"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding # from codecs import open # from os import path # here = path.abspath(path.dirname(__file__)) # # # Get the long description from the README file # with open(path.join(here, 'README.rst'), encoding='utf-8') as f: # long_description = f.read() setup( name='structural', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='0.0.1', description='Structural time series modeling and forecasting', #long_description='', # The project's main homepage. url='https://github.com/kyleclo/structural', # Author details author='Kyle Lo', author_email='kyleclo@uw.edu', # Choose your license license='BSD', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for # 'Intended Audience :: Developers :: Science/Research', # 'Topic :: Scientific/Engineering :: Artificial Intelligence', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: BSD License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2.7' # 'Programming Language :: Python :: 3.5' ], # What does your project relate to? keywords='time series predict forecast changepoint prophet stan structural', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(), # Alternatively, if you want to distribute just a my_module.py, uncomment # this: # py_modules=["my_module"], # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html # install_requires=['peppercorn'], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] # extras_require={ # 'dev': ['check-manifest'], # 'test': ['coverage'], # }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST as well. include_package_data=True, package_data={ 'structural': ['stan_models/*.stan'] }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' data_files=[('.', ['LICENSE'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. # entry_points={ # 'console_scripts': [ # 'sample=sample:main', # ], # }, )