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I

Abstract

Registration of point clouds related by rigid transformations is one of the

fundamental problems in computer vision. However, a solution to the prac-

tical scenario of aligning differently sampled noisy observations of the point

clouds is still lacking. We approach registration in this scenario with a fusion

of the Universal Manifold Embedding (UME) method and an unsupervised

deep neural network. In order to overcome a major obstacle in the learning

process under full rotation range, we employ an SO(3)-invariant coordinate

system to learn SO(3)-invariant features, later to be utilized by the closed-

form geometric UME method for transformation estimation. We evaluate

the performance of the proposed method using the standard RMSE metric

as well as using two alternative metrics, designed to overcome the ambi-

guity problem emerging in ModelNet40 dataset, when noisy scenarios are

considered. Finally, we show that our hybrid method outperforms state-

of-the-art registration methods in various scenarios, and generalizes well to

unseen datasets.
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Chapter 1

Introduction

The massive development of 3D range sensors [Collis, 1970; Smisek et al.,

2013] led to an intense interest in 3D data analysis. As 3D data is com-

monly acquired in the form of a point cloud, many related applications have

been studied in recent years for that data form. In wide range of applica-

tions, specifically in medical imaging [Hill et al., 2001], autonomous driving

[Bresson et al., 2017] and robotics [Durrant-Whyte and Bailey, 2006], the

alignment of 3D objects into a coherent world model is a crucial problem.

Point cloud rigid alignment is a deep-rooted problem in computer vision and

graphics, and various methods for point cloud registration have been sug-

gested [Pomerleau et al., 2015].

In general, the point clouds to be registered are sampled from a physical

object. When two point clouds are sampled at two different poses of an

object, it is unlikely that the same set of object points is sampled in both.

The difference between the sampling patterns of the object may result in

model mismatch in performing the registration, and we therefore refer to it
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as sampling noise.

Registration of point clouds in the presence of noise has been extensively

studied, both by classical methods [Besl and McKay, 1992a; Yang et al., 2015;

Zhou et al., 2016; Rusinkiewicz and Levoy, 2001] and by learning based meth-

ods [Aoki et al., 2019; Wang and Solomon, 2019a; Yuan et al., 2020; Fu et al.,

2021]. In most of these works, the noise is modeled as an Additive White

Gaussian Noise (AWGN) on the coordinates. However, this type of model

is inadequate for modeling sampling noise. As we show in our experiments,

sampling noise affects the registration error differently than additive noise on

the coordinates of the point cloud and introduces large registration errors.

It is important to comment that the registration under sampling noise

scenarios can be accurately solved when dense point clouds are considered;

the denser are the point clouds, the lower the effect sampling noise has on

their registration. However, as the size of the point cloud grows, so does the

demands of the registration task. Reducing the number of points is crucial in

many aspects, such as reduction of power consumption, computational cost

and communication load, to name a few. This is often done by processing

under-sampled point clouds. Therefore, in many point cloud registration

applications, under-sampled point clouds are being used. As such, they are

highly sensitive to sampling noise that may severely damage their registration

(see experiments chapter). Considering this practical observation, our goal is

to solve the under-sampled point cloud registration problem under sampling

noise scenarios. In fact, this is the actual situation encountered in parts of

a real sample, since actual scanning of 3D data highly depends on the 3D

shape of the scanned object and on the relative position of the scanner. Here
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we are examining the problem and its solution on a specific experimental

framework of object point clouds.

More specifically, in this work, we address registration of 3D point clouds

in the presence of sampling noise and an additive coordinate noise. Our strat-

egy is to combine the closed-form Universal Manifold Embedding (UME)

registration method [Efraim and Francos, 2019], and a learning based frame-

work. The UME nonlinearly maps functions related by geometric transfor-

mations of coordinates (rigid, in our case) to matrices that are linearly related

by the transformation parameters. In the UME framework, the embedding

of the orbit of possible observations on the object to the space of matrices

is based on constructing an operator that evaluates a sequence of low-order

geometric moments of some function defined on the point clouds to be reg-

istered. This representation is therefore more resilient to noise than local

operators, as under reasonable noise, the geometric structure of the point

cloud is preserved. Since the UME is an operator defined on functions of

the coordinates, in order to enable registration, these functions need to be

invariant to the transformation. We generate such invariant features using

an unsupervised deep neural network architecture, which is based on DCP

[Wang and Solomon, 2019a]. The framework is explained in details in Section

5. We train our framework on ModelNet40 [Wu et al., 2015] dataset, and

test on both seen datasets (ModelNet40), and two unseen dataset (FAUST

[Bogo et al., 2014] and Stanford 3D Scanning Repository [Stanford Scanning

Repository, 1994]).

Our main contributions are as follows:

• We address the highly practical, yet less studied problem of point cloud
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registration in the presence of sampling noise. We point out an am-

biguity problem in ModelNet40 dataset that emerges in this scenario

and propose alternative error measures that eliminate this ambiguity.

• We integrate the UME registration methodology for the first time into

a DNN framework. With the resulting hybrid framework, we show that

a successful registration is achievable for the full range of rotation an-

gles and subject to various types of noise, outperforming the compared

methods in all evaluated scenarios and metrics.
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Chapter 2

Related Work

Point cloud registration has remained a popular research area for many years

due to its challenging nature and common presence as an important compo-

nent of many 3D perception applications. Here we broadly categorize closed-

form prior work into local and global techniques, and categorize the emerging

learning-based methods into feature-learning methods and end-to-end learn-

ing registration.

2.1 Closed-form Registration Methods

2.1.1 Local Registration

Local approaches are often highly efficient and can be highly effective if lim-

ited to regimes where transformations are known a priori to be small in

magnitude. These refinement algorithms employ a numerical optimization

to iteratively minimize an objective function that measures the distance be-

tween points in the observation and the assumed correspondence points in
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the reference model [Bookstein, 1989; Zhang, 1994a], or between points in

the observation and the surface of the model [Bookstein, 1989; Pottmann

et al., 2004a; Montemerlo et al., 2008].

The Iterative Closest Point algorithm (ICP) [Bookstein, 1989; Zhang,

1994a] is the standard algorithm in this category. ICP iteratively alternates

between two phases: point-to-point correspondence and distance minimiza-

tion. Over the years, many variants of the ICP algorithm have been pro-

posed in attempt to improve the convergence rate, robustness and accuracy

of the algorithm. In [Chetverikov et al., 2002] for example, not all points in

both models are taken into account, and the number of obtained matches is

trimmed according to an assumed overlap between the models undergoing

registration. This approach overcomes bias in the registration that is due to

the closest point paradigm failure (i.e., when there is a partial overlap the

closest point may be in fact very far). Other variants of ICP attempt to im-

prove the formation of correspondences by including additional information

such as surface normals, or varying the direction of closest point search etc.

(see [Rusinkiewicz and Levoy, 2001] for a review of ICP variants). By defi-

nition, the ICP, like any other local iterative numerical optimization method

([Pottmann et al., 2004a; Montemerlo et al., 2008; Zabulis et al., 2018; Tam

et al., 2012]) requires a good initial alignment, otherwise registration may

converge to a local minimum of the objective function. In addition, as pre-

sented in [Rusinkiewicz and Levoy, 2001], not all variants are appropriate to

all data types, and the algorithm should be matched to the data type for

optimal performance.

Another branch of work on local methods concerns probabilistic registra-
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tion, often via the use of GMMs and the EM algorithm [Dempster et al.,

1977]. Traditional examples include EM-ICP [Granger and Pennec, 2002],

GMMReg [Jian and Vemuri, 2010], and methods based on the Normal Dis-

tributions Transform (NDT [Stoyanov et al., 2012]). More recent examples

offer features such as batch registration (JRMPC [Evangelidis and Horaud,

2017]) or robustness to density variance and viewing angle (DARE [Lawin

et al., 2018]).

Other recent approaches have focused on efficiency, including filter-based

methods [Gao and Tedrake, 2019], GPU-accelerated hierarchical methods

[Eckart et al., 2018], Monte Carlo methods [Dhawale et al., 2018] or efficient

distribution-matching techniques [Tabib et al., 2018].

2.1.2 Global Registration

Unlike local methods, global methods are invariant to initial conditions and

aimed at estimating large deformations, but often at the cost of efficiency.

Some approaches exhaustively search SE(3) via branch-and-bound techniques

(Go-ICP [Yang et al., 2015], GOGMA [Campbell and Petersson, 2016] and

GOSMA [Campbell et al., 2019]). Other approaches use 3D local features

matching adaptations of the 2D image processing solutions, such as variants

of 3D-SIFT [Darom and Keller, 2012; Maes et al., 2010a] and the Harris

key-points detector [Sipiran and Bustos, 2011a].

In 3D, with the absence of a regular sampling grid, artifacts, sampling

noise and the challenging nature of salient geometry (edges are not common

in 3D as in images, for example), key-points matching is prone to high outlier



8

rates and localization errors. Hence, the alignment estimated by key-points

matching usually employs outlier rejection methods such as RANSAC [Fis-

chler and Bolles, 1981] or semi-definite programming [Yang et al., 2020a],

and is followed by a refinement stage using local optimization algorithms

[Bookstein, 1989; Zhang, 1994a; Pottmann et al., 2004a; Montemerlo et al.,

2008].

One notable exception to the general rule that global methods are of-

ten inefficient, is Fast Global Registration (FGR) [Zhou et al., 2016], which

achieves invariance to initial pose while remaining as fast or faster than many

local methods.

Global registration methods are not restricted only to methods based on

the extraction and matching of key-points. In [Isola et al., 2011], for example,

an initial alignment is found by employing a matched filter in the frequency

space of local orientation histograms. In [Ferencz and Shimshoni, 2017a] an

initial alignment is found by clustering the orientations of local point cloud

descriptors and estimating the relative rotation between clusters.

