
Kraken Mobile Wallet
Security Assessment

January 10, 2024

Prepared for:

Andrew Koller, Eric Kuhn, and Thomas Roth
Payward, Inc.

Prepared by: Jim Miller, Emilio López, Maciej Domański, and Paweł Płatek

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Kraken Mobile Wallet Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Payward
under the terms of the project statement of work and has been made public at Payward’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Kraken Mobile Wallet Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 5
Executive Summary 6
Project Goals 9
Project Targets 10
Project Coverage 11
Automated Testing 13
Codebase Maturity Evaluation 14
Summary of Findings 17
Detailed Findings 19

1. The QR code scanner is configured to detect all code types 19
2. Hard-coded Infura API key 20
3. Use of unpinned third-party scripts and images in CI 21
4. react-native-argon2 is unmaintained 23
5. Missing certificate validation in electrum-client 25
6. Third-party applications can take and read screenshots of the Android client
screen 26
7. Users may accidentally break wallet initialization 27
8. Local biometric and password authentication can be bypassed 29
9. Reauthentication not required for all sensitive actions 35
10. Password policy issues on extra password protection 36
11. Sensitive content exposed via Clipboard 37
12. Truncated message content when signing via WalletConnect 39
13. Removal of URL protocol when pairing with WalletConnect 41
14. Exposure of misconfigured GCP API key 43
15. Absence of account lockout mechanism 45
16. Harmony proof of work allows attacker to tamper with expiration 46
17. Harmony reuses the same HMAC key for signing proof-of-work challenges and
image URLs 49
18. WalletConnect transaction confirmation screen may be suddenly switched 50
19. SafetyNet Verify Apps and Play Integrity APIs not implemented in the Android
client 51

Trail of Bits 3 Kraken Mobile Wallet Security Assessment
PUBLIC

20. No explicit verification of the Android security provider 53
21. Project dependencies are not monitored for vulnerabilities 54
22. Device-to-device backups are not disabled 55
23. Application crashes when SVG image is tapped twice in the NFT module 56
24. Fee amounts are not displayed and can be controlled by remote services 58

A. Vulnerability Categories 59
B. Code Maturity Categories 61
C. Code Quality Recommendations 63
D. Automated Static Analysis 66
E. Fix Review Results 68

Detailed Fix Review Results 70
F. Fix Review Status Categories 73

Trail of Bits 4 Kraken Mobile Wallet Security Assessment
PUBLIC

Project Summary

Contact Information
The following project manager was associated with this project:

Mary O'Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering directors were associated with this project:

Anders Helsing, Engineering Director, Application Security
anders.helsing@trailofbits.com

Jim Miller, Engineering Director, Cryptography
james.miller@trailofbits.com

The following consultants were associated with this project:

Jim Miller, Engineering Director, Cryptography
james.miller@trailofbits.com

Emilio López, Consultant Maciej Domański, Consultant
emilio.lopez@trailofbits.com maciej.domanski@trailofbits.com

Paweł Płatek, Consultant
pawel.platek@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 28, 2023 Pre-project kickoff call

October 10, 2023 Status update meeting #1

October 16, 2023 Status update meeting #2

October 20, 2023 Delivery of report draft

October 20, 2023 Report readout meeting

January 10, 2024 Delivery of comprehensive report with fix review

Trail of Bits 5 Kraken Mobile Wallet Security Assessment
PUBLIC

mailto:mary.obrien@trailofbits.com
mailto:james.miller@trailofbits.com
mailto:emilio.lopez@trailofbits.com
mailto:maciej.domanski@trailofbits.com
mailto:pawel.platek@trailofbits.com

Executive Summary

Engagement Overview
Payward engaged Trail of Bits to review the security of the Kraken mobile wallet, a
non-custodial wallet for the iOS and Android platforms.

A team of four consultants conducted the review from October 2 to October 19, 2023, for a
total of seven engineer-weeks of effort. Our testing efforts focused on the Kraken mobile
application. With full access to the React Native source code, we performed static and
dynamic testing of the Kraken mobile wallet, using automated and manual processes. We
manually reviewed the system’s uses of cryptography for any vulnerabilities to known
cryptographic attacks, focusing on algorithm selection, dependencies, and common best
practices for cryptography.

Observations and Impact
We found that the Kraken mobile wallet is well structured and generally written
defensively. We did not identify any high-severity issues that could enable a direct, remote
attack that would result in a significant compromise, such as theft of user funds.

Given the financial nature of the Kraken mobile application, our audit also concentrated on
assessing the application’s resistance against two major threats: the presence of malware
and physical access to users’ smartphones by malicious actors. Regarding the former, we
found a feasible scenario in which a malicious application could capture users’ screens
displaying mnemonic phrases, thereby leading to a loss of funds (TOB-KMW-6). Regarding
the latter, we discovered vulnerabilities that could enable attackers to bypass local
biometric authentication (TOB-KMW-8), missing reauthentication on critical functionalities
(TOB-KMW-9), and the lack of a lockdown mechanism following incorrect password entries
(TOB-KMW-15).

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Kraken take the following steps:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Add the WalletConnect Verify API to the product. The Verify API enables
applications to securely validate whether the end user is on the correct domain. This
solution makes phishing attacks harder to conduct.

Trail of Bits 6 Kraken Mobile Wallet Security Assessment
PUBLIC

https://docs.walletconnect.com/web3wallet/verify

● Implement static analysis tools in the CI/CD pipeline. Implementing additional
tools such as those presented in appendix D will help to automatically find issues in
the code that could lead to security vulnerabilities before they are merged into the
codebase.

● Support multiple data providers on the wallet’s back end (Kraken Harmony).
Details of the Kraken back-end service were not reviewed during the audit. Kraken
should ensure that its system is properly decentralized. To do so, we recommend
that Kraken host blockchain nodes of its own instead of using centralized services
like Infura. Alternatively, connect to multiple data providers and cross-verify the
results from them.

● Consider allowing wallet users to configure their own list of trusted nodes.
This will reduce the number of third parties that users have to trust implicitly, which
will improve user trust in the mobile application. Currently, wallet users have to
send requests via Kraken Harmony. Moreover, this feature would enable users to
eliminate the risk of transaction front-running.

● Protect the application against malicious files that could pass through the NFT
feature. Implement device-side countermeasures like sanitization with appropriate
unit testing for these scenarios, such as rendered SVG files that call external
resources.

Finding Severities and Categories
The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 8

Low 8

Informational 8

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Access Controls 2

Authentication 3

Configuration 4

Cryptography 2

Data Exposure 4

Data Validation 3

Trail of Bits 7 Kraken Mobile Wallet Security Assessment
PUBLIC

Denial of Service 1

Error Reporting 1

Patching 3

Timing 1

Trail of Bits 8 Kraken Mobile Wallet Security Assessment
PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of the Kraken mobile wallet.
Specifically, we sought to answer the following non-exhaustive list of questions:

● Does the Kraken mobile wallet safely manage secret data?

● Is it possible to extract users’ wallet seeds from the application?

● Are cryptographic algorithms implemented and used securely and according to their
specifications in the Kraken wallet?

● Is it possible to bypass any of the Kraken wallet’s confirmation screens (e.g., to
automatically confirm transactions without user consent)?

● Is there any threat associated with using a QR code scanner in the Kraken mobile
wallet?

● How securely are secrets stored?

● Can an attacker exploit any exported component of the Android application?

● Are there any architectural design flaws in the Android or iOS applications?

● Does the Android application use the WebView class?

● Does the minimum API level required for the Kraken wallet pose any risk?

● Can users’ privacy or identity be compromised?

● Can users be tricked into signing misleading transactions?

● Is the NFT feature securely implemented?

Trail of Bits 9 Kraken Mobile Wallet Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following target:

mobile
Repository N/A

Version Zip file provided on October 2, 2023

Type React Native

Platforms Android, iOS

Payward also provided access to the following codebases to aid the review:

harmony
Repository N/A

Version Zip file provided on October 2, 2023

Type TypeScript

Platform Linux

groundcontrol
Repository N/A

Version Zip file provided on October 2, 2023

Type TypeScript

Platform Linux

Trail of Bits 10 Kraken Mobile Wallet Security Assessment
PUBLIC

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● A review of the provided documentation and threat model

● Static analysis of the codebase and triaging of the results

● Local building of the codebase for the Android platform for manual testing

● A review of the cryptographic primitives used throughout the mobile wallet

● A manual review of the derivation and storage of cryptographic secrets

● A manual review of the WalletConnect implementation

● A review of the wallet for common mobile wallet issues

● An analysis of the QR code scanner’s security

● An analysis of whether the application is vulnerable to intent injection attacks

● An analysis of the Android APK with the Android manifest file configuration for
potential misconfiguration of permissions

● A review of the security of the transaction singing mechanism against phishing
attacks

● A review of how the wallet consumes data received from remote services

● A review the decentralization of the wallet in relation to data providers

● A review the NFT transactions along with the security context of the rendered NFTs

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● We did not test the robustness of the WalletConnect Verify API, which we
recommend implementing to make phishing attacks harder to conduct, or the
source code of WalletConnect itself.

Trail of Bits 11 Kraken Mobile Wallet Security Assessment
PUBLIC

https://docs.walletconnect.com/web3wallet/verify

● We were granted access to both the harmony and groundcontrol modules;
however, these modules were provided solely to assist in our review process and
were not subjected to detailed testing or evaluation as part of this audit.

● We noted the presence of several outdated dependencies, and we referenced
third-party code while reviewing specific components. However, we did not perform
a detailed review of third-party dependencies.

● Our main focus of the audit was the Android platform. Although the Android and
iOS versions of the application share the React Native codebase, we did not perform
a dynamic analysis of the iOS application.

Trail of Bits 12 Kraken Mobile Wallet Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy

Semgrep A static analysis tool designed to identify bugs and specific
code patterns across multiple languages

Appendix D

CodeQL A code analysis engine developed by GitHub to automate
security checks

Appendix D

Areas of Focus
Our automated testing and verification work focused on the following system properties:

● The system does not produce undefined behavior.

● The code does not contain security or quality issues.

Trail of Bits 13 Kraken Mobile Wallet Security Assessment
PUBLIC

https://github.com/returntocorp/semgrep
https://codeql.github.com

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic We found no significant issues concerning the proper use
of mathematical operations.

Satisfactory

Auditing We did not find any secrets that are exposed in local logs.
We did not have access to the remote harmony,
groundcontrol, or ElectrumX logs.

Further
Investigation
Required

Authentication /
Access Controls

The wallet follows general security principles, such as
allowing users to enable biometric authentication and to
set up passwords. However, the application could have a
better password security policy (TOB-KMW-10).

