LODE: Deep Local Deblurring and A New Benchmark arxiv
|-LocalBlurNet
|-config #config files
|-data #dataloader
|-dataloader.py
|-model
|-network #network structure
|-DeblurNet.py
|-layers.py
|-MaskNet.py
|-result
|-criterion.py
|-eval.py
|-train.py
- Python=3.6
- pytorch=1.0.1
- visdom=0.1.8.9
- opencv-contrib-python=4.4.0.44
- opencv-python=4.1.2.30
customizing your configuration file as follows:
```yaml
date: 1217
gpu_available: '1,2' #GPU IDS
gpu_num: 2 #number of GPU in-use
onlyTrainMask: false
useMask: false
fixMask: false
usingSA: true
usingMaskLoss: false
usingSALoss: true
finetune: false
local: false
other: ''
dataset: real
train_sharp: /path
train_blur: /path
train_sharp2: None
train_blur2: None
train_mask: None
test_sharp: /path
test_blur: /path
resize_size: 0
crop_size: 192
model_dir: ./model
result_dir: ./result
batchsize: 56
save_epoch: 1
lr: 0.001
step: [150, 200, 300]
mask_pretrained_model: None
sanet_pretrianed_model: None
pretrained_model: ./path
best_psnr: 0
startEpoch: 0
```
-
module selection
the relationship between configuration file and networks in paper
configurations UNet(BladeNet-) BSA only LBP only BladeNet onlyTrainMask × × × × useMask × × √ √ fixMask × × × × usingSA × √ × √ usingMaskLoss × √ √ √ usingSALoss × √ × √ -
experiment scripts
for training:
python train.py --c [PATH TO YAML FILE]
for testing:
python eval.py --c [PATH TO YAML FILE]