In [Aiger et al., 2008a], the algorithm searches congruent sets of four

co-planar points between point clouds to create point correspondences. In

[Bülow and Birk, 2018], a global registration procedure based on Fourier-

Mellin transform is derived. It is a three step procedure where an SO(3)

Fourier transform implemented using spherical harmonics is employed to es-

timate the rotation. In the second step using the Mellin transform the scale

is estimated, and finally the translation.

A different approach is to approximate the surface using Gaussian Mix-

ture Models (GMM) and perform registration on the GMM models rather



9

than directly on the point clouds, [Seo and Milanfar, 2010; Zhu et al., 2014;

Campbell and Petersson, 2016]. The GMM modelling methods tend to be

computationally expensive as each point in the point cloud is assumed to be

the center of a model component. Another drawback is that the final result

depends on the model initialization which is usually random.

Super4PCS [Mellado et al., 2014a] is a global registration solution that

incorporates local geometric constraints on the considered key-points. It is

a modification of [Aiger et al., 2008a] that yields accurate results without

employing ICP-like fine alignment step. It is based on searching for con-

gruent sets of 4 points between the models being processed to create point

correspondence. While some of the above mentioned methods may achieve

sufficiently accurate results without employing a fine alignment algorithm,

the accuracy of the final result is usually improved using an appropriate

variant of ICP.

In this work a global closed-form solution that employs the UME repre-

sentation of the shapes to be registered, is being used and detailed in chapter

4. As a result, an efficient and accurate registration scheme is achieved where

no initial alignment is required.

2.1.3 Closed-form solution for registration of point clouds

from known correspondences

Closed form solutions for rigid motion registration dates back to the 1980’s

where solutions using unit quaternions to minimize a least square problem

were introduced by [Faugeras and Hebert, 1986] with an alternative formu-
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lation published by [Horn, 1987]. An equivalent solution using orthonormal

matrices that was later introduced by [Horn et al., 1988b], is being exploited

by this work and is summarized below.

[Horn, 1987; Horn et al., 1988b] derived a closed form solution for the

problem of recovering the transformation between two sets of corresponding

points in different Cartesian coordinate systems i.e.

rr,i = sRrl,i + r0, i = 1, ..., n (2.1)

where {rr,i}ni=1 is the “right hand” (or stationary) set of points corresponding

to {rl,i}ni=1 the “left hand” (or moving) set of points by scale s, rotation R

and translation r0. Minimizing the sum of squared errors

n∑
i=1

||ei||2 =
n∑
i=1

||rr,i − sRrl,i − r0||2 (2.2)

Horn shows that the translation r0 to minimize the sum of squared errors is

the difference between the centroid of {rr,i}ni=1 and the rotated centroid of

{rl,i}ni=1, i.e.

r0 =
1

n

n∑
i=1

rr,i −
1

n
R

n∑
i=1

rr,i. (2.3)

The rotation to minimize the sum of square errors is shown to be the matrix

to maximize the trace of RTM, where

M =
n∑
i=1

r′r,i, r
′T
l,i (2.4)
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and r′r,i, r
′
l,i represents the centered versions of rr,i, rl,i. M is shown to have

a decomposition M = US where

U = M(MTM)−1/2 (2.5)

is a unitary matrix and S is a positive semi-definite matrix. It is then shown

by analysis of eigenvalues of the matrix M that R = U is the matrix mini-

mizing the sum of squared errors.

2.2 Learned Methods for Rigid Motion Reg-

istration

In the following we give an introduction to learned-based methods categorized

as feature-learning methods and end-to-end learning registration, and analyze

their advantages and limitations. We finally summarize the key ideas and

review the recent critical development of each category.

2.2.1 Feature learning methods for registration

Unlike the classical optimization-based registration methods, feature learning

methods [Zeng et al., 2017; Deng et al., 2018b; Gojcic et al., 2019] use a deep

neural network to learn a robust feature correspondence search. Then, the

transformation can be estimated using one-step optimization (e.g. SVD or

RANSAC) without iterating between correspondence estimation and trans-

formation estimation.

For instance [Zeng et al., 2017] uses AlexNet to learn a 3D feature from
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an RGB-D dataset and [Deng et al., 2018b] proposes a local PPF (Point-

Pair-Features) by using the distribution of neighbour points that serves as

the network input for deep feature learning. These methods are using deep

learning as a feature extraction tool. By developing sophisticated network

architectures or loss functions, they aim to estimate robust correspondences

by the learned distinctive feature.

The advantages of this category are two folds:

1. Deep learning-based point feature could provide robust and accurate

correspondence searching.

2. The accurate correspondences could lead to accurate registration re-

sults by using a simple RANSAC method.

The limitations of this kind of methods are three aspects:

1. They need large training data.

2. The registration performance drops dramatically in unknown scenes if

the scenes have a large distribution difference to the training data.

3. They use a separated training process to learn a stand-alone feature

extraction network. The learned feature network is to determine point-

point matching other than registration.

Learning on point clouds

In the following we review several feature-learning for point cloud registration

methods, all aim at design advanced neural networks to extract distinctive

features.
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PPFNet [Deng et al., 2018b] is a neural network that uses a point pair

feature (PPF) [Drost et al., 2010] to pre-process the input point cloud patches

for achieving rotation invariance. Then, the point clouds are input into a

PointNet [Qi et al., 2017a], to extract a local feature and a global feature

that is obtained by applying a max-pooling operation. Both the global and

local features are input in an MLP block to generate the final correspondence

search feature. Thus, instead of feeding the network with volumetric data,

it learns local descriptors on pure geometry while being highly aware of the

global context. The limitation is that it requires a large amount of annotation

data. To solve this issue, PPF-FoldNet [Deng et al., 2018a] proposes an

unsupervised method to remove the annotation requirement constraint. The

basic idea is to use PointNet to encode a feature and use a decoder to decode

the feature into data, to be the same as the input. The whole network

is optimized by using the difference between the input and output using

Chamfer loss. Similarly, SiamesePointNet [Zhou et al., 2020] produces the

descriptor of interest points by a hierarchical encoder-decoder architecture.

By not requiring manual annotation of matching point cluster, 3DFeat-

Net [Yew and Lee, 2018] introduces a weakly-supervised approach that lever-

ages alignment and attention mechanisms to learn feature correspondences

from GPS/INS tagged 3D point clouds without explicitly specifying them.

More specifically, the network takes a set of triplets containing an anchor,

positive and negative point cloud. They train the neural network with the

triplet loss by minimizing the difference between the anchor and positive

point clouds while maximizing the difference between the anchor and nega-

tive point clouds.
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Alignment [Groß et al., 2019] focuses on the partially observed object

alignment by using a tracking framework, which is trying to estimate the

object-centric relative motion. Moreover, this approach uses a neural network

that takes the noisy 3D point segments of objects as input to estimate their

motion instead of approximating targets with their centre points. [Yang

et al., 2020c] utilizes both the colour and spatial geometric information to

solve the point cloud registration.

Other DNN framework methods are inspired by the local closed-form

ICP registration algorithm. Since the ICP requires hard assignments of clos-

est points, it is sensitive to the initial transformation and noisy/outliers.

Therefore, the ICP usually converges to the wrong local minima. RPMNet

[Yew and Lee, 2020] introduces a less sensitive to initialization and more

robust deep learning-based approach for rigid point cloud registration. This

method’s network can get a soft assignment of point correspondences and

can solve the point cloud partial visibility. The deep closest point (DCP)

[Wang and Solomon, 2019a] employs a dynamic graph convolutional neural

network (DGCNN [Wang et al., 2019b]) for feature extraction and an atten-

tion module to generate a new embedding that considers the relationships

between two point clouds. Besides, a singular value decomposition module

is used to calculate rotation and translation.

IDAM [Li et al., 2020] incorporates both geometric and distance features

into the iterative matching process. Point matching involves computing a

similarity score based on the entire concatenated features of the two points

of interest. [Yang et al., 2020b] find that more compact and distinctive repre-

sentations can be achieved by optimizing a neural network (NN) model under
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the triplet framework that non-linearly fuses local geometric features in Eu-

clidean spaces. The NN model is trained by an improved triplet loss function

that fully leverages all pairwise relationships within the triplet. Moreover,

they claimed that their fused descriptor is also competitive to deeply learned

descriptors from raw data while being more lightweight and rotational in-

variant.

2.2.2 End-to-end learning-based registration methods

The end-to-end learning-based methods solve the registration problem with

an end-to-end neural network. The input of this category is two point clouds,

and the output is the transformation matrix to align these two point clouds.

The transformation estimation is embedded into the neural network opti-

mization, which is different from the above feature-learning methods, whose

focus is point feature learning. The neural network optimization is separated

from the transformation estimation.

End-to-end learning methods transform the registration problem into a

regression problem. For example, [Yang et al., 2019] tries to learn a feature

from the point clouds to be aligned and then regresses the transformation

parameters from the feature. [Wang et al., 2019a] proposes a registration

network to formulate the correlation between source and target point sets

and predict the transformation using the defined correlation. [Elbaz et al.,

2017] proposes an auto-encoder registration network for localization, which

combines super points extraction and unsupervised feature learning. [Lu

et al., 2019] proposes a key-point detection method and estimates the rela-
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tive pose simultaneously. FMR [Huang et al., 2020] proposes a feature-metric

registration method, which converts the registration problem from the previ-

ous minimizing point-point projection error to minimizing feature difference.

This method is a pioneer work of feature-metric registration by combining

deep learning and the conventional Lucas-Kanade optimization method.