We found that local biometric authentication could be
bypassed (TOB-KMW-8). Reauthentication is not enforced
on every sensitive operation (TOB-KMW-9). Also, there is
no lockout mechanism following several consecutive
failed password attempts (TOB-KMW-15).

Moderate

Complexity
Management

The Kraken mobile codebase is generally well organized,
divided by functionality across various directories.

Satisfactory

Configuration We found some minor configuration issues in the
codebase, but they are not indicative of a recurring
pattern that affects security.

The SafetyNet Verify and Play Integrity APIs would
enhance the security of Kraken users’ wallets, but they
are not implemented (TOB-KMW-19); we recommend
following the Android documentation for the best
security practices.

Satisfactory

Cryptography The Kraken mobile wallet uses modern cryptographic Satisfactory

Trail of Bits 14 Kraken Mobile Wallet Security Assessment
PUBLIC

and Key
Management

algorithms for important operations, such as deriving
keys, encrypting, and signing. In addition, for each of
these operations, Kraken relies on well-known
cryptographic dependencies that are maintained (with
the exception of the dependency indicated in
TOB-KMW-4).

Sensitive wallet keys can be protected with both
biometric authentication and encryption with a
cryptographic key derived from a password. Again, these
keys are protected by modern cryptographic algorithms.
However, we do note that these authentication
protections are prone to bypass (TOB-KMW-8).

Also, we found two cryptographic issues in the Harmony
component: an issue in the Harmony proof-of-work
scheme could allow an attacker to obtain API keys that
will not expire (TOB-KMW-16), and the application reuses
the same cryptographic key in two different contexts
(TOB-KMW-17).

Data Handling Generally, Kraken takes the necessary precautions when
validating most types of incoming data; our analysis did
not reveal any issues that could enable typical injection
attacks, such as cross-site scripting. We found minor
issues related to the UI; addressing them could make the
product more secure (TOB-KMW-12, TOB-KMW-13). Also,
the UI needs a careful review and redesign to make its
behavior less surprising to users (TOB-KMW-18).

The distinction between data received from online
services and data hard-coded in the application should
be clarified. Currently, much of the information received
or hard-coded is redundant—either it is not used at all or
one data source would be enough for all functionalities.
This systemic issue makes it harder to audit the
application (TOB-KMW-24) and may confuse users
(finding 7 in appendix C).

Moderate

Documentation We had access to the threat model, but we did not have
access to the internal documentation. The solution
should have high-level documentation showing the way
specific components interact with each other, the data
they exchange, the way specific functionalities are
implemented (like local authentication and fee

Weak

Trail of Bits 15 Kraken Mobile Wallet Security Assessment
PUBLIC

estimation), and the security assumptions for
security-related components (e.g., password storage).

The code should contain more comprehensive docstrings
for methods. Currently, only a few parts of the code have
any documentation.

Maintenance We found that the application has outdated
dependencies (TOB-KMW-21), but none of them contain
vulnerabilities that could significantly impact the
application. Ensure that there is a proper process for
keeping dependencies up to date (e.g. using
Dependabot).

Moderate

Memory Safety
and Error
Handling

We did not find any memory safety issues. The solution is
based on React Native, so exposure to these
vulnerabilities is limited.

However, we did encounter prevalent cases in which the
Kraken wallet could crash (TOB-KMW-7, TOB-KMW-23).

Weak

Testing and
Verification

The solution lacks fuzz tests. Many issues that could
cause mobile wallet application crashes could be caught
at the functional and unit test level.

Weak

Trail of Bits 16 Kraken Mobile Wallet Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 The QR code scanner is configured to detect all
code types

Configuration Informational

2 Hard-coded Infura API key Data Exposure Informational

3 Use of unpinned third-party scripts and images in
CI

Configuration Low

4 react-native-argon2 is unmaintained Patching Informational

5 Missing certificate validation in electrum-client Cryptography Medium

6 Third-party applications can take and read
screenshots of the Android client screen

Data Exposure Medium

7 Users may accidentally break wallet initialization Denial of Service Informational

8 Local biometric and password authentication can
be bypassed

Access Controls Medium

9 Reauthentication not required for all sensitive
actions

Access Controls Medium

10 Password policy issues on extra password
protection

Authentication Low

11 Sensitive content exposed via Clipboard Data Exposure Low

12 Truncated message content when signing via
WalletConnect

Data Validation Medium

Trail of Bits 17 Kraken Mobile Wallet Security Assessment
PUBLIC

13 Removal of URL protocol when pairing with
WalletConnect

Data Validation Low

14 Exposure of misconfigured GCP API key Configuration Low

15 Absence of account lockout mechanism Authentication Low

16 Harmony proof of work allows attacker to tamper
with expiration

Authentication Medium

17 Harmony reuses the same HMAC key for signing
proof-of-work challenges and image URLs

Cryptography Informational

18 WalletConnect transaction confirmation screen
may be suddenly switched

Timing Medium

19 SafetyNet Verify Apps and Play Integrity APIs not
implemented in the Android client

Configuration Informational

20 No explicit verification of the Android security
provider

Patching Informational

21 Project dependencies are not monitored for
vulnerabilities

Patching Informational

22 Device-to-device backups are not disabled Data Exposure Low

23 Application crashes when SVG image is tapped
twice in the NFT module

Error Reporting Low

24 Fee amounts are not displayed and can be
controlled by remote services

Data Validation Medium

Trail of Bits 18 Kraken Mobile Wallet Security Assessment
PUBLIC

Detailed Findings

1. The QR code scanner is configured to detect all code types

Severity: Informational Difficulty: High

Type: Configuration Finding ID: TOB-KMW-1

Target: mobile/src/components/Camera.tsx

Description
The QR code scanner within the application uses the expo-barcode-scanner library to
scan user-provided QR codes. However, the library can scan different types of barcodes,
and the wallet application does not reconfigure the library to scan only QR codes. As a
result, it may scan a barcode format that was not intended for the wallet. This increases the
attack surface of the system and may lead to other issues.

Exploit Scenario
An attacker identifies a vulnerability in the underlying implementation of the Aztec code
detector and decoder. She uses this vulnerability to exploit the mobile wallet application by
crafting a malicious code and scanning it with the wallet application.

Recommendations
Short term, disallow the detection of all barcode types except QR codes in the
expo-barcode-scanner library. Review the BarCodeScanner documentation for how to
configure allowed types.

Long term, add a functional, integration, or device test that would ensure that the
application does not scan barcode types other than QR codes, such as with the example
images from the ZBar repository and malicious barcodes from this website.

Trail of Bits 19 Kraken Mobile Wallet Security Assessment
PUBLIC

https://docs.expo.dev/versions/latest/sdk/bar-code-scanner/#barcodetypes
https://docs.expo.dev/versions/latest/sdk/bar-code-scanner/#barcodetypes
https://github.com/mchehab/zbar/tree/master/examples
https://malqr.shielder.com/

2. Hard-coded Infura API key

Severity: Informational Difficulty: Low

Type: Data Exposure Finding ID: TOB-KMW-2

Target: mobile/config.ts

Description
The application repository contains a hard-coded Infura project ID. This API key allows the
Infura services to be queried and may be subject to rate limits. An attacker may extract this
key from the application and use it for other purposes or cause denial of service through
rate limit exhaustion.

export const INFURA_PROJECT_ID: string = 'REDACTED';

Figure 2.1: The API key is hard-coded in the codebase. (mobile/config.ts)

The severity of this finding is informational because this API key appears to be used only for
debugging purposes.

Exploit Scenario
An attacker extracts the API key from the published application or public GitHub repository.
They then proceed to use this key to request data from Infura, costing Kraken money
and/or causing issues for developers using the debug features due to rate limit exhaustion.

Recommendations
Short term, remove the API key from the repository and rotate the secret. Inject the secret
into the application only on debug-enabled builds via a configuration file or environment
variable. Configure adequate rate limits on the API key to avoid unexpected billing.

Long term, integrate Trufflehog into the CI/CD system to detect unintended secrets flowing
into the codebase.

Trail of Bits 20 Kraken Mobile Wallet Security Assessment
PUBLIC

3. Use of unpinned third-party scripts and images in CI

Severity: Low Difficulty: High

Type: Configuration Finding ID: TOB-KMW-3

Target: mobile/.gitlab-ci.yml, mobile/.gitlab/ci/android-template.yml,
mobile/.gitlab/ci/phrase.yml, mobile/.gitlab/ci/android-template.yml

Description
Several CI jobs reference third-party scripts, binaries, and container images without pinning
them to known versions or otherwise checking for integrity. An attacker with access to
these external servers, repositories, or registries may replace a script, binary, or container
without being noticed and obtain the ability to execute code in the context of the CI jobs.

A set of examples where we found this pattern is included in figures 3.1 through 3.6.

before_script:
- wget -O phrase_linux_amd64.tar.gz

https://github.com/phrase/phrase-cli/releases/download/2.5.1/phrase_linux_amd64.tar.
gz
- tar -xzvf phrase_linux_amd64.tar.gz && cp phrase_linux_amd64 /usr/bin/phrase

Figure 3.1: A third-party binary is downloaded and installed without checking for integrity.
(mobile/.gitlab/ci/phrase.yml)

script:
- wget -O phrase_linux_amd64.tar.gz

https://github.com/phrase/phrase-cli/releases/download/2.5.1/phrase_linux_amd64.tar.
gz
- tar -xzvf phrase_linux_amd64.tar.gz && cp phrase_linux_amd64 /usr/bin/phrase

Figure 3.2: A third-party binary is downloaded and installed without checking for integrity.
(mobile/.gitlab/ci/phrase.yml)

variables:
ANDROID_DOCKER_IMAGE: 'reg-kakarot.chorse.space/kakarot/web3-wallet/mobile:latest'

Figure 3.3: An unpinned container image is used in the workflow.
(mobile/.gitlab/ci/android-template.yml)

- export MAESTRO_VERSION=$MAESTRO_VERSION; curl -Ls
"https://get.maestro.mobile.dev" | bash

Figure 3.4: A third-party script is directly piped into the shell. (mobile/.gitlab-ci.yml)

Trail of Bits 21 Kraken Mobile Wallet Security Assessment
PUBLIC

install nodejs and yarn packages from nodesource
RUN curl -sL https://deb.nodesource.com/setup_${NODE_VERSION} | bash - \

&& apt-get update -qq \
&& apt-get install -qq -y --no-install-recommends nodejs \
&& npm i -g yarn \
&& rm -rf /var/lib/apt/lists/*

Figure 3.5: A third-party script is directly piped into the shell.
(mobile/docker/react-native-android/Dockerfile)

RUN curl -sS https://dl.google.com/android/repository/${SDK_VERSION} -o /tmp/sdk.zip
\

&& mkdir -p ${ANDROID_HOME}/cmdline-tools \
&& unzip -q -d ${ANDROID_HOME}/cmdline-tools /tmp/sdk.zip \
&& mv ${ANDROID_HOME}/cmdline-tools/cmdline-tools

${ANDROID_HOME}/cmdline-tools/latest \

Figure 3.6: A third-party script is directly piped into the shell.
(mobile/docker/react-native-android/Dockerfile)

Exploit Scenario
An attacker gains access to the phrase/phrase-cli repository and replaces the 2.5.1
release with one containing malicious binaries. When the CI job is executed, the attacker
obtains the ability to execute code in the CI context and exfiltrates any available CI secrets
or code.

