diff --git a/keras_hub/src/models/gemma3/gemma3_presets.py b/keras_hub/src/models/gemma3/gemma3_presets.py index b2d07e59f8..9ccff487b3 100644 --- a/keras_hub/src/models/gemma3/gemma3_presets.py +++ b/keras_hub/src/models/gemma3/gemma3_presets.py @@ -181,4 +181,43 @@ }, "kaggle_handle": "kaggle://keras/gemma3/keras/gemma3_instruct_270m/4", }, + "medgemma_instruct_4b": { + "metadata": { + "description": ( + "A 4 billion parameter model based on Gemma 3. " + "This model is trained for performance on medical text" + "and image comprehension and is optimized for medical" + "applications that involve a text generation component." + ), + "params": 4300079472, + "path": "gemma3", + }, + "kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_4b/1", + }, + "medgemma_instruct_27b": { + "metadata": { + "description": ( + "A 27 billion parameter model based on Gemma 3. " + "This model trained for performance on medical text " + "and image comprehension and is optimized for medical " + "applications that involve a text generation component." + ), + "params": 27432406640, + "path": "gemma3", + }, + "kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_27b/1", + }, + "medgemma_instruct_27b_text": { + "metadata": { + "description": ( + "A 27 billion parameter text-only model based on Gemma 3. " + "This model is trained for performance on medical text " + "comprehension and is optimized for medical applications " + "that involve a text generation component." + ), + "params": 27009002240, + "path": "gemma3", + }, + "kaggle_handle": "kaggle://keras/medgemma/keras/medgemma_instruct_27b_text/1", + }, } diff --git a/keras_hub/src/models/siglip/siglip_presets.py b/keras_hub/src/models/siglip/siglip_presets.py index 9c85f2c0be..cc1e919d8e 100644 --- a/keras_hub/src/models/siglip/siglip_presets.py +++ b/keras_hub/src/models/siglip/siglip_presets.py @@ -321,4 +321,19 @@ }, "kaggle_handle": "kaggle://keras/siglip/keras/siglip2_so400m_patch16_512/1", }, + "medsiglip_900m_448": { + "metadata": { + "description": ( + "A 900 million parameter variant of SigLIP trained to encode " + "medical images and text into a common embedding space. " + "MedSigLIP contains a vision encoder and a text encoder, and " + "supports 448x448 image resolution with up to 64 text tokens." + ), + "params": 878301426, + "official_name": "SigLIP2", + "path": "siglip", + "model_card": "https://huggingface.co/google/medsiglip-448#medsiglip-model-card", + }, + "kaggle_handle": "kaggle://keras/medsiglip/keras/medsiglip_900m_448/1", + }, } diff --git a/tools/checkpoint_conversion/convert_siglip_checkpoints.py b/tools/checkpoint_conversion/convert_siglip_checkpoints.py index aece61fa6e..8cd0b809b5 100644 --- a/tools/checkpoint_conversion/convert_siglip_checkpoints.py +++ b/tools/checkpoint_conversion/convert_siglip_checkpoints.py @@ -110,6 +110,7 @@ "siglip2_so400m_patch16_256": "google/siglip2-so400m-patch16-256", "siglip2_so400m_patch16_384": "google/siglip2-so400m-patch16-384", "siglip2_so400m_patch16_512": "google/siglip2-so400m-patch16-512", + "medsiglip_900m_448": "google/medsiglip-448", } flags.DEFINE_string(