The advantages of this category are two folds:

1. The neural network specifically designs and optimizes for registration

task.

2. It could leverage both the merits of conventional mathematical theories

and deep neural networks.

The limitations of current methods are two aspects:

1. The regression methods regard transformation parameter estimation

as a black box, and the distance metric is measured in the coordinate-

based Euclidean space, which is sensitive to noise and density difference.

2. The feature-metric registration method does not consider the local

structure information, which is crucial for registration.

The end-to-end learning-base registration methods can be divided into two

categories:

1. Considering the registration as a regression problem and using the neu-

ral network to fit a regression model for the transformation matrix es-

timation [Wang et al., 2019a; Yang et al., 2019; Deng et al., 2019; Pais

et al., 2020].
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2. Considering the registration as an end-to-end framework by the com-

bination of neural network and optimization [Huang et al., 2020; Choy

et al., 2020].

In the following we review several methods in each of the two categories, all

aim to train a deep neural network to directly solve the registration problem.

Registration by regression

[Deng et al., 2019] propose a relativeNet to estimate the pose directly from

features. [Lu et al., 2019] propose DeepVCP model to detect key-points

based on learned matching probabilities among a group of candidates, which

can boost the registration accuracy. [Pais et al., 2020] develop a classifica-

tion network to identify the inliers/outliers and uses a regression network to

estimate the transformation matrix from the inliers.

Registration by optimization and neural network

The main idea of this category is to combine the conventional registration-

related optimization theories with deep neural networks to solve the registra-

tion problem. PointNetLK [Aoki et al., 2019] uses PointNet [Qi et al., 2017a]

to extract global features for two input point clouds and then use an inverse

compositional (IC) algorithm to estimate the transformation matrix. By es-

timating the transformation matrix, the objective is to minimize the feature

difference between the two features. For this feature based IC algorithm,

the Jacobian estimation is challenging. PointnetLK uses an approximation

method through a finite difference gradient computation. This approach al-

lows the application of the computationally efficient inverse compositional
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Lucas-Kanade algorithm. [Huang et al., 2020] further improve PointNetLK

with an auto-encoder and a point distance loss which can also reduce the

dependence on labels. DGR [Choy et al., 2020] proposes a 6-dimensional con-

volutional network architecture for inlier likelihood prediction and estimate

the transformation by a weighted Procrustes module. The recently proposed

RGM [Fu et al., 2021] transforms point clouds into graphs to perform deep

graph matching, extracting soft deep features correspondence matrix.

In chapter 6 we show that registration performance using [Aoki et al.,

2019; Wang and Solomon, 2019a; Fu et al., 2021] deteriorates when the ob-

jects are related by large rotations. DeepGMR [Yuan et al., 2020] addresses

this problem by extracting pose-invariant correspondences between raw point

clouds and Gaussian mixture model (GMM) parameters, and recovers the

transformation from the matched mixtures. However, its performance dete-

riorates in the presence of sampling noise. The above methods show that the

combination of conventional optimization methods and recent deep learning

strategies obtain better accuracy than previous methods.
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Chapter 3

Problem Definition

3.1 Registration Under the Assumption of Rigid

Motion

Registration is the process of transforming two or more data-sets (3D point

clouds, images, etc.) to the same coordinate system, such that overlapping

components of these data sets are aligned together. Under the assumption of

rigid motion, the coordinate systems of the data sets are related by a rotation

and a translation. There are several ways of representing a rigid motion, in

this work the rotation is represented by rotation matrix R ∈ SO(n) and a

translation vector t ∈ Rn. SO(n) is the special orthogonal group, which

include all the orthogonal matrices with determinant value of 1. The action

of the group on a set of points X ⊂ Rn is defined by

RX = {Rx : x ∈ X}. (3.1)
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Two sets of points related by a rigid motion are therefore defined by Y =

RX + t where each corresponding pair of elements y ∈ Y,x ∈ X is related

by y = Rx+t. The scope of this work is on registration of three dimensional

sets, i.e. 3D point clouds.

3.2 Point Cloud Rigid Registration

A point cloud P is a finite set of points in R3. In many applications these

points are samples from a physical object, O ⊆ R3 (we may think of it

as a surface or a manifold). Viewing point clouds as sets of samples, the

registration problem may be formulated as follows: Let O ⊆ R3 be a physical

object and T (x) = Rx + t a rigid map (R ∈ SO(3) is a rotation matrix and

t ∈ R3 is translation vector). We consider the transformed object

T (O) := {T (x) : x ∈ O}. (3.2)

Let P1 and P2 be two point clouds sampled from the object O and the

transformed object T (O), respectively. In the registration problem, the goal

is to estimate the transformation parameters R and t given only P1 and

P2. Since point clouds are generated by a sampling procedure, the effects of

sampling must be addressed, when solving the registration problem. Ideally,

the relation between the two sampled point clouds P1 and P2 (sampled from

O and T (O)) satisfies the relation P2 = T (P1). Unfortunately, when point

clouds are sampled at two different poses of some object, it is unlikely that

the same set of object points is sampled, in both. In fact, if we assume
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a uniformly distributed sampling pattern on a continuous surface, it may

be easily proved that the probability to have such a relation is null. The

sampling differences are reflected as a registration error, in a different manner

form the AWGN on the coordinates.

When dense point clouds are considered, the sampling noise effect has

on the registration performance is lessen. Yet, as mentioned in chapter 1,

it is critical to reduce the size of the point clouds to improve computational

efficiency and reduce communication costs. As a result, many registration

applications make use of under-sampled point clouds. On such point clouds,

the sampling noise effect is dominant and significantly deteriorate registra-

tion performance. We therefore approach registration under sampling noise

scenarios for the case of under-sampled point clouds.

We consider the registration problem in the following scenarios:

• Full intersection (Vanilla model) - where P2 = T (P1).

• Sampling noise - Two cases are considered: Partial intersection, where

P2 and T (P1) may intersect, but are not identical; Zero intersection,

where P2 and T (P1) have no samples in common.

• Gaussian noise - P2 = T (P1) + N , where P2 is a result of a rigid

transformation of P1 with its coordinates perturbed by AWGN.
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Chapter 4

UME

In this paper we adopt the Universal Manifold Embedding (UME [Hagege

and Francos, 2010]) framework designed for registering two functions g, h :

Rn → R, with compact supports related by a geometric transformation (rigid,

affine) parameterized by A. Zero and first order moments (integrals) are

evaluated in constructing the (n + 1) ×D UME matrix (where D > n + 1)

such that the UME matrices of g and h are co-variant to the transformation

A, as detailed below.

4.1 Continuous UME

In this section we briefly review the principles of the UME for observations

related by an affine transformation. Let O be the space of observations. Let

Φ be the group of affine transformations, and let S be a set of known objects.

Every observation is the result of applying a geometric deformation φ ∈ Φ

to an object s ∈ S. The parameters of the affine transformation completely
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Figure 4.1: The Universal Manifold Embedding framework (from left to
right): The physical model that generates the observations - applying the
set of possible deformations to some object g produces Sg which is the set of
all possible observations on g. Sg is a subset of the space of observations O.
The UME - all observations in Sg are non-linearly mapped by T to a unique
linear subspace Hg = T(Sg).

specify the action of the group of geometric transformations the object may

undergo. We denote by φ(s) ∈ O the set of all possible observations on an

object s. Thus, φ(s) is the orbit of s under Φ.

The universal manifold embedding is a map T : O → H from the space

of observations into a low dimensional Euclidean space, H, such that the

set T(φ(s)) is a linear subspace of H for any s (see Figure 4.1). Thus, the

UME reduces the dimension of any problem concerning the multiplicity of

appearances of objects from the high dimensional space of observations O

to the low dimensional linear space H and allows for the usage of classical

linear theory in solving the highly non-linear problems of deformable object

registration.

Next, the mapping T is described: Consider the case where the finite

support functions h(x), g(x) are observations on the same object related by



24

an affine transformation, i.e.

h(x) = g(Ax + c), A ∈ GL(n); c,x ∈ Rn (4.1)

Let y = Ax+c, x = A−1y+b where b = −A−1c. Let y′ = [1, y1, . . . , yn]T

then x = Dy′ where D = [b; A−1] is an n× (n+ 1) matrix. Let P ∈ N and

let wl, l = 1, . . . , P be a set of bounded, Lebesgue measurable functions

wl : R → R. Since by definition h(x) = 0, x /∈ supp(h), and similarly for g,

by a change of variables we obtain the following identities:

∫
Rn

wl ◦ h(x)dx =
∣∣A−1∣∣ ∫

Rn

wl ◦ g(y)dy (4.2)

∫
Rn

xwl ◦ h(x)dx =
∣∣A−1∣∣ ∫

Rn

(Dy′)wl ◦ g(y)dy (4.3)

Let f be some observation on a deformable object and let

T(f) =


∫
Rn

w1 ◦ f(y)dy
∫
Rn

y1w1 ◦ f(y)dy · · ·
∫
Rn

ynw1 ◦ f(y)

...∫
Rn

wP ◦ f(y)dy
∫
Rn

y1wP ◦ f(y)dy · · ·
∫
Rn

ynwP ◦ f(y)

 (4.4)

Let D′ = [e1; D
T ], where e1 = [1 0 . . . 0]T , be the matrix representation

of an affine transformation in homogeneous coordinates. Rewriting (4.2),

(4.3) for l = 1, . . . , P in a matrix form, we have:

T(g)D′
∣∣A−1∣∣ = T(h) (4.5)

To find the matrix D′ (and thus recover the parameters of the affine trans-
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formation) we notice that (4.5) is in fact an over determined linear equation

system. Hence, the least squares solution for D′ is given by

|A−1|D′ = (T(g)TT(g))−1T(g)TT(h) (4.6)

and |A−1| is recovered directly from (4.2) by

∣∣A−1∣∣ =

∫
Rn

w ◦ h(x)dx∫
Rn

w ◦ g(y)dy
(4.7)

4.2 Discrete UME

Following the principles of the UME framework, we derive a new discrete

closed-form implementation of the UME for the registration of point clouds

undergoing rigid transformations. More specifically, let P1 and P2 be two

point clouds related by a rigid transformation T . Then, an invariant feature

(function) F on P1 and P2 is a function that assigns any point p ∈ P1 and

the transformed point T (p) ∈ P2 with the same value. A simple example for

such an invariant feature is the one that assigns each point with its distance

from the point cloud center of mass.