Recommendations
Short term, pin third-party scripts, binaries, and container images to specific versions using
hash references when possible. Verify the checksum of downloaded binaries and scripts to
ensure they have not been tampered with.

Long term, review the different build and deployment processes across the platform to
ensure they are not vulnerable to supply chain attacks.

Trail of Bits 22 Kraken Mobile Wallet Security Assessment
PUBLIC

4. react-native-argon2 is unmaintained

Severity: Informational Difficulty: High

Type: Patching Finding ID: TOB-KMW-4

Target: mobile/package.json

Description
The Kraken mobile wallet uses the Argon2 password-based key derivation function to
create API keys. Specifically, users are required to solve a random challenge with Argon2 in
order to be granted an API key. This serves as a proof of work that rate limits users
accessing the API.

To implement the logic for this, the mobile wallet relies on react-native-argon2. This
library appears to be unmaintained, as there have not been any commits in over two years,
and there are multiple unresolved issues. This library is essentially a wrapper around two
different native Argon2 implementations (one for iOS and one for Android). Fortunately,
the native Android library, argon2kt, appears to be actively maintained. However, the iOS
implementation, CatCrypto, is not.

Given the nature of these libraries, we do not see this as a significant risk to the system.
However, we wanted to document the status of this library in the event that bugs or other
flaws are discovered in either react-native-argon2 or its native dependencies in the
future. If this occurs, resolving the issues could be difficult without support from the
maintainers of both react-native-argon2 and CatCrypto.

Unfortunately, there do not appear to be any better Argon2 React Native alternatives. If
significant issues arise with react-native-argon2, the best alternative appears to be
directly relying on better maintained native libraries, such as argon2kt for Android and
Argon2Swift for iOS.

Exploit Scenario
A significant flaw is discovered in either react-native-argon2 or its iOS dependency,
CatCrypto. Since neither of these libraries is actively maintained, resolving the issue
consumes significant developer time.

Recommendations
Short term, monitor both react-native-argon2 and CatCrypto for security issues or
other implementation flaws that may be discovered in the future.

Trail of Bits 23 Kraken Mobile Wallet Security Assessment
PUBLIC

https://github.com/poowf/react-native-argon2
https://github.com/lambdapioneer/argon2kt
https://github.com/ImKcat/CatCrypto
https://github.com/poowf/react-native-argon2
https://github.com/poowf/react-native-argon2
https://github.com/ImKcat/CatCrypto
https://github.com/poowf/react-native-argon2
https://github.com/lambdapioneer/argon2kt
https://github.com/tmthecoder/Argon2Swift
https://github.com/poowf/react-native-argon2
https://github.com/ImKcat/CatCrypto
https://github.com/poowf/react-native-argon2
https://github.com/ImKcat/CatCrypto

Long term, if flaws are discovered in either react-native-argon2 or CatCrypto,
consider switching to native dependencies like argon2kt and Argon2Swift.

Trail of Bits 24 Kraken Mobile Wallet Security Assessment
PUBLIC

https://github.com/poowf/react-native-argon2
https://github.com/ImKcat/CatCrypto
https://github.com/lambdapioneer/argon2kt
https://github.com/tmthecoder/Argon2Swift

5. Missing certificate validation in electrum-client

Severity: Medium Difficulty: Low

Type: Cryptography Finding ID: TOB-KMW-5

Target: electrum-client dependency

Description
The Kraken wallet uses the electrum-client package from
BlueWallet/rn-electrum-client to connect to the ElectrumX server on the host
electrum.wallet.kraken.com using TLS. However, the electrum-client package
disables the client-side verification of the server certificate, allowing for server
impersonation and person-in-the-middle attacks.

this._socket = this._tls.connect({ port: port, host: host, rejectUnauthorized: false
}, () => {
console.log('TLS Connected to ', host, port);
return callback();

});

Figure 5.1: The certificate validation is disabled.
(rn-electrum-client/lib/TlsSocketWrapper.js#71–74)

Exploit Scenario
An attacker runs an open WiFi hotspot in a coffee shop. The DNS server used in the hotspot
serves a malicious “A” record, pointing electrum.wallet.kraken.com to an
attacker-controlled ElectrumX server with a self-signed certificate. Alice, a Kraken mobile
wallet user, connects to the public WiFi hotspot and opens her Kraken mobile wallet. The
mobile wallet application connects to the attacker server. The attacker gains information
about Alice’s cryptocurrency holdings and transactions.

Recommendations
Short term, work with the rn-electrum-client developers to re-enable TLS certificate
verification on the client side. Review the TLS client configuration to ensure it uses modern
TLS protocol versions and ciphers.

Long term, perform regular dynamic testing with tools like Burp Suite and NoPE Proxy to
ensure communications are adequately protected.

Trail of Bits 25 Kraken Mobile Wallet Security Assessment
PUBLIC

https://github.com/BlueWallet/rn-electrum-client
https://github.com/BlueWallet/rn-electrum-client/blob/99ebcc649d91a8dc39bea7964b02dd9ead464aa4/lib/TlsSocketWrapper.js#L71-L74
https://portswigger.net/burp
https://github.com/summitt/Nope-Proxy

6. Third-party applications can take and read screenshots of the Android
client screen

Severity: Medium Difficulty: Medium

Type: Data Exposure Finding ID: TOB-KMW-6

Target: Kraken mobile wallet Android application

Description
The android.media.projection API, introduced in Android 5.0, allows any third-party
application on an Android device to take a screenshot of other running applications,
including the Kraken mobile wallet. A third-party application can capture everything on the
device’s screen, including sensitive information such as mnemonics, and may continue
recording the screen even after the user terminates the application (but not after the user
reboots the device).

Enabling the FLAG_SECURE flag in the Kraken client will prevent third-party applications
from taking screenshots of the Kraken mobile wallet.

Exploit Scenario
Alice prepares a malicious application, which Bob installs. Alice’s application secretly
records Bob’s Kraken mobile application while he is looking at his wallet mnemonic. The
malicious application exfiltrates the mnemonic, and Alice steals Bob’s wallet.

Recommendations
Short term, protect all sensitive windows within the Kraken Android application by enabling
the FLAG_SECURE flag. This will prevent malicious third-party applications from recording
the application and from taking screenshots of sensitive information. Also, the
FLAG_SECURE flag will hide the Kraken application in the overview screen.

Long term, ensure that developer documentation is updated to include screen capture and
recording as potential threats for data exposure.

Trail of Bits 26 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/about/versions/android-5.0.html

7. Users may accidentally break wallet initialization

Severity: Informational Difficulty: Medium

Type: Denial of Service Finding ID: TOB-KMW-7

Target: Kraken mobile wallet Android application

Description
If a user clicks the back button on their device during wallet creation, the application will
close abruptly, resulting in incomplete wallet creation. However, some internal state is
created during the initialization attempt. When the application is later restarted, it will
throw a persistent error due to an inconsistent internal state. The only solution to
overcome this error and continue with the wallet initialization is to reinstall the Kraken
mobile wallet application, causing inconvenience to users.

Figure 7.1: The error shown to users who click the back button during wallet creation

Recommendations
Short term, handle the scenario of application closure during wallet creation so that wallet
initialization can be either resumed or completely rolled back without leaving any partial
internal state.

Trail of Bits 27 Kraken Mobile Wallet Security Assessment
PUBLIC

Long term, expand the testing suite to systematically identify and mitigate issues related to
a diverse range of potential user interactions, including unexpected application closures, to
ensure the robustness and reliability of the Kraken mobile wallet.

Trail of Bits 28 Kraken Mobile Wallet Security Assessment
PUBLIC

8. Local biometric and password authentication can be bypassed

Severity: Medium Difficulty: High

Type: Access Controls Finding ID: TOB-KMW-8

Target: Kraken mobile wallet application

Description
The Kraken mobile wallet application provides two access control mechanisms: biometric
and password authentication. They can be enabled and disabled independently of each
other. Both mechanisms have weaknesses and provide less protection over data than
possible.

The biometric authentication guards access to sensitive actions like signing and
mnemonic display. There are two issues with it:

● The authentication is “event-based”— implemented as a Boolean check—instead of
being “result-based”—binding data protection to a secure hardware (keychain or
keystore). Therefore, the biometric authentication can be bypassed with dynamic
instrumentation on rooted devices or through exploitation of operating system
vulnerabilities.

● The wallet’s lock screen can be easily bypassed when moving the application from
the background to the foreground. A user just has to click the back button.

async function checkBiometrics(): Promise<boolean> {
try {
const { success } = await LocalAuthentication.authenticateAsync();
return success;

} catch (e) {
console.log('Biometrics authentication failed: ', e);
return false;

}
}

Figure 8.1: The “event-based” local authentication implemented in the checkBiometrics
function

(mobile/helpers/biometric-unlock.ts:13–21)

The Kraken mobile wallet performs biometric authentication with the checkBiometrics
function, which uses the authenticateAsync function from the Expo LocalAuthentication
library. This library does not provide a mechanism to implement result-based
authentication.

Trail of Bits 29 Kraken Mobile Wallet Security Assessment
PUBLIC

In the context of self-custody mobile wallets, result-based authentication should bind
biometric authentication with users’ confidential data via a secure hardware (keychain or
keystore). That is, the wallet should encrypt users’ data (private keys, mnemonics, etc.)
using a secure hardware API. Then, the hardware should be used to decrypt the data
on-demand (e.g., for transaction signing or viewing mnemonics), and the hardware should
authorize decryption operations with biometric authentication.

On Android, result-based authentication can leverage the CryptoObject class to bind
biometric authentication with cryptographic primitives. On iOS, a Keychain with a proper
access control flag can be used.

The password authentication is used to double-encrypt data stored in the filesystem. The
schema works as follows: most of the application’s data is stored in an encrypted Realm (a
MongoDB database). The Realm encryption key is randomly generated and stored in a
secure hardware. Only the wallet application is authorized to use the key. The
user-provided password is used to derive a new key, which is used to encrypt the Realm
encryption key.

