diff --git a/components/kubeflow/kfserving/Dockerfile b/components/kubeflow/kfserving/Dockerfile index 8021a63e12b..59553754aa6 100644 --- a/components/kubeflow/kfserving/Dockerfile +++ b/components/kubeflow/kfserving/Dockerfile @@ -1,6 +1,6 @@ FROM python:3.6-slim -RUN pip3 install kubernetes==10.0.1 kfserving==0.3.0 requests==2.22.0 Flask==1.1.1 flask-cors==3.0.8 +RUN pip3 install kubernetes==10.0.1 kfserving==0.4.1 requests==2.22.0 Flask==1.1.1 flask-cors==3.0.8 ENV APP_HOME /app COPY src $APP_HOME diff --git a/components/kubeflow/kfserving/component.yaml b/components/kubeflow/kfserving/component.yaml index ec6da8ff006..fff3764413c 100644 --- a/components/kubeflow/kfserving/component.yaml +++ b/components/kubeflow/kfserving/component.yaml @@ -22,7 +22,7 @@ outputs: - {name: Service Endpoint URI, type: String, description: 'URI of the deployed prediction service..'} implementation: container: - image: aipipeline/kfserving-component:v0.3.0 + image: aipipeline/kfserving-component:v0.4.1 command: ['python'] args: [ -u, kfservingdeployer.py, diff --git a/components/kubeflow/kfserving/src/kfservingdeployer.py b/components/kubeflow/kfserving/src/kfservingdeployer.py index c1f64dd22ee..a64db854814 100644 --- a/components/kubeflow/kfserving/src/kfservingdeployer.py +++ b/components/kubeflow/kfserving/src/kfservingdeployer.py @@ -32,7 +32,7 @@ from kfserving import V1alpha2SKLearnSpec from kfserving import V1alpha2XGBoostSpec from kfserving.models.v1alpha2_onnx_spec import V1alpha2ONNXSpec -from kfserving import V1alpha2TensorRTSpec +from kfserving import V1alpha2TritonSpec from kfserving import V1alpha2CustomSpec from kfserving import V1alpha2InferenceServiceSpec from kfserving import V1alpha2InferenceService @@ -79,11 +79,11 @@ def EndpointSpec(framework, storage_uri, service_account, min_replicas, max_repl elif framework == "onnx": endpointSpec.predictor.onnx = V1alpha2ONNXSpec(storage_uri=storage_uri) return endpointSpec - - elif framework == "tensorrt": - endpointSpec.predictor.tensorrt = V1alpha2TensorRTSpec(storage_uri=storage_uri) + + elif framework == "triton": + endpointSpec.predictor.triton = V1alpha2TritonSpec(storage_uri=storage_uri) return endpointSpec - + else: raise ("Error: No matching framework: " + framework) @@ -429,12 +429,14 @@ def update(kfsvc, model_name, namespace): exit(1) try: print( - model_status["status"]["url"] + " is the knative domain." + model_status["status"]["address"]["url"] + " is the knative domain." ) + print("Sample test commands: \n") # model_status['status']['url'] is like http://flowers-sample.kubeflow.example.com/v1/models/flowers-sample + print( - "curl -v -X GET %s" % model_status["status"]["url"] + "curl -v -X GET %s" % model_status["status"]["address"]["url"] ) print("\nIf the above URL is not accessible, it's recommended to setup Knative with a configured DNS.\n"\