Since for finite support objects, it is straightforward to reduce the problem

of computing the rigid transformation T (p) = Rp + t to a rotation-only

problem, i.e. t = 0, we show that the moment integral calculations involved

in evaluating the UME operator, may be replaced by computing moments of

the invariant functions using summations.

Theorem 4.2.1. Let R be a rotation matrix and P1 and P2 be two point
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clouds satisfying the relation P2 = R · P1. Let F be an SO(3) invariant

feature on P1 and P2, namely

F(p) = F(Rp), ∀p ∈ P1, (4.8)

then

MP2(F) = R ·MP1(F), where MPi
(F) =

1

|Pi|


∑

p∈Pi
p1F(p)∑

p∈Pi
p2F(p)∑

p∈Pi
p3F(p)

 , p =


p1

p2

p3

 .
(4.9)

In order to prove Theorem 4.2.1, we first state and prove a discrete version

of the UME theorem from which Theorem 4.2.1 follows immediately as a

special case. We begin by presenting the continuous UME theorem, [Efraim

and Francos, 2019], in the specific case where the translation vector t = 0.

Definition 4.2.1.1. Let k : Rn → R be a compactly supported measurable

function and w1, . . . , wD : R −→ R are measurable functions. The n×D UME

matrix of k with respect to w1, . . . , wD is defined by

[UMEk]i,j :=

∫
Rn

xiwj(k(x))dx. (4.10)

Theorem 4.2.2. (Continuous UME) [Efraim and Francos, 2019], Let

f, g : Rn → R, be two functions with compact supports related by a rotation

R, i.e. g(x) = f(Rx) for all x ∈ Rn. Then, for any set of D measurable
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functions w1, . . . , wD such that wi(0) = 0 for all i,

UMEf = R ·UMEg . (4.11)

We next provide the discrete analog of Theorem 4.2.2 where the contin-

uous functions f and g are replaced by the invariant functions estimated

from the observed point clouds using the DNN, and integration is replaced

by summation on the elements in the point clouds.

Definition 4.2.2.1. Let P ⊆ R3 be a finite point cloud, F a feature (func-

tion) on P and w1, . . . , wd : R→ R measurable functions. The discrete n×D

UME matrix of P and F with respect to w1 . . . , wD is defined to be

[UMEFP ]i,j =
∑
p∈P

piwj(F(p)). (4.12)

Proposition 4.2.2.1. Let P1 and P2 be two point clouds satisfying P2 =

RP1, and F is an invariant feature on P1 and P2. For any D functions

w1, . . . , wd : R→ R satisfying wi(0) = 0 for all i

UMEFP2
= R ·UMEFP1

. (4.13)

We note that if we take w1 to be the identity function and denote the first

column of UMEFP1
and UMEFP2

by [UMEFP1
]1 and [UMEFP2

]1 respectively,

we have

1

|Pi|
[UMEFPi

]1 = MPi
(F), i = 1, 2. (4.14)
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Hence, Theorem 4.2.1 is followed by Proposition 4.2.2.1 trivially, as a special

case.

Proof of Proposition 4.2.2.1 The main idea in our proof is to ap-

proximate the discrete sums defining the discrete UME matrices in (4.13) by

continuous integrals and apply the continuous UME theorem. Given ε > 0,

P1, P2 and the invariant feature F , we construct two compactly supported

measurable functions fε, gε : R → R such that gε(x) = fε(R
−1x). We then

apply Theorem 4.2.2 to fε and gε, and taking ε→ 0 we will conclude.

Denote the ball of radius ε centered at a point p ∈ R3 by Bε(p) . Define

the functions fε is and gε by

fε(x) :=
∑
p∈P1

F(p)1Bε(p)(x), gε(x) :=
∑
p∈P2

F(p)1Bε(p)(x). (4.15)

See the illustration of fε(x) in Figure 4.2. We now prove that the desired

relation gε(x) = fε(R
−1x) holds: Directly from the definition of fε,

fε(R
−1x)

(4.15)
=

∑
p∈P1

F(p)1Bε(p)(R
−1x). (4.16)

Since a rigid transformation maps any ball to a ball with the same radius,

we have that 1Bε(p)(R
−1x) is non-zero if and only if R−1x ∈ Bε(p):

R−1x ∈ Bε(p) ⇐⇒ x ∈ R(Bε(p)) ⇐⇒ x ∈ Bε(Rp). (4.17)
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It is immediately follows that

1Bε(p)(R
−1x) = 1Bε(Rp)(x), ∀x ∈ R3. (4.18)

Substituting (4.18) into (4.16), and using the SO(3) invariance of F we have

fε(R
−1x) =

∑
p∈P1

F(p)1Bε(p)(R
−1x) (4.19)

=
∑
p∈P1

F(Rp)1Bε(Rp)(x) (4.20)

=
∑
p∈P2

F(p)1Bε(p)(x) = gε(x). (4.21)

We have so far proved that fε(x) = gε(Rx) for all x. By Theorem 4.2.2 we

have

UMEgε = R ·UMEfε . (4.22)

For sufficiently small ε, the balls defining fε do not intersect and therefore
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we have,

[UMEfε ]ij
(4.15)
=

∫
R3

xiwj

(∑
p∈P1

F(p)1Bε(p)(x)

)
dx (4.23)

=

∫
⊎

v∈P1
Bε(v)

xiwj

(∑
p∈P1

F(p)1Bε(p)(x)

)
dx (4.24)

+

∫
R3\

⊎
v∈P1

Bε(v)

xiwj

∑
p∈P1

F(p)1Bε(p)(x)︸ ︷︷ ︸
=0


︸ ︷︷ ︸

wj(0)=0

dx (4.25)

=
∑
v∈P1

∫
Bε(v)

xiwj

(∑
p∈P1

F(p)1Bε(p)(x)

)
dx (4.26)

=
∑
v∈P1

wj(F(v))

∫
Bε(v)

xidx. (4.27)

where
⊎

denotes a disjoint union of sets and the last equality stems from the

fact that F(p) is constant on Bε(v). By (4.27) and the integral mean value

theorem we have that

lim
ε→0

1

Vol(Bε)
[UMEfε ]ij = lim

ε→0

1

Vol(Bε)

∑
p∈P1

wj(F(p))

∫
Bε(p)

xidx

=
∑
p∈P1

wj(F(p)) lim
ε→0

1

Vol(Bε)

∫
Bε(p)

xidx︸ ︷︷ ︸
pi

=
∑
p∈P1

piwj(F(p))

(4.28)

This shows that

UMEFP1
= lim

ε→0

1

Vol(Bε)
UMEfε , (4.29)
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Figure 4.2: Bε(p) for p ∈ P . Balls centers are the point cloud points, and
each ball color represents the value of F(p).

and similarly it is easily proved that

UMEFP2
= lim

ε→0

1

Vol(Bε)
UMEgε . (4.30)

Finally, applying Theorem 4.2.2 on fε and gε we obtain:

UMEFP2
= lim

ε→0

1

Vol(Bε)
UMEgε = lim

ε→0

1

Vol(Bε)
R ·UMEfε (4.31)

= R · lim
ε→0

1

Vol(Bε)
UMEfε = R ·UMEFP1

. (4.32)

This completes the proof.
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Chapter 5

DeepUME

Following the strategy of integrating the UME registration methodology into

a deep neural network, we both adjust the UME method [Hagege and Fran-

cos, 2010] adapting it to a DNN framework and design our architecture to

optimize the UME performance.

In the UME registration framework the input is composed of two point

clouds satisfying the relation

P2 = R · P1 + t (5.1)

and an invariant feature (that is, a function F defined on a point cloud P

such that f(p) = f(R · p + t) for any p ∈ P). Applying the UME operator

on each of the point clouds, two matrices MP1 and MP2 are obtained, such

that

MP2 = R ·MP1 . (5.2)

The geometric nature of the UME motivates as to use it as a basis for our
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UME
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Figure 5.1: DeepUME network architecture.

framework. While many registration methods find corresponding points in

the reference and the transformed point clouds in order to solve the registra-

tion problem, in the UME methodology a new set of “corresponding points”

is constructed by evaluating low order geometric moments of the invariant

feature. This is a significant advantage in noisy scenarios, where point cor-

respondences between the reference and transformed point clouds, may not

exist at all. The use of moments allows us to exploit the geometric structure

of the objects to be registered, which is invariant under sampling (as long

as the sampling is reliable) resulting in an improved immunity to sampling

noise.

The goal of the deep neural network in our framework is to construct mul-

tiple high-quality invariant features, in order to maximize the performance

of the UME in various noisy scenarios. We adapt DCP architecture [Wang

and Solomon, 2019a], which has been proved to be very efficient in creating

high-dimensional embedding for point clouds. Conceptually, we may divide

our framework into three main parts, each responsible of a different aspect of
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the registration process. The first part is a pre-process designed to overcome

DCP limitation in preforming the learning process over the entire rotation

range. The second part is an unsupervised deep neural network responsible

for learning features that are subsequently employed for parameter estima-

tion. The final part consists of the UME method for parameter extraction.

The framework is illustrated in Figure 5.1, and explained in details in the

following.

5.1 UME registration

Relying on the original UME method, we proved the closed-form formula

presented in equation (4.9):

MP2(F) = R ·MP1(F), where MPi
(F) =

1

|Pi|


∑

p∈Pi
p1F(p)∑

p∈Pi
p2F(p)∑

p∈Pi
p3F(p)

 , p =


p1

p2

p3

 .

We call MPi
the moment vector of the transformation invariant function F

defined on Pi.

Given two sets of points in R3, {vi}ki=1 and {ui}ki=1 k ≥ 3, satisfying

the relation vi = R · ui for all i, we may find R by a standard procedure

proposed by [Horn et al., 1988a; Myronenko and Song, 2009] (see section

2.1.3). Hence, we conclude from (4.9) that in the absence of noise, finding

a set of invariant functions F1, . . . ,Fk, such that k ≥ 3, yields a closed-

form solution to the registration problem. We remark that in order to use

the invariant functions F1, . . . ,Fk by the discrete UME method efficiently,
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they need be linearly independent. More precisely, for Horn’s transformation

extraction to work, the dimension of the space created by the moments vector,

span {MP (Fj)}kj=1, must be at least 3. For registration in noisy scenarios,

we would like F1, . . . ,Fk to be diverse, and therefore allow us to exploit the

geometric structure of the shapes represented by our sampled point clouds.

However in the presence of noise (sampling or additive) (4.9) no longer

holds as P2 and R · P1 are not identical anymore and in fact, with a high

probability they do not share any point in common. Therefore, the estimated

rotation matrix is noisy.

This is the point where a deep neural network comes into play. The

registration error obviously depends on the difference between MP2 and R ·

MP1 , and on the function F being rigid transformation invariant despite the

noise. To that extent, we employ a deep neural network in order to learn

how to construct good transformation-invariant functions. These invariant

functions are designed to exploit the geometry of the point cloud so that their

invariance to the transformation is minimally affected by the noise, resulting

in a smaller registration error.

5.2 Features learning performed by DGCNN

Towards obtaining noise resilient SO(3)-invariant functions for effectively

evaluating the UME moments, we aim at learning features capturing the

geometric structure of the point cloud. This structure is determined by the

point cloud coordinates (global information) and the neighborhood of each

point (local information). For that reason, we adopt the same architec-
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Figure 5.2: DGCNN network architecture.

ture used by the DCP embedding network - DGCNN [Wang et al., 2019b].

DGCNN is designed to preform a per-point embedding such that information

on neighboring points is well incorporated.

A key to DGCNN local information extraction into features is its input

structure - instead of a raw point cloud, the input is the point clouds self-

looped k-NN graph G. As such, each point in the point cloud is characterized

by the coordinates of points in its neighborhood in addition to its own coor-

dinates. This approach results in a new representation for each point using

a 6× k matrix. Each column of that matrix represents one of the k nearest

neighbors and consists of the coordinates of the observed point stacked on

top of the coordinated of the neighbor point.

5.2.1 DGCNN architecture

The version of DGCNN architecture used in this work is shown in Figure 5.2.

DGCNN approach is inspired by PointNet [Qi et al., 2017a] and convolution

operations. Instead of working on individual points like PointNet, it exploits

local geometric structures by constructing a local neighborhood graph and

applying convolution-like operations on the edges connecting neighboring

pairs of points, in the spirit of graph neural networks.
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Edge Convolution

Let P be an F -dimensional point cloud with N points, denoted by

P = {p1, . . . ,pN} ⊆ RF (5.3)

In the simplest setting of F = 3, each point contains 3D coordinates

pi = (px, py, pz); (5.4)

it is also possible to include additional coordinates representing color, surface

normal, and so on. In a deep neural network architecture, each subsequent

layer operates on the output of the previous layer, so more generally the

dimension F represents the feature dimensionality of a given layer. A directed

graph G representing local point cloud structure,

G = (V , E), V = {1, . . . , N}, E ⊆ V × V (5.5)

where V and E are the vertices and edges, respectively. G is computed in its

simplest case, as the k-nearest neighbor (k-NN) graph of P in RF . The graph

includes self-loop, meaning each node also points to itself. Edge features are

defined as

eij = hθ(pi,pj), hθ : RF × RF → RF ′
(5.6)

where hθ is a nonlinear function with a set of learnable parameters θ. Edge-

Conv operation is then defined by applying a channelwise symmetric aggre-

gation operation � (e.g .,
∑

or max) on the edge features associated with all
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the edges emanating from each vertex. The output of EdgeConv at the i-th

vertex is thus given by

p′i = �
j:(i,j)∈E

eij = �
j:(i,j)∈E

hθ(pi,pj). (5.7)

(5.7) is analogy to convolution along images, if we regard pi as the cen-

tral pixel and {pj : (i, j) ∈ E} as a patch around it. Overall, given an F -

dimensional point cloud with n points, EdgeConv produces an F ′-dimensional

point cloud with the same number of points.

Formally, DGCNN is a neural network comprised of a total of L layers.

Let hlθ denote the nonlinear function parameterized by a multi-layer percep-

tron in the l-th layer, and let pli, denote the embedding of the point cloud

i-th point. The network forward pass is given by

pli = f
({
hlθ
(
pl−1i ,pl−1j

)
∀j ∈ Ni

})
(5.8)

where Ni is the i-th point neighbourhood in G and f represents channel-wise

max aggregation. The network final layer result with per point features or

representations, noted

FP = {pL1 ,pL2 , . . . ,pLi , . . . ,pLN}. (5.9)

DGCNN embeds one point cloud at a time, sharing its weights between

the two clouds, i.e. the same implementation with the same parameters

transform all input streams. Ideally, this embedding network should result in

identical feature (function value) for two corresponding points in the reference
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point cloud and in its transformed version.

5.3 SO(3)-invariant coordinate system

Since DGCNN weights are shared, when the coordinates of corresponding

points between two point clouds are significantly different, the learning pro-

cess fails. Clearly, this situation occurs when transformations of large magni-

tude, e.g . large rotations, are considered (see section 6). Therefore DGCNN

in its existing design cannot be employed towards constructing invariant fea-

tures when rotations by large angles are considered.

We overcome this inherent difficulty by transferring the input point clouds

to an alternative coordinates system, which is SO(3)-invariant. By doing so,

the network inputs are two ”almost similar” point clouds, where ”almost” is

due to sampling noise presence, in these under-sampled input point clouds.

Whenever the point clouds to be registered are sufficiently dense (or noise-

free), the difference of this new representation between the input point clouds

is negligible (and does not exist in the noise free case). However, in our

setting, where the point clouds to be registered are sparse and differently

sampled, this is not the case anymore. The loss of information caused by low

sampling rate makes the resulting representations of the clouds significantly

different. Despite that, even when sparse point clouds are considered, the

similarity of the resulting point clouds in our new coordinates system is suf-

ficient in order to enable a learning process of multiple high-quality invariant

features to occur.

Formally, Given a point cloud P , the cloud center of mass (denoted by
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mP) is subtracted from each point coordinates, to obtain a centered repre-

sentation P ′. The axes of the new coordinate system are the principle vectors

of the point cloud covariance matrix given by

HP ′ =
∑
p∈P ′

ppT (5.10)

For a point p ∈ P ′, the new coordinates of p are defined to be cp = DT
P ′ · p

where DP ′ is a matrix whose columns are principle vectors. Formally, DP ′

is an orthogonal matrix for which HP ′ = DP ′ΛDT
P ′ for a diagonal matrix Λ.

The resulting point cloud new coordinates are denoted by C.

It is easy to verify that the new axes (columns of the PCA matrix) are

co-variant under a rigid transformation:

HRP ′ =
∑

p∈RP ′

RppTRT = RHP ′RT = RDP ′Λ(RDP ′)T . (5.11)

That is,

DRP ′
= RDP ′ . (5.12)

Using (5.12), we easily prove that the projection coefficients on the new axes

are rotation invariant. Given P1 and P2 related by a rigid motion, we have

C1 =
{(

DP ′
1

)T
p : p ∈ P1

}
=
{(

RTDP ′
2

)T
p : p ∈ P1

}
=
{(

DP ′
2

)T
Rp : p ∈ P1

}
=
{(

DP ′
2

)T
p : p ∈ P2

}
= C2.

(5.13)
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5.3.1 Axes sign ambiguity

For a point cloud P , the principal vectors defining DP ′ , are defined up to

a sign. Hence, the equality in (5.12) is true up to multiplication of the the

columns by ±1. That is to say, only one from the 8 possibilities for the

principal vectors matrix satisfies the desired equality (5.12). We eliminate

this sign ambiguity by considering all 8 possible new axes systems
{
Di
P ′
2

}8

i=1

given by different sign multiplication constellations. We choose the one axes

system that satisfies (5.13) by

i = arg min
j=1,...,8

dC(C1, Cj2) (5.14)

where dC stands for Chamfer distance.

Furthermore, since the change of coordinate system is invertible, the orig-

inal point cloud can be reconstructed.

In the noisy case, the relation C1 = C2 does not hold anymore. Due to the

noise, axes are no longer co-variant and thus the projections are no longer

invariant. However, the difference between C1 and C2 is sufficiently small so

that a successful learning process of invariant features may be applied using

DGCNN.