There are a number issues with this double-encryption schema:

● Data is encrypted only in the filesystem and not in the process’s memory. After a
wallet is opened by a user, all data (including the mnemonic) is kept in plaintext in
RAM. The decryption key itself is also kept in memory (with calls to the
setRealmEncryptionKey method).

● The plaintext data is kept in memory even after the application is moved to the
background.

● The password does not protect access to sensitive actions. Once a wallet is unlocked
with the password, all actions are accessible to a user (unless biometric
authentication is also enabled)

● Not all data is encrypted; for example, the React Native’s AsyncStorage is not
encrypted. While no confidential information is kept there, important flags like
is_biometrics_enabled are stored there in plaintext. Adversaries who are able
to modify the filesystem can take actions such as disabling biometric authentication.

export async function getRealmEncryptionKey(encryptionPassword?: string):
Promise<Int8Array> {

[skipped]

credentials = await Keychain.getGenericPassword({ service: keychainServiceName
});

[skipped]

Trail of Bits 30 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt.CryptoObject.html
https://developer.apple.com/documentation/security/keychain_services/
https://developer.apple.com/documentation/security/secaccesscontrolcreateflags
https://developer.apple.com/documentation/security/secaccesscontrolcreateflags

if (credentials) {
password = credentials.password;

} else {
console.log('creating brand new realm encryption key...');
const buf = crypto.randomBytes(64);
password = buf.toString('hex');
await Keychain.setGenericPassword(keychainServiceName, password, { service:

keychainServiceName, accessible: ACCESSIBLE.WHEN_UNLOCKED_THIS_DEVICE_ONLY });
AsyncStorage.setItem(isRealmInAppEverInitialisedKey, 'true');

}

const buf = Buffer.from(password, 'hex');
const ret = Int8Array.from(buf);

if (encryptionPassword) {
const deviceID: string = await DeviceInfo.getUniqueId();

const decrypted = await decrypt(ret, encryptionPassword, deviceID);
if (decrypted instanceof Int8Array) {
return decrypted;

} else {
throw new Error('Failed to decrypt');

}
}

return ret;
}

Figure 8.2: The double-encryption with the Realm encryption key from the keychain and the key
derived from the user-provided password

(mobile/modules/encryptionKeyUtils.ts:19–65)

The Kraken mobile wallet performs password authentication with the
getRealmEncryptionKey method, which retrieves the Realm encryption key from the
keychain and decrypts it with the decrypt method.

In the context of self-custody mobile wallets, the user-provided password could be used to
protect confidential data (e.g., the mnemonic) both at-rest (data stored in the filesystem)
and in the process’s memory. The data should be decrypted only on-demand before a
sensitive action.

Lastly, the local authentication renders the application nonfunctional when a user disables
operating system-level authentication (the screen lock). The user has to reinstall the
application to make it functional again.

Exploit Scenario
Alice installs and uses the Kraken wallet application on her mobile device. She moves the
wallet to the background while using other applications. Then, she locks her device. Bob
steals Alice’s device. He exploits a local privilege escalation vulnerability in the device’s

Trail of Bits 31 Kraken Mobile Wallet Security Assessment
PUBLIC

operating system and gains root access to the device. He then replaces the
is_biometrics_enabled flag that is stored in the plaintext AsyncStorage on the
filesystem, moves the Kraken wallet application to the foreground, and displays the
mnemonic.

Alternatively, instead of exploiting OS vulnerabilities, Bob does a forensic analysis of the
device and extracts the content of the device’s RAM. There, he finds the plaintext
mnemonic.

Recommendations
Short term, rewrite the local authentication to protect confidential data both at-rest and
when the application is open. Ensure that plaintext private keys and mnemonics are not
kept in the wallet process’s memory when not necessary. This security measure will limit
the time window for forensic attacks. Finally, take the following actions:

1. Fix the ability to bypass biometric authentication using the back button.

2. Reimplement biometric authentication to be result-based.

3. Reimplement the password authentication to be required not only to open the
wallet but also to perform sensitive actions (in addition to biometrics). Alternatively,
at the very least, have data be encrypted after the wallet is moved to the
background.

4. Either encrypt AsyncStorage or move security-relevant information from there to
encrypted storage.

5. Decide how the wallet should behave if operating system–level authentication is
disabled.

For item 2, have the wallet store users’ private keys and mnemonics encrypted with the
keychain’s or keystore’s key, and allow them to be decrypted only on-demand and with
biometric authentication. Configure the wallet to require reauthorization before any action
(instead of using time-based unlocking, for example). This can be done with the
setUserAuthenticationRequired and setUserAuthenticationParameters
methods on Android and with the SecAccessControlCreateFlags flags on iOS. Note
that this proposed fix may require the currently used react-native Expo library to be
replaced.

For item 3, separate non-confidential (e.g., addresses, wallet names) and confidential (e.g.,
private keys, mnemonics) data and have them encrypted with different keys. Have the
non-confidential data decrypted once, when the wallet is opened, and have the confidential
data decrypted only on-demand (e.g., when the user wants to sign a transaction or display
a mnemonic). For example, the non-confidential data may be kept in the encrypted Realm

Trail of Bits 32 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationParameters(int,%20int)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationParameters(int,%20int)
https://developer.apple.com/documentation/security/secaccesscontrolcreateflags

(as it is now), but the confidential data should be protected by other means, as the Realm
encryption does not offer a way to decrypt on-demand.

For item 4, review the data that is stored outside of the encrypted Realm and move all
security-relevant information to the Realm. This information should include at least the
is_biometrics_enabled flag (in the current implementation of the biometric
authentication). Consider using the NSFileProtectionCompleteUnlessOpen protection
level on iOS for additional encryption of at-rest data.

Note that both security controls—biometric and password—should work together. There
are two approaches:

1. Require both biometric and password authentication for every sensitive action.

2. Require biometric authentication for sensitive actions and password authentication
only for the initial unlocking of the application.

The first approach is preferable from a security perspective: even offline attacks against a
device’s secure hardware would be circumvented by the password protection. However, it
may downgrade user experience.

For item 5, there are two scenarios involving the disabling of operating system–level
authentication. Both start with the authentication enabled in both the operating system
and the wallet:

● The user disables operating system–level authentication. The wallet can then take
one of the following actions:

○ Automatically disable local authentication

○ Invalidate all of its keys and ask the user to initialize the application from
scratch (import the wallet again or create a new one)

○ Lock its state, forbidding the user from opening the wallet and asking the
user to re-enable the operating system–level authentication or reinitialize the
wallet

● The user disables operating system–level authentication and then enables it, or the
user changes the operating system–level PIN or adds a new fingerprint. The wallet
can then take one of the following actions:

○ Invalidate all of its keys after any of these events

○ Keep functioning with the old keys

Trail of Bits 33 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete

From a security point of view, we recommend having the wallet invalidate all of its keys and
asking users for reinitialization in both scenarios. This can be achieved with the
InvalidatedByBiometricEnrollment flag on Android and the biometryCurrentSet
flag on iOS. Note that the recommended approach will require the user to recover the
mnemonic whenever they change their device’s PIN or add new fingerprints, which may be
surprising to users and result in the loss of private keys. On the other hand, users are
asked to back up their mnemonics, so they should be prepared for wallet reinitialization.

Depending on what approach the Kraken team chooses, the implementation of the
recommendations in items 1–5 will differ.

Long term, do UI automation tests to verify that clicking the back button does not bypass
authentication screens.

References
● OWASP: Local Authentication on Android and Local Authentication on iOS

● Leonard Eschenbaum: Bypassing Android Biometric Authentication

● Panagiotis Papaioannou: A closer look at the security of React Native biometric
libraries

Trail of Bits 34 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setInvalidatedByBiometricEnrollment(boolean)
https://developer.apple.com/documentation/security/secaccesscontrolcreateflags/2937192-biometrycurrentset
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05f-testing-local-authentication
https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06f-testing-local-authentication
https://sec-consult.com/blog/detail/bypassing-android-biometric-authentication/
https://blog.nviso.eu/2021/04/06/a-closer-look-at-the-security-of-react-native-biometric-libraries/
https://blog.nviso.eu/2021/04/06/a-closer-look-at-the-security-of-react-native-biometric-libraries/

9. Reauthentication not required for all sensitive actions

Severity: Medium Difficulty: High

Type: Access Controls Finding ID: TOB-KMW-9

Target: Kraken mobile wallet application

Description
All sensitive actions should require users to reauthenticate. Currently, the Kraken wallet
application requires reauthentication for operations such as revealing the secret recovery
phrase or making transactions, but the following operations do not require
reauthentication:

● Changing the wallet name: An attacker with local access to a device could change
the wallet name, confusing the user.

● Removing all data: An attacker with local access to a device could remove all
Kraken application data, which could cause the user to lose their funds.

● Confirming WalletConnect signing requests: For example, the personal_sign
method asks the wallet for a signature, and the user can generate it without
biometric authorization.

Exploit Scenario
An attacker gains unauthorized access to a user’s phone with the Kraken wallet open. The
attacker uses the “Remove all data” feature within the application. If the user has forgotten
his secret recovery phrase, he would not be able to restore the wallet, leading to a total loss
of funds.

Recommendations
Short term, require users to reauthenticate before they can make sensitive changes to their
accounts, such as changing wallet names and removing all data. This will prevent attackers
with short-term access to a user’s device from deleting the user’s wallet. As users typically
do not need to perform these sensitive actions regularly, reauthentication should not add
much burden to the user experience. Consider removing the functionality to wipe all data
after 10 unsuccessful attempts to unlock the wallet with a password. That functionality is
especially dangerous if the wallet is not protected by the biometric authentication
requirement.

Long term, review and document all operations and ensure that no sensitive operations
are unprotected.

Trail of Bits 35 Kraken Mobile Wallet Security Assessment
PUBLIC

10. Password policy issues on extra password protection

Severity: Low Difficulty: High

Type: Authentication Finding ID: TOB-KMW-10

Target: Kraken mobile wallet application

Description
A user can add extra security to his wallet by requiring password protection. However, the
password policy requires that the password be at least six characters long. This is an
imperfect requirement—according to NIST SP800-63B, passwords shorter than eight
characters are considered to be weak. Also, the application does not verify (or at least warn
users about using) passwords that are low entropy or are composed of a small set of
characters (e.g., “aaaaaa”). The Kraken wallet does not defend users against rampant
password reuse that would trivialize the effort required to decrypt wallets in the event of a
back-end breach. Recent research indicates that 62% of users reuse passwords across
multiple sites. Many of those reused passwords are likely to have been leaked by unrelated
hacks, allowing credential stuffers to purchase those credentials and theoretically decrypt
wallets at little expense.

