref any py py-class docutils literal notranslate"><span class="pre">NodeRole</span></code></a> <a class="reference internal" href="Composition.html#psyneulink.core.compositions.composition.NodeRole.BIAS" title="psyneulink.core.compositions.composition.NodeRole.BIAS"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">BIAS</span></code></a>, and the MappingProjection
< is subject to learning.</p>
< </div></blockquote>
---
> to <code class="xref any docutils literal notranslate"><span class="pre">False</span></code>. Trainable biases <em>can</em> be specified explicitly in an AutodiffComposition by including a
> TransferMechanism that projects to the relevant Mechanism (i.e., implementing that layer of the network to
> receive the biases) using a <a class="reference internal" href="MappingProjection.html"><span class="doc">MappingProjection</span></a> with a <a class="reference internal" href="MappingProjection.html#psyneulink.core.components.projections.pathway.mappingprojection.MappingProjection.matrix" title="psyneulink.core.components.projections.pathway.mappingprojection.MappingProjection.matrix"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">matrix</span></code></a> parameter that
> implements a diagnoal matrix with values corresponding to the initial value of the biases.</p>
diff -r docs-base/Composition.html docs-head/Composition.html
5706c5706
< input that is constant across executions). Such a node can also be assigned as an <a class="reference internal" href="#psyneulink.core.compositions.composition.NodeRole.INPUT" title="psyneulink.core.compositions.composition.NodeRole.INPUT"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">INPUT</span></code></a> and/or <a class="reference internal" href="#psyneulink.core.compositions.composition.NodeRole.ORIGIN" title="psyneulink.core.compositions.composition.NodeRole.ORIGIN"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">ORIGIN</span></code></a>,
---
> input that is constant across executions).  Such a node can also be assigned as an <a class="reference internal" href="#psyneulink.core.compositions.composition.NodeRole.INPUT" title="psyneulink.core.compositions.composition.NodeRole.INPUT"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">INPUT</span></code></a> and/or <a class="reference internal" href="#psyneulink.core.compositions.composition.NodeRole.ORIGIN" title="psyneulink.core.compositions.composition.NodeRole.ORIGIN"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">ORIGIN</span></code></a>,
diff -r docs-base/ControlMechanism.html docs-head/ControlMechanism.html
386c386
< its corresponding <a class="reference internal" href="ObjectiveMechanism.html#psyneulink.core.components.mechanisms.processing.objectivemechanism.ObjectiveMechanism.input_ports" title="psyneulink.core.components.mechanisms.processing.objectivemechanism.ObjectiveMechanism.input_ports"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">input_ports</span></code></a>.  When the Composition is run, the <a class="reference internal" href="OutputPort.html#psyneulink.core.components.ports.outputport.OutputPort.value" title="psyneulink.core.components.ports.outputport.OutputPort.value"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">value</span></code></a>(s) of the OutputPort(s) monitored are evaluated using the <a class="reference internal" href="LCControlMechanism.html#psyneulink.library.components.mechanisms.modulatory.control.agt.lccontrolmechanism.LCControlMechanism.objective_mechanism" title="psyneulink.library.components.mechanisms.modulatory.control.agt.lccontrolmechanism.LCControlMechanism.objective_mechanism"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">objective_mechanism</span></code></a>'s <a class="reference internal" href="ObjectiveMechanism.html#psyneulink.core.components.mechanisms.processing.objectivemechanism.ObjectiveMechanism.function" title="psyneulink.core.components.mechanisms.processing.objectivemechanism.ObjectiveMechanism.function"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">function</span></code></a>, and the result is assigned to its <em>OUTCOME</em> <a class="reference internal" href="ObjectiveMechanism.html#objectivemechanism-output"><span class="std std-ref">output_port</span></a>.  That <code class="xref any docutils literal notranslate"><span class="pre">value</span></code> is then passed to the ControlMechanism’s
---
> its corresponding <a class="reference internal" href="ObjectiveMechanism.html#psyneulink.core.components.mechanisms.processing.objectivemechanism.ObjectiveMechanism.input_ports" title="psyneulink.core.components.mechanisms.processing.objectivemechanism.ObjectiveMechanism.input_ports"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">input_ports</span></code></a>.  When the Composition is run, the <a class="reference internal" href="OutputPort.html#psyneulink.core.components.ports.outputport.OutputPort.value" title="psyneulink.core.components.ports.outputport.OutputPort.value"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">value</span></code></a>(s) of the OutputPort(s) monitored are evaluated using the <a class="reference internal" href="#psyneulink.core.components.mechanisms.modulatory.control.controlmechanism.ControlMechanism.objective_mechanism" title="psyneulink.core.components.mechanisms.modulatory.control.controlmechanism.ControlMechanism.objective_mechanism"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">objective_mechanism</span></code></a>'s <a class="reference internal" href="ObjectiveMechanism.html#psyneulink.core.components.mechanisms.processing.objectivemechanism.ObjectiveMechanism.function" title="psyneulink.core.components.mechanisms.processing.objectivemechanism.ObjectiveMechanism.function"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">function</span></code></a>, and the result is assigned to its <em>OUTCOME</em> <a class="reference internal" href="ObjectiveMechanism.html#objectivemechanism-output"><span class="std std-ref">output_port</span></a>.  That <code class="xref any docutils literal notranslate"><span class="pre">value</span></code> is then passed to the ControlMechanism’s
diff -r docs-base/EMComposition.html docs-head/EMComposition.html
231,232d230
< <li><p><a class="reference internal" href="#emcomposition-memory-specification"><span class="std std-ref">Memory</span></a></p></li>
< <li><p><a class="reference internal" href="#emcomposition-memory-capacity"><span class="std std-ref">Capacity</span></a></p></li>
233a232
> <li><p><a class="reference internal" href="#emcomposition-memory-capacity"><span class="std std-ref">Capacity</span></a></p></li>
243c242
< <li><p><a class="reference internal" href="#emcomposition-memory-structure"><span class="std std-ref">Memory</span></a></p></li>