42

Multi-head 
Attention

Add & Norm

Feed Forward

Add & Norm

Multi-head 
Attention

Add & Norm

Multi-head 
Attention

Add & Norm

Feed Forward

Add & Norm

Add

Encoder

Decoder

ED Attention

Figure 5.3: Transformer network architecture. ED stands for Encoder-
Decoder.
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5.4 A joint resampling preformed by a Trans-

former

In order to minimize the sampling noise impact on the registration results, we

employ a strategy inspired by DCP. In [Wang and Solomon, 2019a] it is con-

cluded that more reliable features for point clouds registration can be learned

once their embeddings are processed simultaneously, by a Transformer.

This observation is motivated by the observation that the most useful

features for rigid alignment are learned jointly from local and global infor-

mation. These features for matching, can be further improve by making them

task-specific. That is, changing the features by employing on the particulari-

ties of P1 and P2 together rather than embedding P1 and P2 independently.

Inspired by the recent success of BERT [Devlin et al., 2018], non-local neu-

ral networks [Wang et al., 2018], and relational networks [Santoro et al.,

2017] using attention-based models, a module to learn co-contextual infor-

mation by capturing self-attention and conditional attention can be added.

The matching problem encountered in rigid alignment is analogous to the

the NLP sequence-to-sequence problem, other than its need for positional

embeddings to describe where words are in a sentence. As the Transformer

[Vaswani et al., 2017] was originally developed to solve the latter, DCP em-

ploy it in its architecture to perform a joint-resampling in the feature space

for a further improvement in features matching.

We employ DCP Transformer for learning a joint-resampling strategy of

the projected samples in C1 such that the resampling depends on the sampling

of C2, and vice versa.
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5.4.1 Attention mechanisms

Attention mechanisms, and particularly transformer-based deep networks

[Vaswani et al., 2017], are nowadays the leading model in natural language

processing, and its dominance is only growing. The rationale behind atten-

tion draws inspiration from attention cues in biology. A simplistic model of

how human attention is divided treats the sensing of the environment, which

is carried out non-voluntarily, as sensory inputs (referred to henceforth as

values) and their corresponding keys, i.e., the non-voluntarily cues which

have led to the acquisition of the inputs. Our ability to focus our attention

on particular parts of the environment is related to the current task, and is

represented by the query cues. Our ability to focus our attention on particu-

lar portions of the sensory values is thus determined by both the queries and

the keys. Attention architectures rely on three main building blocks:

1. Attention Pooling

An attention pooling is used to model interactions between queries and

keys based on an attention scoring function, and is given by a weighted

sum of the values based on defined attention weights.

2. Multi-Head Attention

Attention pooling are used as an intermediate mechanism in a larger

model referred to as multi-head attention. Here, instead of performing a

single attention pooling, the queries, keys, and values are transformed

with a set of independently learned linear projections. Then these

projected queries, keys, and values are fed into attention pooling in

parallel. In the end, the attention pooling outputs are concatenated
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and transformed with another learned linear projection to produce the

final output.

3. Self-Attention

The treated attention mechanisms - queries, keys, and values are not

obliged to be provided as inputs. These mechanisms can be converted

into layers of neural networks by setting all these inputs to be the same

input vector, referred to as self-attention layer.

Arguably, the leading application of self-attention mechanisms to design deep

architectures is the transformer model. Though originally proposed for se-

quence to sequence learning on text data, Transformers have been pervasive

in a wide range of modern deep learning applications, such as in areas of

language, vision, speech, and reinforcement learning.

Transformer architecture

The overall architecture of the Transformer as used in this work, is illustrated

in Figure 5.3. Each dashed encoder-decoder block in Figure 5.3 can be re-

peated multiple times. In our description (and implementation) we consider

a single encoder-decoder block.

Encoder The encoder block is comprised of two sublayers. The first is a

multi-head self-attention pooling block and the second is a 1-D convolutional

neural network (typically comprised of two layers), implementing a feed-

forward network. Specifically, in the encoder self-attention, queries, keys, and

values are all from the the outputs of the previous encoder layer. Inspired by

ResNet architectures [Khan et al., 2020], adding skip connection is a widely-
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used technique to improve the performance and the convergence of deep

neural networks, which is believed to relieve the difficulty in optimization

due to non-linearity by propagating a linear component through the neural

network layers. Therefore, a residual connection is employed around both

sublayers, which is followed by a normalization layer.

Decoder The transformer decoder is also a stack of multiple identical lay-

ers with residual connections and layer normalizations. Besides the two sub-

layers described in the encoder, the decoder inserts a third sublayer, known as

the encoder-decoder attention, between these two. In the encoder-decoder

attention, queries are from the outputs of the previous decoder layer (in

our context, they form the target sampling locations of the input), and the

keys and values are from the Transformer encoder outputs. In the decoder

self-attention, queries, keys, and values are all from the the outputs of the

previous decoder layer.

5.4.2 A joint-resampling

Loosely speaking, the action of the transformer is meant to improve perfor-

mances in learned methods for various tasks, by jointly creating weighted

sums that change the original input. Formally, take C1 and C2 to be the

SO(3)-invariant coordinates generated by the module in 5.3; these represen-

tations are computed independently of one another. Our attention model

learns a function

φ : RN×3 × RM×3 → RN×3 (5.15)
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that provides new coordinates for the point clouds

CTransformer
1 = C1 + φ(C1, C2), CTransformer

2 = C2 + φ(C2, C1). (5.16)

Notice we treat φ as a residual term, providing an additive change to

C1 and C2 depending on the order of its inputs. The idea here is that the

map C1 7→ CTransformer
1 modifies the features associated to the points in C1 in

a fashion that is knowledgeable about the structure of C2; the map C2 7→

CTransformer
2 serves a symmetric role. The asymmetric function φ is given by

a Transformer.

In principle, the additional terms, φ(C1, C2) and φ(C2, C1), added to C1

and C2 respectively, are deformations meant to infuse information from one

point cloud to the other. In our learning process this deformation terms are

optimized to improve registration. A-priory, any deformation can be learnt

by the Transformer, as long as it improves the registration performances.

In the beginning of the learning process, the Transformer’s action indeed

badly distorts the point clouds shape. Curiously, as the learning process

converges, the additional terms seem to preserve the shapes structure rather

then deform it. This process of changing the point clouds without distorting

the shape may be intuitively referred as a resampling process. One way

to see the similarity between the shapes of Transformer’s input and output

is by considering the Chamfer distance. We average the Chamfer distance

between Ci and CTransformer
i over the ModelNet40 dataset, and get a distance

of about 0.004 (where all point clouds are scaled to the unit sphere). This

shows that a different point cloud is obtained after the Transformer’s action,
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however the small Chamfer distance between the input and output point

clouds (relatively to the point clouds size) shows that this difference is due

to a change of sampling points rather a change in shape.

An alternative way to characterize a resampling of the point cloud is by

considering the one sided Chamfer distance between the new set of points

and the sampled object. The one sided Chamfer distance of a point cloud

P1 from another point clouds P2 is given by

dC(P1,P2) =
1

|P1|
∑
p∈P1

min
p′∈P2

‖p− p′‖2 (5.17)

and measures how much any point in P1 is far from its closest neighbor in

P2, in average. Whenever our new set of points indeed represent a new set of

samples from a physical object, its one sided Chamfer distance from a densely

sampled version of this point cloud is small. On FAUST dataset, which is

densely sampled (80K points per object), such a test is feasible. We average

the one sided Chamfer distance between Ci (the Transformer’s input) and Pi,

and compare it to the distance between CTransformer
i (the Transformer’s output)

and Pi; where Pi is the corresponding densely sampled version of the original

object, consists of 80K points. As expected, in both cases this distance is

small (relatively to the clouds scale): For the original point cloud Ci the

average distance is 0.00081 and for its the transformed version CTransformer
i , it

is 0.00144 (where here again all point clouds are scaled to the unit sphere).

We speculate that the distances difference is due to the sampling method

used for creating FAUST dataset. Unlike ModelNet40, where point clouds

are artificially created by software, FAUST was captured by a real scanner.
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Therefore, the original point cloud, which contain samples taken in a similar

way to the compared densely sampled version, show better resemblance to

the dense version compared to the transformed version, which is now sampled

in a different way, due to the Transformers action.

The dual resampling process executed by the Transformer has two objec-

tives in the UME framework. The first, as mentioned, is to provide DGCNN

a good ’starting point’ for constructing better invariant features. The second

is related to the actual evaluation of the UME moments, where we use the

re-sampled point clouds produced by the Transformer and re-project them

on the corresponding principle axes to obtain

P̂1 = D1 · CTransformer
1 + mP1 , P̂2 = D2 · CTransformer

2 + mP2 . (5.18)

The point clouds, P̂1 and P̂2, are re-sampled versions of the original points

clouds, related by the same rigid transformation that relates P1 and P2.

We therefore apply the UME registration to the re-sampled point clouds

P̂1 and P̂2, using the DGCNN generated functions designed to be SO(3)

invariant in the presence of observation sampling noise. As demonstrated

by the experimental results, applying UME registration on the re-projected

re-sampled point clouds provides improved performance.

5.5 Loss

In order to overcome the possible ambiguity problem of symmetric objects,

discussed in Section 6, we adopt the Chamfer distance [Barrow et al., 1977]
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as our loss function. That is, if T̂ is the estimated transformation,

L(T̂ ) = dC(T̂ (P1),P2). (5.19)

Using this loss, the ambiguous examples such as those in ModelNet40 [Wu

et al., 2015] do not damage the learning process, as even if an ambiguity

exists and the registration is successful, the Chamfer distance will be small.

The Chamfer loss function has another advantage as no labels are required

for the learning process, what makes it unsupervised.

5.6 Implementation Details

The architecture of DeepUME is shown in Figure 2 in the paper. Simi-

larly to DCP [Wang and Solomon, 2019a], we use 5 EdgeConv (denoted as

DGCNN [Wang et al., 2019b]) layers. The number of filters in each layer

are [64, 64, 128, 256, 512]. The number of heads in multi-head attention is 1

and the embedding dimension is 64. We use LayerNorm [Ba et al., 2016]

without Dropout [Srivastava et al., 2014]. Adam [Kingma, 2014] is used to

optimize the network parameters, with initial learning rate 0.001. We divide

the learning rate by 10 at epochs 75, 150 and 200, training for a total of 250

epochs. As the modules of the pre-processing and the UME are of closed-

form and non iterative or brute force, their impact on the computational

time is negligible. Training on DeepUME takes about 11 hours to converge

with Pyotrch [Paszke et al., 2019] and an NVIDIA Quadro RTX6000 GPU.

All point clouds renderings were produced by Mitsuba [Nimier-David et al.,
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2019].
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Chapter 6

Experiments

In this section selected experiments showing key concepts or performance

gains of methods discussed in previous chapters are presented.

We conduct experiments on three datasets: ModelNet40, FAUST and

Stanford 3D Scanning Repository where the last two are used only for test-

ing. We train our network using ModelNet40, which consists of 12,311 CAD

models, in 40 categories where (80%) are used for training and the rest for

testing.

Following previous works experimental settings, we uniformly sample

1,024 points from each model’s outer surface and further center and rescale

the model into the unit sphere. In our training and testing procedure, for

each point cloud, we randomly (uniformly) choose a rotation drawn uniformly

from the full range of Euler angles and a translation vector in [−0.5, 0.5] in

each axes. We apply the rigid transformation obtained from the resulting

parameters on P1, followed by a random shuffling of the points order, and

get P2. In noisy scenarios, a suitable noise is applied to P2. We train our



53

framework in the scenario of Bernoulli noise (see bellow), in the specific case

where p1 = p2 = 0.5, and test all scenarios using the trained configuration.

Each experiment is evaluated using four metrics: The RMSE metric, both

for the rotation and the translation is defined by

RMSE(R) =

√
‖θ̂ − θgt‖

2

2, θ
gt = [θgtx θgty θgtz ]T (6.1)

RMSE(t) =

√
‖t̂− tgt‖22 (6.2)

(where gt stands for ground-truth) as well as the Chamfer distance and the

Hausdorff distance [Liu et al., 2018; Urbach et al., 2020], proposed next as

alternative metrics where ambiguity issues are resolved. We compare our

performances with the basic implementation of the UME method (coded by

ourselves), ICP (implemented in Intel Open3D [Zhou et al., 2018]), and four

learned methods; PointNetLK and DCP (benchmarks point cloud registra-

tion networks) as well as the recently proposed DeepGMR, [Yuan et al., 2020]

and RGM, [Fu et al., 2021]. We retrain the baselines, adapting the code re-

leased by the authors, and test all compered methods in exactly the same

setting.

6.1 The Effect of Sampling Rate on Registra-

tion under Sampling Noise Scenarios

We now demonstrate that the proposed method overcome the problem of

a severe under-sampling. Figure 6.1 shows the registration performance of

different methods under different points densities. Among the compared
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performances, we add here those of PCA, in which a set of corresponding

points is obtained from the clouds principal vectors (see section 5.3).

As mentioned in chapters 1 and 3, many point cloud registration appli-

cations process under-sampled point clouds. Figure 6.1 shows that on dense

point clouds, the compared registration methods achieve comparable results;

But as the sampling rate decreases, the sampling noise effect is dominant and

severely damage their results, while the ones of our model remain unchanged.

We would like to remark that for the closed form registration methods

considered, where computational limitations are indulgent, registration is

testable with up to 80,000 sample points per cloud. In that scenario, PCA

and UME registration achieve RMSE(R) errors of 5.147 and 2.573 respec-

tively. This is particularly interesting since it shows that PCA and UME,

which are both critical parts in our framework, require about 160 times more

samples from our method (80k vs 500) in order to achieve similar perfor-

mances. It is further implied that the main effect of the proposed method is

equivalent to the interpolation of sub-sampled point clouds where the quality

criterion of the interpolation is its efficiency for registration purposes.

6.2 The Ambiguity Problem in ModelNet40

An ambiguity problem arises in point cloud registration whenever symmetric

objects are considered, as more than a single rigid transformation (depending

on the degree of symmetry of the object) can correctly align the two point

clouds. In the noise free scenario such an ambiguity is trivially handled

since a fixed point constellation undergoes a rigid transformation which in
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Figure 6.1: Registration performance under zero-intersection noise model and
different points densities on the FAUST dataset. On dense point clouds, the
compared registration methods achieve comparable results. As the sampling
rate decreases, the sampling noise effect is dominant and severely damage
their results, while the ones of our model remain unchanged.
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the case of nonuniform sampling guaranties the uniqueness of the solution.

However, when observations are noisy, the ambiguity is harder to resolve as

the constellation structure breaks. In that scenario, P2 is a noisy version

of T (P1), and possibly no rigid transformation can perfectly align the point

clouds. In that case, if the point clouds to be aligned represent a symmetric

shape, there are multiple transformations that approximately align the two

clouds together.

For symmetric shapes, which are very common in ModelNet40 dataset,

the rotation angles RMSE metric may assign large errors to successful regis-

trations. To resolve this ambiguity we suggest to replace this metric by the

well known Chamfer and Hausdorff distances defined by

dC(P1,P2) =
1

|P1|
∑
p∈P1

min
p′∈P2

‖p− p′‖2 +
1

|P2|
∑
p′∈P2

min
p∈P1

‖p′ − p‖2 (6.3)

dH(P1,P2) = max
p∈P1

min
p′∈P2

‖p− p′‖2 + max
p′∈P2

min
p∈P1

‖p′ − p‖2. (6.4)

In Figure 6.2, we demonstrate the ambiguity problem. The box shaped

bookshelf (as many other examples in ModelNet40) is symmetric under rota-

tions of 180◦ about the z axes. Therefore, as shown the in Figure 6.2, in the

sampling noise scenario under zero-intersection model (see below) two possi-

ble registration solutions (obtained from one to another by applying a 180◦

rotation about the z axes) are possible. Both solutions do align the point

clouds, yet one achieves zero RMSE(R) error, while the other yields a much

higher one. Nevertheless, both Chamfer and Hausdorff distances achieve

small errors which implies they are better suited for measuring registration
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Figure 6.2: ModelNet40 registration ambiguity arising in sampling noise scenarios. Due to the
sampling noise there is no one true registration solution for the input, but any that aligns the
clouds together. Therefore, the two presented solutions should result in a low error metric, which
is reflected in the Chamfer and Hausdorff distances and not in RMSE(R).

error on symmetric shapes.

Using ModelNet40, we test performance, in four scenarios: noise free

model, sampling noise (Bernoulli noise and zero-intersection noise) and ad-

ditive white Gaussian coordinate noise. We note that in the presence of

sampling noise we indeed observe large errors in RMSE(R) due to the sym-

metry of objects although the symmetric shapes are well aligned. Moreover,

in the unseen datasets, where real world data is used, which is naturally

asymmetric, the rotation RMSE is indeed small and indicates successful reg-

istration. Therefore we consider the Chamfer and Hausdorff distances to be

more reliable metrics for registration in the presence of symmetries. Figure

6.7 shows registration results of several baseline methods and our proposed

method on a representative example from the unseen dataset FAUST. All
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experimental results are summarized in Tables 6.1 and 6.2.

6.3 Seen Dataset

6.3.1 Noise free model

We examine the case where no noise is applied to the measurements. In that

case, we see that the estimation error is practically null. DeepGMR is shown

to be the second best learned method, while all other tested methods yield

large errors, meaning that the registration fails when large range of rotation

angles is considered.

6.3.2 Bernoulli noise

The Bernoulli noise case is related to the scenario of sampling noise, in which

the point clouds contain different number of points. In that case, we choose

randomly (uniformly) two numbers p1 and p2 in [0.2, 1]. Then, each point

in Pi is removed with probability 1− pi, independently from the rest of the

points. We perform registration on the resulting point clouds PB1 and PB2 .

We note that the number of points in PBi averages to pi ·2048, and is likely to

be different in the two clouds. The number of corresponding points between

the resulting clouds averages to p1p2 · 2048 (as the probability for the two

point clouds to share a specific point is p1p2). We note that we were not able

to evaluate RGM performance in that scenario.

The error surfaces depicted in Figure 6.3 describe the rotation RMSE

with respect to the probabilities q1 and q2 in all three datasets tested. As
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Figure 6.3: DeepUME performance (measured in RMSE(R)) under Bernoulli noise model with
respect to the probabilities q1 and q2 in all three datasets tested. The surfaces visualization implies
that the sparseness of the sparsest point clouds is the dominant cause of error, rather then the
difference between the clouds densities.

expected, the error increases as q1 and q2 decrease and the point clouds are

made sparser. Note that in Figure 6.3, in all the datasets considered, the

rotation RMSE becomes large even when only one of the clouds is sparse

(when the probability for keeping a point is small on one cloud and large on

the other cloud). That is, the rotation RMSE does not increase much when

we take the second cloud to be sparse as well. This might suggest that the

sparseness of the sparsest point cloud is the dominant cause of error, rather

then the difference between the clouds densities.

For a visualization of the effect of Bernoulli noise on a point cloud in

extreme values of the probabilities q1 and q2 we refer the reader to Figure

6.4.
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Figure 6.4: The effect of Bernoulli noise on a point cloud in extreme values of the probabilities q1
and q2. Red points denote P1, blue points denote P2 and purple points belong to both.

6.3.3 Zero-intersection noise

Zero intersection noise is the extreme (and most realistic) case of sampling

noise. In that case, we randomly choose 1024 points from P1 to be removed.