Exploit Scenario
A user sets up a wallet and adds additional protection with the password 123456. An
attacker gains unauthorized access to the user’s wallet and easily decrypts the Kraken
wallet using a common password wordlist, which allows him to steal the user’s funds.

Recommendations
Short term, require that passwords be at least eight characters long. In the UI, implement a
password strength meter to encourage users to set stronger passwords.

Long term, implement the Have I Been Pwned (HIBP) API in the wallet to check user
passwords against publicly known passwords. If a password chosen by a user has been
compromised, the wallet should inform the user and require the user to choose a new one.

Trail of Bits 36 Kraken Mobile Wallet Security Assessment
PUBLIC

https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.lastpass.com/resources/ebook/psychology-of-passwords-2022
https://haveibeenpwned.com/API/v2#PwnedPasswords

11. Sensitive content exposed via Clipboard

Severity: Low Difficulty: High

Type: Data Exposure Finding ID: TOB-KMW-11

Target: Kraken mobile wallet Android application

Description
Kraken’s Android application exposes the secret recovery phase when it is copied to the
clipboard (figure 11.1). With the introduction of Android 13, the system displays any text
copied in a popover UI on the user’s screen. This functionality can expose sensitive data if
the text includes confidential content such as passwords or, in this case, a secret recovery
phase.

To offset this vulnerability, Android 13 has introduced a new flag, EXTRA_IS_SENSITIVE,
which, when applied to copied data, considers it sensitive and prevents its display on the
user’s screen.

Figure 11.1: Sensitive data exposed in an Android popover UI

Trail of Bits 37 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/reference/android/content/ClipDescription#EXTRA_IS_SENSITIVE

Exploit Scenario
A user copies their secret recovery phase from the Kraken Android application to the
clipboard. Because the copied data is not marked as sensitive, the secret recovery phase
appears in the popover UI on the user’s screen, exposing the secret recovery phase to
potential adversaries.

Recommendations
Short term, apply the EXTRA_IS_SENSITIVE flag to any sensitive data copied to the
clipboard from the Kraken Android application. This will prevent the exposure of the data
via the popover UI feature on Android 13.

Long term, conduct an extensive security review of the application to identify other
potential ways through which sensitive data may be exposed, and document possible
mitigations.

Trail of Bits 38 Kraken Mobile Wallet Security Assessment
PUBLIC

12. Truncated message content when signing via WalletConnect

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-KMW-12

Target: Kraken mobile wallet Android application

Description
When a user tries to sign a message through WalletConnect on the Kraken Android
application, the platform truncates the message, making it impossible for the user to read
the entire content (figure 12.1).

Figure 12.1: The truncated view of the message when signing a message via WalletConnect

Additionally, the message may have been maliciously constructed in order to confuse the
user, using extra keys and strings or superfluous whitespace in the JSON document. If users
cannot review full messages, they may be misled into signing a risky payload.

Trail of Bits 39 Kraken Mobile Wallet Security Assessment
PUBLIC

Exploit Scenario
Bob, a user of Kraken’s mobile wallet, attempts to sign a message for a transaction with
WalletConnect. The message is truncated, preventing him from reading the full description
of the transaction. As a result, he either rejects a legitimate transaction due to lack of clarity
or approves a risky one because all details were not displayed.

Recommendations
Short term, ensure a full message is visible to users when attempting to sign a message
through WalletConnect. Consider requiring users to scroll through the complete message
before allowing them to sign it.

Long term, conduct a thorough review of the UI and the user experience elements relating
to transaction signing.

References
● A UI Flaw in Top Crypto Wallets We Need to Address (a Coinspect article showing

how a malicious payload can confuse users)

Trail of Bits 40 Kraken Mobile Wallet Security Assessment
PUBLIC

https://www.coinspect.com/wallet-EIP-712-injection-vulnerability/

13. Removal of URL protocol when pairing with WalletConnect

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-KMW-13

Target: Kraken mobile wallet Android application

Description
The Kraken Android application, when pairing with WalletConnect, uses the
removeProtocol function (13.1) to display the paired application’s URL without its
protocol (figure 13.2). However, this absence of visibility of the protocol could mislead users
into perceiving their connection as secure, regardless of whether it is actually a secure
protocol (HTTPS) or a plain HTTP connection (figure 13.3).

export function removeProtocol(url: string): string {
return url.replace(/(^[\w-]+:|^)\/\//, '');

}

Figure 13.1: The removeProtocol function responsible for the protocol truncation
(mobile/modules/text-utils.ts)

<Label type="regularCaption1" color="light75" style={styles.url} numberOfLines={1}>
{removeProtocol(removeWWWSubdomain(url))}

</Label>

Figure 13.2: The code responsible for displaying the URL when pairing with WalletConnect
(mobile/src/pages/ConnectApp/Header.tsx)

Figure 13.3: Pairing the Kraken application with WalletConnect hosted on
http://localhost:3000

Trail of Bits 41 Kraken Mobile Wallet Security Assessment
PUBLIC

Exploit Scenario
Bob, a Kraken user, pairs his wallet with an application by using WalletConnect. He sees the
URL as displayed by the Kraken application. However, the protocol from the URL has been
removed, so Bob is unaware of whether he is connecting to a secure (HTTPS) or a
non-secure (HTTP) site. Bob then proceeds with transactions on a potentially insecure
platform, potentially exposing him to person-in-the-middle attacks.

Recommendations
Short term, modify the UI to include the application’s URL protocol.

Long term, include explicit notifications highlighting the type of connection protocol being
used, ensuring users are informed about their connection’s security status. Consider
allowing only HTTPS connections to ensure security standards are maintained.

Trail of Bits 42 Kraken Mobile Wallet Security Assessment
PUBLIC

14. Exposure of misconfigured GCP API key

Severity: Low Difficulty: High

Type: Configuration Finding ID: TOB-KMW-14

Target: Kraken mobile wallet Android application

Description
The Google Cloud Platform API key is embedded in the Kraken mobile wallet code (figure
14.1), which makes it publicly accessible. A test of the API key endpoint responds with an
HTTP 200 status code, denoting insufficient key restrictions (figure 14.2). This could result in
unanticipated costs and changes to the application’s quota.

<string name="google_api_key">AIzaSyDfANe88EOqd4HWj2orL2Zz7LfV-5WjVRo</string>

Figure 14.1: The part of the res/values/strings.xml file in the decompiled Kraken mobile
APK

➜ ~ curl https://www.googleapis.com/discovery/v1/apis\?key\=
AIzaSyDfANe88EOqd4HWj2orL2Zz7LfV-5WjVRo
{
"kind": "discovery#directoryList",
"discoveryVersion": "v1",
"items": [
{
"kind": "discovery#directoryItem",
"id": "abusiveexperiencereport:v1",
"name": "abusiveexperiencereport",
"version": "v1",
"title": "Abusive Experience Report API",

Figure 14.2: A test of the API key endpoint that gives an HTTP 200 response and JSON data,
showing insufficient key restrictions

Recommendations
Short term, specify the mobile application that can use the key. For the Kraken mobile
wallet on Android, set the application restriction to “Android apps” and add the application
package name with the SHA-1 signing certificate fingerprint. For the Kraken mobile wallet
on iOS, restrict the key to “iOS apps” and provide the appropriate bundle ID.

Long term, periodically review whether the application contains potentially sensitive API
keys; if it does, ensure that these keys have configured secure restraints.

Trail of Bits 43 Kraken Mobile Wallet Security Assessment
PUBLIC

https://cloud.google.com/docs/authentication/api-keys#android
https://cloud.google.com/docs/authentication/api-keys#android
https://cloud.google.com/docs/authentication/api-keys#ios
https://cloud.google.com/docs/authentication/api-keys#ios

References
● Google Cloud: Authenticate by using API keys

Trail of Bits 44 Kraken Mobile Wallet Security Assessment
PUBLIC

https://cloud.google.com/docs/authentication/api-keys#securing_an_api_key

15. Absence of account lockout mechanism

Severity: Low Difficulty: High

Type: Authentication Finding ID: TOB-KMW-15

Target: Kraken mobile wallet Android application

Description
The Kraken mobile wallet does not have an account lockout mechanism that is triggered
after several consecutive failed password attempts. This means that an attacker can make
an indefinite number of attempts to unlock a wallet, thereby opening a potential vector for
brute-force attacks, especially on weaker passwords.

Exploit Scenario
John, a Kraken mobile wallet user, lost his mobile device without realizing it. An attacker
finds the device and tries to gain access to John’s Kraken wallet. Given that there is no
lockout mechanism after several failed attempts, the attacker can continuously try different
passwords. Depending on the complexity of John’s password, the attacker eventually
guesses it and gains unauthorized access to the wallet, allowing him to steal John’s assets.

Recommendations
Short term, introduce an account lockout mechanism that temporarily disables an account
or exponentially increases the delay between login attempts following a certain number of
consecutive failed attempts. This would discourage brute-force attacks and add an extra
layer of protection to user accounts.

When implementing the lockout, do not rely on the phone’s clock for time comparisons.
Use a source of time that returns the monotonic timestamp since the system booted.
When a user reboots their device, the timestamp will return to zero because zero seconds
have passed since the system booted. A timestamp that is more recent than the timestamp
of the last failed password attempt indicates that the system has rebooted and that the
stored timestamp can safely be updated to zero. This measure means that users will have
to wait through the full lockout time again after a reboot, but it ensures that attackers
cannot manipulate the time left on a lockout. For monotonic timestamps on Android, use
the elapsedRealtime function, and on iOS, use the clock_gettime function with the
CLOCK_MONOTONIC argument.

Trail of Bits 45 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/reference/android/os/SystemClock#elapsedRealtime()

16. Harmony proof of work allows attacker to tamper with expiration

Severity: Medium Difficulty: Low

Type: Authentication Finding ID: TOB-KMW-16

Target: Kraken mobile wallet Android application

Description
The Kraken mobile wallet has a proof-of-work scheme as an extra measure of defense for
its API. Specifically, to obtain an API key, a user must complete a proof-of-work challenge
that requires them to find the correct random solution value such that, when hashed with
other values using Argon2, the result is below a predefined difficulty level. This is meant to
make it more difficult for malicious users to obtain several API keys and access the API
without limit.

A user who requests an API key is given a challenge for the proof-of-work scheme that is
generated by the back end. This challenge consists of a random byte string, a (fixed)
version number, a timestamp, and an expiration date for the API key. The user then
searches by brute force for a random solution to the challenge. For each guess in the
brute-force search, the user hashes the guess along with the challenge values and checks
whether the output falls below the difficulty level. If it does, the user has successfully
completed the proof-of-work challenge and can submit their solution to be verified.

Importantly, when generating a proof-of-work challenge, the back end signs the challenge
using a cryptographic secret. When the solution is submitted, the back end checks whether
there is a valid signature associated with the challenge to ensure the challenge was not
generated by the user. Once the solution is verified, the user is granted the API key.

Harmony contains the logic for generating and signing challenges with an HMAC. There is
also an important subtlety with how Harmony handles API key expiration. Unfortunately, as
shown in figure 16.1, when Harmony signs its challenges, only the timestamp and random
string are signed; the expiration date is not signed with an HMAC.

export function challengeToString(challenge: Challenge) {
return `${challenge.v}.${challenge.ts}.${challenge.d}`;

}

export function createPowChallenge(secret: string): readonly [Challenge, string] {
// Construct a challenge containing random bytes + the current timestamp.
const salt = crypto.randomBytes(32);
const timestamp = new Date().getTime();

Trail of Bits 46 Kraken Mobile Wallet Security Assessment
PUBLIC

const challenge: Challenge = {
v: 1,
ts: timestamp,
expiry: timestamp + 1000 * 60 * getPowKeyDuration(),
d: salt.toString("hex"),

};

// Sign the challenge
const challengeEncoded = challengeToString(challenge);

// Calculate the hmac over the given payload
const hmac = crypto.createHmac("sha256", secret);
hmac.update(challengeEncoded);
const signature = hmac.digest("hex");

return [challenge, signature] as const;
}

Figure 16.1: Harmony does not include the expiration date in the HMAC.

The fact that the HMAC does not cover the expiration date means that an attacker could
modify this data field without detection. As shown in figure 16.2, the back end implicitly
trusts whichever expiration date is supplied with the submitted solution. Since this value is
not signed with the HMAC, this means the back end could be trusting a malicious
expiration date. An attacker could then change the expiration date to a time very far into
the future so that they can then use their API key for an arbitrary amount of time.

@Route("pow/submit")
export class PowSubmitSolutionController extends Controller {
/**
* Submit a PoW challenge.
*/
@Post()
public async submitSolution(
@Request() request: express.Request,
@Body()
body: {
solution: string;
challenge: Challenge;
signature: string;

}
): Promise<{ key: string }> {
const secret = getPowPrivateKey();

// Verify that the challenge is one we really issued.
const challengeIsValid = verifyPowChallenge(body.challenge, body.signature,

secret);
if (!challengeIsValid) {
throw new BadRequestError({ message: "invalid pow challenge" });

}

Trail of Bits 47 Kraken Mobile Wallet Security Assessment
PUBLIC

// Verify that the solution satisfies the challenge
const solutionIsValid = await verifyPowSolution(body.solution, body.challenge);
if (!solutionIsValid) {
throw new BadRequestError({ message: "invalid pow solution" });

}

// Note that we do not verify the timestamp of the challenge - the API
// key we issue is bounded by that same timestamp itself.

// If valid, then we bless the solution as a valid API key by singing it.
// We also include the *original* timestamp, to make sure we can expire the
// key. Note that we *need* to use the original timestamp from the challenge,

and
// not the current system timestamp.
//
// The timestamp of the challenge was part of the data that the PoW was

calculated
// against, so it cannot be modified without invalidating the proof.

// If we used the current system timestamp, a client could submit the same
solution

// multiple times to receive multiple API keys, each unique due to the included
// timestamps being slightly different. And receiving a stable unique API key

for each
// PoW solution that can be rate-limited against is the whole point of this

exercise.
const key = await makeAPIKey(body.solution, body.challenge.expiry, secret);

return {
key,

};
}

}

Figure 16.2: Harmony trusts potentially modified expiration dates.

Exploit Scenario
An attacker notices that Harmony does not include the expiration date in their HMAC
computation, so they modify the expiration date on their proof-of-work solution to a date
much further in the future. Since the back end does not detect this modification, the
attacker has a valid API key for a practically unlimited amount of time.

Recommendations
Short term, adjust the implementation of the Harmony proof of work so that the expiration
date is included in the HMAC computation.

Long term, consider unifying the proof-of-work implementations between both Harmony
and Ground Control. This could help reduce the likelihood of other future security issues by
reducing the code’s complexity and attack surface.

Trail of Bits 48 Kraken Mobile Wallet Security Assessment
PUBLIC

17. Harmony reuses the same HMAC key for signing proof-of-work challenges
and image URLs

Severity: Informational Difficulty: High

Type: Cryptography Finding ID: TOB-KMW-17

Target: harmony/bin/cf-image-worker.js, harmony/src/pow/config.ts

Description
The Kraken mobile wallet currently reuses the same cryptographic secret across two
different contexts. In particular, the secret key stored in the POW_PRIVATE_KEY
environment variable is currently used for generating HMACs for API proof-of-work
challenges and for image URLs in harmony/bin/cf-image-worker.js.

In general, it is considered bad practice to reuse the same cryptographic key for two
different purposes. The reason for this is that it increases the attack surface of the key and
degrades the practical security of each context to the least secure of the two contexts. In
other words, using the same key in two contexts is a weak design choice because if the key
is compromised in one context, the other context is immediately compromised as well.
Ideally, each context should have its own dedicated cryptographic key.

Exploit Scenario
An attacker discovers a flaw in the logic for creating proof-of-work API keys, causing the
HMAC secret to be leaked and obtained by the attacker. Since this same key is also used for
signing image URLs, this part of the system is immediately compromised as well.

Recommendations
Short term, adjust the Kraken mobile wallet so that HMACs for proof-of-work API key
challenges and image URLs use separate cryptographic secrets.

Long term, moving forward, ensure that all cryptographic secrets are used for exclusively
one purpose.

Trail of Bits 49 Kraken Mobile Wallet Security Assessment
PUBLIC

18. WalletConnect transaction confirmation screen may be suddenly switched

Severity: Medium Difficulty: High

Type: Timing Finding ID: TOB-KMW-18

Target: Kraken mobile wallet application

Description
The Kraken mobile wallet shows a popup dialog box when a dapp sends a request with the
WalletConnect protocol. The dialog box shows the dapp’s name and URL and the content of
the request to the wallet’s user, and asks the user for confirmation. When the user clicks
the “Confirm” button, the request is approved, and the wallet computes a signature and
sends it to the dapp. If another connected dapp sends its own request just before the user
clicks the confirmation button, then the new request will be approved. As a result, the user
would approve a request that they did not intend to.

Exploit Scenario
Alice connected her Kraken mobile wallet to two dapps. One of the dapps sends her an
innocent request with the personal_sign method. Alice reviews the request and wants to
approve it. When she is about to click the “Confirm” button, the other dapp sends a token
transfer request with the eth_sendTransaction method. Alice approves the transaction
instead of the message signature.

Recommendations
Short term, have the wallet push new requests to the bottom of the stack, instead of
showing them on top of previous requests, and enable the confirmation button only after a
few seconds so that users will not accidentally click it.

Long term, design the UI so that dialog boxes do not unexpectedly show up, elements do
not move around without user interaction, and windows do not gain focus in unexpected
moments. Sudden interface changes could lead users to perform other actions than
intended. This issue impacts the user experience and may have security consequences.

References
● The missile warning system meme (based on the 2018 Hawaii false missile alert)

Trail of Bits 50 Kraken Mobile Wallet Security Assessment
PUBLIC

https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExNjk4NDl4bXppcms5OWNmbWZjZ25obWcwazU0cTc2bHNzYzVubWJmZiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/xULW8wq0KtPBfXPRpC/giphy.gif
https://en.wikipedia.org/wiki/2018_Hawaii_false_missile_alert

19. SafetyNet Verify Apps and Play Integrity APIs not implemented in the
Android client

Severity: Informational Difficulty: High

Type: Configuration Finding ID: TOB-KMW-19

Target: Kraken mobile wallet Android application

Description
The Kraken Android application does not use the SafetyNet Verify Apps API or the Play
Integrity API.

Google Play provides the SafetyNet Verify Apps API to check whether potentially harmful
applications are on a user’s device. Through the Verify Apps feature, Google monitors and
profiles the behavior of Android applications, informs users of potentially harmful
applications, and encourages users to delete them. However, users are free to disable this
feature and to ignore these warnings. The SafetyNet Verify Apps API can tell Kraken
whether the Verify Apps feature is enabled and whether such applications remain on the
user’s device. This can provide an additional line of defense.

The Play Integrity API verifies that interactions and server requests come from the genuine
application binary running on a real Android device. By detecting potentially risky and
fraudulent interactions, such as from application versions that have been tampered with
and untrusted environments, the application’s back-end server can respond appropriately
to prevent attacks and reduce abuse. The Play Integrity API is a continuation of the
deprecated SafetyNet Attestation API.

Exploit Scenario
Bob has unknowingly installed a malicious application, which the Verify Apps feature
detects. He ignores the warnings to uninstall the application because it includes a game
that he enjoys. He also uses the Kraken application on the same device. The malicious
application exploits an unpatched vulnerability in the Android system to extract the wallet
keys from the phone’s RAM. The malicious application also tricks Bob into transferring his
assets to a third party via a tapjacking attack.

Recommendations
Short term, implement the SafetyNet Verify Apps API to require that the Verify Apps feature
be enabled for all Kraken users and to ensure that known harmful applications are not
installed on users’ devices. Also, implement the Play Integrity API to ensure that the
genuine application binary is run on a genuine Android device.

Trail of Bits 51 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/privacy-and-security/safetynet/verify-apps
https://developer.android.com/google/play/integrity
https://developer.android.com/privacy-and-security/safetynet/attestation

Long term, stay updated on new security features introduced in Android and continue
adding relevant safety protections to the Kraken mobile applications.

References
● Android Developers: SafetyNet Verify Apps API

● Android Developers: Security guidelines

Trail of Bits 52 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/training/safetynet/verify-apps
https://developer.android.com/topic/security/best-practices

20. No explicit verification of the Android security provider

Severity: Informational Difficulty: High

Type: Patching Finding ID: TOB-KMW-20

Target: Kraken mobile wallet Android application

Description
The Kraken Android application does not explicitly check whether it runs on a device with
an up-to-date Android security provider.

A security provider is responsible for providing secure network communications, such as
SSL/TLS. If the Kraken mobile wallet application is running on a device with an outdated
security provider, it may be vulnerable to network attacks. For example, an attacker on the
network could decrypt and compromise the wallet’s TLS traffic.