---
> <li><p><a class="reference internal" href="#emcomposition-memory"><span class="std std-ref">Memory</span></a></p></li>
252c251
< <li><p><a class="reference internal" href="#emcomposition-training"><span class="std std-ref">Learning</span></a></p></li>
---
> <li><p><a class="reference internal" href="#emcomposition-learning"><span class="std std-ref">Learning</span></a></p></li>
271c270
< <p>The EMComposition implements a configurable, content-addressable form of episodic (or external) memory. It emulates
---
> <p>The EMComposition implements a configurable, content-addressable form of episodic, or eternal memory, that emulates
273,291c272,280
< in the form of an <a class="reference internal" href="AutodiffComposition.html"><span class="doc">AutodiffComposition</span></a>. This allows it to backpropagate error signals based retrieved values to
< it inputs, and learn how to differentially weight cues (queries) used for retrieval. It also adds the capability for
< <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.memory_decay_rate" title="psyneulink.library.compositions.emcomposition.EMComposition.memory_decay_rate"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">memory_decay</span></code></a>. In these respects, it implements a variant of a <a class="reference external" href="https://en.wikipedia.org/wiki/Modern_Hopfield_network">Modern Hopfield
< Network</a>, as well as some of the features of a <a class="reference external" href="https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)">Transformer</a></p>
< <p>The <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.memory" title="psyneulink.library.compositions.emcomposition.EMComposition.memory"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">memory</span></code></a> of an EMComposition is configured using two arguments of its constructor:
< the <strong>memory_template</strong> argument, that defines the overall structure of its <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.memory" title="psyneulink.library.compositions.emcomposition.EMComposition.memory"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">memory</span></code></a> (the
< number of fields in each entry, the length of each field, and the number of entries); and <strong>fields</strong> argument, that
< defines which fields are used as cues for retrieval (i.e., as “keys”), including whether and how they are weighted in
< the match process used for retrieval, which fields are treated as “values” that are stored retrieved but not used by
< the match process, and which are involved in learning. The inputs to an EMComposition, corresponding to its keys and
< values, are assigned to each of its <a class="reference internal" href="Composition.html#psyneulink.core.compositions.composition.NodeRole.INPUT" title="psyneulink.core.compositions.composition.NodeRole.INPUT"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">INPUT</span></code></a> <a class="reference internal" href="Composition.html#composition-nodes"><span class="std std-ref">Nodes</span></a>: inputs to be matched to keys
< (i.e., used as “queries”) are assigned to its <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.query_input_nodes" title="psyneulink.library.compositions.emcomposition.EMComposition.query_input_nodes"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">query_input_nodes</span></code></a>; and the remaining
< inputs assigned to it <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.value_input_nodes" title="psyneulink.library.compositions.emcomposition.EMComposition.value_input_nodes"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">value_input_nodes</span></code></a>. When the EMComposition is executed, the
< retrieved values for all fields are returned as the result, and recorded in its <code class="xref any docutils literal notranslate"><span class="pre">results</span></code>
< attribute. The value for each field is assigned as the <a class="reference internal" href="OutputPort.html#psyneulink.core.components.ports.outputport.OutputPort.value" title="psyneulink.core.components.ports.outputport.OutputPort.value"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">value</span></code></a> of its <a class="reference internal" href="Composition.html#psyneulink.core.compositions.composition.NodeRole.OUTPUT" title="psyneulink.core.compositions.composition.NodeRole.OUTPUT"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">OUTPUT</span></code></a>
< <a class="reference internal" href="Composition.html#composition-nodes"><span class="std std-ref">Nodes</span></a>. The input is then stored in its <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.memory" title="psyneulink.library.compositions.emcomposition.EMComposition.memory"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">memory</span></code></a>, with a probability
< determined by its <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.storage_prob" title="psyneulink.library.compositions.emcomposition.EMComposition.storage_prob"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">storage_prob</span></code></a> <a class="reference internal" href="Parameters.html#psyneulink.core.globals.parameters.Parameter" title="psyneulink.core.globals.parameters.Parameter"><code class="xref any py py-class docutils literal notranslate"><span class="pre">Parameter</span></code></a>, and all previous memories decayed by its
< <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.memory_decay_rate" title="psyneulink.library.compositions.emcomposition.EMComposition.memory_decay_rate"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">memory_decay_rate</span></code></a>. The <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.memory" title="psyneulink.library.compositions.emcomposition.EMComposition.memory"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">memory</span></code></a> can be accessed using its
< <a class="reference internal" href="#psyneulink.library.compositions.emcomposition.EMComposition.memory" title="psyneulink.library.compositions.emcomposition.EMComposition.memory"><code class="xref any py py-attr docutils literal notranslate"><span class="pre">memory</span></code></a> Parameter.</p>
---
> in the form of an <a class="reference internal" href="AutodiffCo
...

See CI logs for the full diff.

Copy link
Author

dependabot bot commented on behalf of github Dec 16, 2024

Superseded by #524.

@dependabot dependabot bot closed this Dec 16, 2024
@dependabot dependabot bot deleted the dependabot/pip/devel/matplotlib-lt-3.9.4 branch December 16, 2024 02:10
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
deps Dependencies version bump
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants