diff --git a/config/train_gpt2.py b/config/train_gpt2.py index dab3d124a3..8f192732ac 100644 --- a/config/train_gpt2.py +++ b/config/train_gpt2.py @@ -10,7 +10,7 @@ # 12 batch size * 1024 block size * 5 gradaccum * 8 GPUs = 491,520 batch_size = 12 block_size = 1024 -gradient_accumulation_steps = 5 +gradient_accumulation_steps = 5 * 8 # this makes total number of tokens be 300B max_iters = 600000 diff --git a/config/train_shakespeare_char.py b/config/train_shakespeare_char.py index cb0d333263..41c81dfb4e 100644 --- a/config/train_shakespeare_char.py +++ b/config/train_shakespeare_char.py @@ -14,6 +14,7 @@ wandb_run_name = 'mini-gpt' dataset = 'shakespeare_char' +gradient_accumulation_steps = 1 batch_size = 64 block_size = 256 # context of up to 256 previous characters diff --git a/train.py b/train.py index 4ef8e2b5b5..a0cd539901 100644 --- a/train.py +++ b/train.py @@ -45,7 +45,7 @@ wandb_run_name = 'gpt2' # 'run' + str(time.time()) # data dataset = 'openwebtext' -gradient_accumulation_steps = 5 # used to simulate larger batch sizes +gradient_accumulation_steps = 5 * 8 # used to simulate larger batch sizes batch_size = 12 # if gradient_accumulation_steps > 1, this is the micro-batch size block_size = 1024 # model @@ -84,16 +84,20 @@ init_process_group(backend=backend) ddp_rank = int(os.environ['RANK']) ddp_local_rank = int(os.environ['LOCAL_RANK']) + ddp_world_size = int(os.environ['WORLD_SIZE']) device = f'cuda:{ddp_local_rank}' torch.cuda.set_device(device) master_process = ddp_rank == 0 # this process will do logging, checkpointing etc. seed_offset = ddp_rank # each process gets a different seed + assert gradient_accumulation_steps % torch.cuda.device_count() == 0 + gradient_accumulation_steps //= torch.cuda.device_count() else: # if not ddp, we are running on a single gpu, and one process master_process = True seed_offset = 0 - gradient_accumulation_steps *= 8 # simulate 8 gpus -print("total number of tokens per iteration:", batch_size * block_size * gradient_accumulation_steps) + ddp_world_size = 1 +tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size +print(f"tokens per iteration will be: {tokens_per_iter:,}") if master_process: os.makedirs(out_dir, exist_ok=True)