Exploit Scenario
An attacker exploits a new vulnerability discovered in Android to perform a
person-in-the-middle attack (similar to CVE-2014-0224). Alice has not upgraded her phone
to include the latest version of the security provider to mitigate this vulnerability. The
attacker is able to snoop and modify Alice’s TLS traffic to Kraken’s Harmony API server.

Recommendations
Short term, follow Google’s guidance on patching the security provider by using the Google
Play services ProviderInstaller class. For example, implement
ProviderInstaller.installIfNeeded() to run when the application starts.

Long term, stay updated on new security features introduced in Android and iOS and
continue adding relevant safety protections to the Kraken mobile applications.

References
● Android Developers: Update your security provider to protect against SSL exploits

Trail of Bits 53 Kraken Mobile Wallet Security Assessment
PUBLIC

https://nvd.nist.gov/vuln/detail/CVE-2014-0224
https://developers.google.com/android/reference/com/google/android/gms/security/ProviderInstaller#installIfNeeded(android.content.Context)
https://developer.android.com/training/articles/security-gms-provider

21. Project dependencies are not monitored for vulnerabilities

Severity: Informational Difficulty: High

Type: Patching Finding ID: TOB-KMW-21

Target: Kraken mobile wallet application

Description
The Kraken mobile wallet application is built with React Native and uses several third-party
libraries to implement different functionalities. These third-party components may contain
vulnerabilities, which can be discovered and fixed in newer releases. The wallet project
currently uses older versions of these libraries, and there appears to be no set process to
review new releases of dependencies, assess their impact, and apply upgrades and fixes.

Exploit Scenario
An attacker notices that the Kraken mobile wallet uses an older version of React Native,
which includes a known vulnerable dependency. The attacker successfully exploits the
vulnerability.

Recommendations
Short term, upgrade all dependencies in the Kraken project to their latest versions. For
example, use the yarn outdated command to obtain a list of dependencies that are out of
date, and use yarn audit to obtain a list of known vulnerable dependencies.

Long term, configure a process to get notified of new dependency releases in a timely
manner. For instance, use Dependabot on GitHub to automatically open pull requests
when new releases occur. Triage new dependency releases and upgrade dependencies if
security fixes are provided.

Trail of Bits 54 Kraken Mobile Wallet Security Assessment
PUBLIC

22. Device-to-device backups are not disabled

Severity: Low Difficulty: High

Type: Data Exposure Finding ID: TOB-KMW-22

Target: Kraken mobile wallet Android application

Description
The Kraken mobile wallet does not disable local device-to-device transfers. Encrypted local
databases may be shared with other devices.

While the wallet disables backups to Google Drive with the allowBackup flag, the newer
Android versions (Android 12/API level 31 and higher) do not disable device-to-device
transfers with this flag.

Exploit Scenario
An adversary gains temporary physical access to a phone. He initiates a device-to-device
transfer and copies the Kraken mobile wallet’s encrypted data to his device. He then puts
the phone back in place so that the victim does not notice the incident. The adversary
performs an offline brute-force attack and obtains the user’s private keys.

Exploit Scenario 2
A user copies all of his data to a new device with local device-to-device transfer. The old
Kraken mobile wallet’s encrypted databases are transferred. The user installs the wallet on
the new phone. The wallet application fails to start because it cannot decrypt the copied
databases, as the encryption master key stored in the device’s keystore is new. The user
gets angry, and Kraken’s reputation is damaged.

Recommendations
Short term, disable device-to-device transfers. To do so, add the
android:dataExtractionRules flag to the Android manifest pointing to a file with a
<device-transfer> section. Add the android:fullBackupContent flag to support
older API levels.

Long term, follow releases of new Android features and make sure that the Kraken mobile
wallet application deals with them correctly.

References
● Android Developers: Backup and restore behavior changes for apps targeting

Android 12

Trail of Bits 55 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/guide/topics/data/testingbackup#TestingTransfer
https://developer.android.com/guide/topics/data/autobackup#EnablingAutoBackup
https://developer.android.com/guide/topics/data/autobackup#EnablingAutoBackup
https://developer.android.com/about/versions/12/behavior-changes-12#backup-restore
https://developer.android.com/about/versions/12/behavior-changes-12#backup-restore

23. Application crashes when SVG image is tapped twice in the NFT module

Severity: Low Difficulty: High

Type: Error Reporting Finding ID: TOB-KMW-23

Target: Kraken mobile wallet Android application

Description
The Kraken mobile wallet application crashes when a user double-taps the SVG image
present in the NFT module (figure 23.1). The crash is accompanied by a console error
message that highlights problems with the key prop for each child in the list (figure 23.2).

Figure 23.1: The preview of the SVG image in the NFT module

ERROR Warning: Each child in a list should have a unique "key" prop.

Check the render method of `NftTraits`. See https://reactjs.org/link/warning-keys
for more information.

at View
(http://localhost:8081/index.bundle//&platform=android&dev=true&minify=false&app=com
.kraken.superwallet&modulesOnly=false&runModule=true:46837:31)

in NftTraits (created by ViewNft)

Trail of Bits 56 Kraken Mobile Wallet Security Assessment
PUBLIC

in RCTView (created by View)
in View (created by ScrollView)
in RCTScrollView (created by ScrollView)
in ScrollView (created by ScrollView)
in ScrollView (created by AnimatedComponent(ScrollView))
in AnimatedComponent(ScrollView)
in Unknown (created by NativeViewGestureHandler)
in NativeViewGestureHandler (created by BottomSheetScrollView)
in RCTView (created by View)

Figure 23.2: The error returned when the SVG image is tapped twice and the application crashes

Exploit Scenario
John is a user exploring the NFT module in the Kraken mobile wallet application. He decides
to double-tap the SVG image to take a closer look at a particular NFT item. However,
instead of the expected result, the application unexpectedly crashes. This crash disrupts
John’s user experience and makes the application appear unstable and untrustworthy.

Recommendations
Short term, fix the underlying problem to prevent the application from crashing when users
interact with the SVG image.

Trail of Bits 57 Kraken Mobile Wallet Security Assessment
PUBLIC

24. Fee amounts are not displayed and can be controlled by remote services

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-KMW-24

Target: Kraken mobile wallet application

Description
The Kraken mobile wallet does not display specific fee amounts. The wallet shows only one
of the “fast,” “slow,” or “medium” strings. Therefore, users cannot manually validate the
specific number of coins that will be spent on a transaction. Moreover, some fees are
computed based on data received from remote services. If a service reports malicious data,
the user may pay an unexpectedly huge fee. For example, the Bitcoin fee is estimated in
the estimateFees function based on data received from Electrum.

Due to time constraints, we were not able to verify whether this issue impacts all chains or
only some of them.

Exploit Scenario
The Electrum endpoint becomes malicious or compromised or starts malfunctioning,
causing it to start reporting inflated fees. Unaware users of the Kraken wallet sign Bitcoin
transactions with very large fees, without the ability to manually detect that fact before
signing. They lose a large amount of money and blame Kraken for the incident.

Recommendations
Short term, allow users to manually verify the exact fee amounts that they will pay for
transactions. Allow them to review other properties of transactions like gas limits and gas
prices. Review how fees and other data used to construct transactions are computed (for
all of the chains). Make sure that a malicious remote endpoint cannot force fees to become
huge or to manipulate any part of data that is used to construct transactions. For example,
hard code some sane fee amounts and have the wallet check whether the amounts
received from online services are close to those hard-coded amounts. If the computed fees
are unexpected, have the wallet warn users and instruct them about the actions they
should take to protect their assets (e.g., do not sign the affected transactions; check the
expected fees and if the warning is valid, contact the Kraken team).

Trail of Bits 58 Kraken Mobile Wallet Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 59 Kraken Mobile Wallet Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 60 Kraken Mobile Wallet Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Configuration The configuration of system components in accordance with best
practices

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Documentation The presence of comprehensive and readable codebase documentation

Maintenance The timely maintenance of system components to mitigate risk

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Trail of Bits 61 Kraken Mobile Wallet Security Assessment
PUBLIC

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 62 Kraken Mobile Wallet Security Assessment
PUBLIC

C. Code Quality Recommendations

This appendix contains findings that do not have immediate or obvious security
implications or that were discovered but not fully investigated due to time constraints.

1. The encryptRealmEncryptionKey function does not prevent multiple
encryptions on the Realm encryption key. The encryptRealmEncryptionKey
function takes a password, derives an encryption key, and then encrypts the Realm
encryption key with it. This encrypted key can then be later decrypted by passing the
encryption password to the getRealmEncryptionKey function. However, the
encryptRealmEncryptionKey function does not prevent multiple encryptions on
the Realm encryption key, whereas the getRealmEncryptionKey function allows
only for the decryption of keys that have been encrypted once. Furthermore, the
documentation does not state that encryptRealmEncryptionKey should not be
called multiple times on the same key, as this would prevent users from accessing
the key. Currently, the mobile wallet prevents multiple encryptions by checking
whether isStorageEncryptedKey is true in the AsyncStorage in another
location, so there is currently no risk of multiple encryptions. However, we
recommend either documenting this risk with surrounding comments or adding an
explicit check inside of encryptRealmEncryptionKey to ensure that this does not
become an issue as the codebase evolves over time.

2. The Harmony validateAPIKey function takes a private Ed25519 key as input,
but it only needs to use the public key. The validateAPIKey function verifies
that an API key is valid by checking the signature associated with the key against the
Harmony public key. Even though only the public key is required, the function takes
the secret key as input and then derives the public key from this secret key. We
recommend adjusting this function to take the public key as input instead, as this
could prevent the private key from being loaded into memory unnecessarily.

3. The network security configuration on the Android application allows
cleartext traffic to localhost and 10.0.2.2 on all builds. Consider using
debug-overrides instead or overriding the network security configuration with
these changes only on debug builds.

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>

<domain-config cleartextTrafficPermitted="true">
<domain includeSubdomains="true">10.0.2.2</domain>
<domain includeSubdomains="true">localhost</domain>

</domain-config>
</network-security-config>

Figure C.3.1: The network security configuration
(mobile/android/app/src/main/res/xml/network_security_config.xml)

Trail of Bits 63 Kraken Mobile Wallet Security Assessment
PUBLIC

https://developer.android.com/training/articles/security-config#debug-overrides

4. The return value from the Keychain.resetGenericPasswordmethod is not
checked. The clearAppData function may fail to reset the keychain item without
notification. The issue does not have security implications because the
wipeEncryptionKey method is called after every call to the clearAppData
function.

export const clearAppData = async () => {
await Keychain.resetGenericPassword({ service: keychainServiceName });
await AsyncStorage.clear();
WalletConnectSessionsManager.disconnectAllSessionsForAllAccounts();
Realm.deleteFile({ schema: RealmSchema });

};

Figure C.4.1: The clearAppDatamethod calls functions without proper error handling.
(mobile/src/utils/clearAppData.ts:8–13)

5. Simple string-manipulation functions are used to parse and manipulate URLs.
This is insecure. Functions specifically designed for parsing URLs should be used
instead.

export function removeWWWSubdomain(url: string): string {
return url.replace(/(?<=\/|^)www\./i, '');

}

Figure C.5.1: An example use of a string-manipulation function to manipulate URLs
(mobile/modules/text-utils.ts:90–92)

function url2domain(url: string): string {
return url.replace('http://', '').replace('https://', '').split('/')[0];

}

Figure C.5.2: Another use of insecure URL parsing
(mobile/modules/super-fetch.ts:37–39)

6. The sanitizeValue function is divergent from the validateAmountmethod.
The former function removes all non-digit characters except dots, while the latter
accepts numbers in various formats, including hex strings. As a result, users are able
to type in token amounts such as “0.1.2.3.4,” which the sanitizeValue function
would accept but which would be later rejected by the validateAmount method.
On the other hand, users are not able to type in token amounts in hex format, even
though the validation would accept them.

7. There are multiple sources of token metadata. Some metadata is hard-coded
but is also received from remote services. For example, token decimals are
hard-coded in the evm.ts file but also received from the
/api/data/v1/tokenMetadata endpoint. The wallet uses different metadata

Trail of Bits 64 Kraken Mobile Wallet Security Assessment
PUBLIC

values for different tasks, which may lead to user confusion if one of the sources is
divergent from the other.

8. Sections in the About feature redirect to the same page. Fix the About feature
so that each section correctly redirects users to the intended information: the
privacy policy, terms of service, licenses, or release notes.

9. The language switching feature does not work. Fix the feature so that it works as
intended.

Trail of Bits 65 Kraken Mobile Wallet Security Assessment
PUBLIC

D. Automated Static Analysis

This appendix describes the setup of the automated analysis tools used during this audit.

Though static analysis tools frequently report false positives, they detect certain categories
of issues, such as memory leaks, misspecified format strings, and the use of unsafe APIs,
with essentially perfect precision. We recommend periodically running these static analysis
tools and reviewing their findings.

Semgrep
To install Semgrep, we used pip by running python3 -m pip install semgrep.

To run Semgrep on the codebase, we ran the following commands in the root directory of
the project (running multiple predefined rules simultaneously by providing multiple
--config arguments):

semgrep --config "p/trailofbits" --config "p/ci" --config
“p/javascript” --config "p/security-audit" --config --metrics=off

semgrep --config auto

We recommend integrating Semgrep into the project’s CI/CD pipeline. To thoroughly
understand the Semgrep tool, refer to the Trail of Bits Testing Handbook, where we aim to
streamline the use of Semgrep and improve security testing effectiveness. Also, consider
doing the following:

● Limit results to error severity only by using the --severity ERROR flag.

● Focus first on rules with high confidence and medium- or high-impact metadata.

● Use the SARIF format (by using the --sarif Semgrep argument) with the SARIF
Viewer for Visual Studio Code extension. This will make it easier to review the
analysis results and drill down into specific issues to understand their impact and
severity.

CodeQL
We installed CodeQL by following CodeQL’s installation guide.

After installing CodeQL, we ran the following command to create the project database for
the React Native repository:

codeql database create codeql.db --language=javascript

We then ran the following command to query the database:

Trail of Bits 66 Kraken Mobile Wallet Security Assessment
PUBLIC

https://appsec.guide/docs/static-analysis/semgrep/
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/

codeql database analyze codeql.db -j 10 --format=csv
--output=codeql_tob.csv -- javascript-lgtm-full
javascript-security-and-quality javascript-security-experimental

We also used private Trail of Bits query packs.

Trail of Bits 67 Kraken Mobile Wallet Security Assessment
PUBLIC

E. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

From December 18 to December 20, 2023, Trail of Bits reviewed the fixes and mitigations
implemented by the Kraken team for issues identified in this report. We reviewed each fix
to determine its effectiveness in resolving the associated issue.

In summary, of the 24 issues described in this report, Kraken has resolved 16 issues, has
partially resolved one issue, and has not resolved the remaining seven issues. For
additional information, please see the Detailed Fix Review Results below.

ID Title Status

1 The QR code scanner is configured to detect all code types Resolved

2 Hard-coded Infura API key Resolved

3 Use of unpinned third-party scripts and images in CI Resolved

4 react-native-argon2 is unmaintained Unresolved

5 Missing certificate validation in electrum-client Resolved

6 Third-party applications can take and read screenshots of the Android
client screen

Resolved

7 Users may accidentally break wallet initialization Resolved

8 Local biometric and password authentication can be bypassed Resolved

9 Reauthentication not required for all sensitive actions Partially
Resolved

Trail of Bits 68 Kraken Mobile Wallet Security Assessment
PUBLIC

10 Password policy issues on extra password protection Resolved

11 Sensitive content exposed via Clipboard Resolved

12 Truncated message content when signing via WalletConnect Resolved

13 Removal of URL protocol when pairing with WalletConnect Resolved

14 Exposure of misconfigured GCP API key Resolved

15 Absence of account lockout mechanism Resolved

16 Harmony proof of work allows attacker to tamper with expiration Resolved

17 Harmony reuses the same HMAC key for signing proof-of-work
challenges and image URLs

Resolved

18 WalletConnect transaction confirmation screen may be suddenly
switched

Resolved

19 SafetyNet Verify Apps and Play Integrity APIs not implemented in the
Android client

Unresolved

20 No explicit verification of the Android security provider Resolved

21 Project dependencies are not monitored for vulnerabilities Unresolved

22 Device-to-device backups are not disabled Resolved

23 Application crashes when SVG image is tapped twice in the NFT
module

Resolved

Trail of Bits 69 Kraken Mobile Wallet Security Assessment
PUBLIC

24 Fee amounts are not displayed and can be controlled by remote
services

Resolved

Detailed Fix Review Results
TOB-KMW-1: The QR code scanner is configured to detect all code types
Resolved. The QR code scanner no longer recognizes unpredictable code types.

TOB-KMW-2: Hard-coded Infura API key
Resolved. The INFURA_PROJECT_ID value is no longer exposed in the source code.

TOB-KMW-3: Use of unpinned third-party scripts and images in CI
Resolved. The Kraken team now verifies the checksum of downloaded files.

TOB-KMW-4: react-native-argon2 is unmaintained
Unresolved. The client provided the following context for this finding’s fix status:

RISK ACCEPTED.
Remediation Recommendation: Accepted

TOB-KMW-5: Missing certificate validation in electrum-client
Resolved. The Kraken team confirmed that it uses react-native-tcp-socket v5.6.2
with the tlsCheckValidity option.

TOB-KMW-6: Third-party applications can take and read screenshots of the Android
client screen
Resolved. It is now impossible to capture the application screen from screenshots.

TOB-KMW-7: Users may accidentally break wallet initialization
Resolved. The application no longer throws a persistent error when wallet initialization is
accidentally broken.

TOB-KMW-8: Local biometric and password authentication can be bypassed
Resolved. The finding was reviewed in a separate audit on the Kraken key management
system.

TOB-KMW-9: Reauthentication not required for all sensitive actions
Partially resolved. The Kraken wallet application now requires reauthentication for all
sensitive operations indicated in the finding except for one: changing the wallet name still
does not require reauthentication.

TOB-KMW-10: Password policy issues on extra password protection
Resolved. The Kraken team implemented a password strength meter to show users the
strength of the passwords they are entering; this could encourage users to input stronger
passwords.

Trail of Bits 70 Kraken Mobile Wallet Security Assessment
PUBLIC

TOB-KMW-11: Sensitive content exposed via Clipboard
Resolved. The popover UI feature now shows dots instead of sensitive data.

TOB-KMW-12: Truncated message content when signing via WalletConnect
Resolved. The Kraken team implemented the ability to scroll through the message.

TOB-KMW-13: Removal of URL protocol when pairing with WalletConnect
Resolved. The Kraken team added the protocol to the domain URL.

TOB-KMW-14: Exposure of misconfigured GCP API key
Resolved. The GCP API key is now configured appropriately and returns a “permission
denied” error.

TOB-KMW-15: Absence of account lockout mechanism
Resolved. The Kraken team added an account lockout mechanism that temporarily disables
the ability to sign in to the application.

TOB-KMW-16: Harmony proof of work allows attacker to tamper with expiration
Resolved. Expiration is now checked correctly by Harmony, and the server returns an
“invalid proof of work” error if the expiration is wrong.

TOB-KMW-17: Harmony reuses the same HMAC key for signing proof-of-work
challenges and image URLs
Resolved. Harmony now uses separate cryptographic secrets for proof-of-work API key
challenges and image URLs.

TOB-KMW-18: WalletConnect transaction confirmation screen may be suddenly
switched
Resolved. The Kraken team extended the session request queue to include session
proposals (not just session requests).

TOB-KMW-19: SafetyNet Verify Apps and Play Integrity APIs not implemented in the
Android client
Unresolved. The client provided the following context for this finding’s fix status:

RISK ACCEPTED
Short term we will try to avoid adding google services as a required dependency for the
app to work. So privacy sensitive users can use the app with their preferred OS.

TOB-KMW-20: No explicit verification of the Android security provider
Resolved. The Kraken team added a check of whether the security provider is up to date on
application startup.

Trail of Bits 71 Kraken Mobile Wallet Security Assessment
PUBLIC

TOB-KMW-21: Project dependencies are not monitored for vulnerabilities
Unresolved. Running the yarn outdated command in the application directory returns
outdated dependencies, and the yarn audit command reports 75 vulnerabilities in
dependencies.

TOB-KMW-22: Device-to-device backups are not disabled
Resolved. The Kraken team implemented appropriate settings in the Android manifest to
disable backups.

TOB-KMW-23: Application crashes when SVG image is tapped twice in the NFT module
Resolved. The application now appropriately handles the SVG image in the NFT module.

TOB-KMW-24: Fee amounts are not displayed and can be controlled by remote
services
Resolved. The Kraken team added the ability to see the amount of fees that will be spent
on a transaction.

Trail of Bits 72 Kraken Mobile Wallet Security Assessment
PUBLIC

F. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been
sufficiently addressed.

Fix Status

Status Description

Undetermined The status of the issue was not determined during this engagement.

Unresolved The issue persists and has not been resolved.

Partially Resolved The issue persists but has been partially resolved.

Resolved The issue has been sufficiently resolved.

Trail of Bits 73 Kraken Mobile Wallet Security Assessment
PUBLIC