Next, we remove the 1024 points from P2 that correspond to the points in

P1. Thus, by construction, no point in one cloud is the result of applying a

rigid transformation to a point in the other cloud.

6.3.4 Additive Gaussian Coordinate Noise

In these set of experiments each coordinate of every point in P2 is perturbed

by an additive white Gaussian random variable drawn from N (0, σ) where σ

is chosen randomly in [0, 0.04]. All noise components are independent and no

value clipping is performed. The results in Table 6.1 indicate that since the

UME is an integral (summation) operator the registration error of both the
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UME and the DeepUME is lower than the error of the other tested methods.

One of the most intriguing observations considers the effect of different

types of noise on registration, and in particular, Additive White Gaussian

Noise (AWGN) versus sampling noise. In Figure, 6.5 we evaluate the effect

of the noise variance on the rotation RMSE. An interesting observation is

that registration on ModelNet40 dataset [Wu et al., 2015] is significantly

more affected by AWGN, than other types of data. Recalling the ambiguity

problem of ModelNet40 this is quite expected: Noise makes the inherent

ambiguity problem harder to resolve. In the presence of noise, many of the

ambiguous examples are falsely registered and therefore the average error

increases dramatically.

We find that for sufficiently large noise variance, the rotation RMSE in

the AWGN case and the rotation RMSE for both sampling noise scenarios,

are comparable. In order to illustrate the very different impact of the dif-

ferent types of noise on registration, we refer the reader to Figure 6.6. In

order to have the same registration error as in the zero-intersection model on

the Stanford dataset, an AWGN with variance of approximately 0.09 is re-

quired. As shown in Figure 6.6, such a noise causes a sever distortion, which

practically makes the original shape unrecognizable. On the other hand, the

original shape of the bunny in the sampling noise scenario is well preserved.

6.4 Unseen Dataset

The generalization ability of a model to unseen data is an important aspect

for any learning based framework. In order to demonstrate that our frame-
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Figure 6.5: The effect of the WAGN variance on DeepUME performance
(measured in RMSE(R)) in all three datasets tested. In the presence of noise,
more symmetric examples in ModelNet40 dataset are incorrectly registered
and therefore the average error increases dramatically.

Noise free Bernoulli noise Gaussian noise

Model dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t)

UME [Efraim and Francos, 2019] <1e-04 <7e-04 0.193 <1e-05 0.0581 0.394 74.164 0.015 0.019 0.151 27.684 0.002
ICP [Besl and McKay, 1992a] 0.275 1.446 83.039 0.276 0.297 1.480 86.381 0.286 0.266 1.436 83.073 0.277

PointNetLK [Aoki et al., 2019] 0.027 0.142 80.360 1.0105 0.029 0.157 83.280 1.073 0.026 0.153 81.843 1.037
DCP [Wang and Solomon, 2019a] 0.059 0.470 92.285 0.014 0.067 0.483 92.818 0.020 0.055 0.456 90.715 0.014
DeepGMR [Yuan et al., 2020] <7e-06 <9e-05 0.193 <5e-05 0.033 0.224 72.447 0.018 0.011 0.085 42.515 0.004
RGM [Fu et al., 2021] 0.255 1.333 99.937 0.388 N/A N/A N/A N/A 0.254 1.331 100.117 0.389

DeepUME (ours) <1e-07 <1e-07 <3e-04 <1e-07 0.010 0.083 40.357 0.015 0.002 0.012 2.425 0.001

Table 6.1: ModelNet40 experimental results. Our method achieves substantial performance gains compared
to the competing techniques for all metrics in all the examined scenarios. dC and dH stands for Chamfer
and Hausdorff distances respectively. Best results are bold and second best are underlined.
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Figure 6.6: In the top row P1 and P2 are presented together, and in the
bottom row only P2 is shown. In order to cause the same registration error as
in the zero-intersection noise model on the Stanford dataset, an AWGN with
variance of approximately 0.09 is required. While the former preserves well
the original shape, the latter sever distortion makes it barely recognizable.
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ModelNet40 FAUST Stanford 3D Scanning Repository
[Wu et al., 2015] [Bogo et al., 2014] [Stanford Scanning Repository, 1994]

Model dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t)

UME [Efraim and Francos, 2019] 0.051 0.373 80.331 0.010 0.007 0.085 35.983 0.044 0.033 0.267 48.716 0.010
ICP [Besl and McKay, 1992a] 0.276 1.448 82.948 0.277 0.376 1.643 84.544 0.279 0.288 1.337 87.292 0.277

PointNetLK [Aoki et al., 2019] 0.028 0.147 80.858 1.023 0.018 0.170 90.512 1.120 0.040 0.289 84.520 1.147
DCP [Wang and Solomon, 2019a] 0.059 0.475 93.221 0.014 0.046 0.516 94.315 0.137 0.072 0.522 99.328 0.011
DeepGMR [Yuan et al., 2020] 0.026 0.117 67.282 0.010 0.003 0.027 27.941 0.020 0.005 0.119 39.402 0.012
RGM [Fu et al., 2021] 0.254 1.335 100.970 0.388 0.385 1.677 114.496 0.418 0.278 1.257 104.872 0.368

DeepUME (ours) 0.011 0.094 70.818 0.009 0.002 0.024 8.630 0.019 0.002 0.110 5.625 0.010

Table 6.2: Zero-intersection noise results on seen (ModelNet40) and unseen datasets (FAUST and Stanford
3D Scanning Repository). Our method outperforms the competing techniques in all scenarios for all metrics,
only except RMSE(R) for ModelNet40.

work indeed generalizes well, we test it on two unseen datasets. The first is

the FAUST dataset that contains human scans of 10 different subjects in 30

different poses each with about 80,000 points per shape, and the other is the

Stanford 3D Scanning Repository. We generate the objects to be registered

using a similar methodology to that employed for the ModelNet40 dataset.

Our framework achieves accurate registration results in all scenarios checked,

and shows superior performance over the compared methods.

6.5 Additional Registration Results

6.5.1 Small rotation angles range

In our experiments, all DGCNN-based networks, except ours, provide poor

registration. This is expected, as without a proper pre-processing procedure

such networks fail to create features that are invariant under large rotations.

The experimental results demonstrate that on the average, when large rota-

tions are allowed, the registration results of the proposed method outperform
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Figure 6.7: Registration results on an unseen dataset, where the observations are subject to a large
relative rotation and sampling noise (zero-intersection model). While UME [Efraim and Francos,
2019] and DCP [Wang and Solomon, 2019a] fail to align the objects, and DeepGMR [Yuan et al.,
2020] results with a substantial registration error, the proposed method successfully aligns the
shapes.

the alternatives. However, for a more comprehensive overview, we also com-

pare our performance separately for the case of registration under rotation

by small angles (up to 60◦ about each axes).

For a fair comparison, we use the pre-trained models released by the au-

thors and test all the proposed methods with rotation in the range [0, 60]

degrees about each of the axes, for the noise free and zero-intersection noise

models, in a similar manner to the above described experiments. We note

that in the small rotations experiment, none of the tested methods encoun-

ters the ambiguity problem of ModelNet40.The symmetry in the examples

of ModelNet40 creates ambiguity where rotations by angles larger then 90◦

are considered. Since our method is designed for arbitrary rotations, we

do suffer from the ambiguity problem in ModelNet40. Hence, for generat-

ing a reliable comparison, we perform that experiment on the Stanford 3D
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Noise free Zero-intersection noise

Model dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t)

UME [Efraim and Francos, 2019] <9e-05 <4e-04 0.333 <5e-06 0.030 0.269 42.559 0.010
ICP [Besl and McKay, 1992a] 0.280 1.274 72.265 0.277 0.267 1.256 71.532 0.276

PointNetLK [Aoki et al., 2019] <7e-04 0.005 0.729 0.005 0.012 0.113 11.504 0.095
DCP [Wang and Solomon, 2019a] <4e-04 0.003 5.739 0.002 0.065 0.479 71.307 0.011
DeepGMR [Yuan et al., 2020] <4e-06 <2e-05 0.110 <6e-05 0.294 0.270 33.128 0.015
RGM [Fu et al., 2021] 0.268 1.203 0.025 <2e-04 0.267 1.187 4.690 0.032

DeepUME (ours) <1e-07 <1e-07 <8e-05 <1e-07 0.002 0.118 5.159 0.010

Table 6.3: Free and zero-intersection noise models results on the unseen dataset Stanford 3D Scanning
Repository in small rotation angles regime of [0, 60] degrees about each axes. Our method outperforms
the competing techniques in the examined scenarios for all metrics, only except the RMSE(R) in the
zero-intersection noise model. These results suggest that our framework improves the state-of-the-art
methods not only on the average over the entire range, but also in the small angles scenario, where
most of the methods were designed to be optimal.

Scanning Repository [Stanford Scanning Repository, 1994], which does not

contain ambiguous examples.

From the results summarized in Table 6.3, we conclude that the proposed

method outperforms all compared methods in all metrics examined (except

for one case, where RGM method [Fu et al., 2021] achieves slightly smaller

rotation RMSE). This shows that the proposed framework outperforms state-

of-the-art methods not only on the average on the entire transformation

range, but also for the small angles scenario.

6.6 Ablation Study

We conduct several ablation studies, removing components of the proposed

DeepUME and replacing each part with an alternative, to better evaluate our

design. The studies were tested for the Gaussian noise and zero-intersection
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noise models on the unseen FAUST [Bogo et al., 2014] dataset, in a similar

manner to the experiments described above. The results of this section are

summarized in Table 6.4.

6.6.1 With or without invariant coordinates?

We first try to evaluate whether the new transformation-invariant coordi-

nates generated for the point cloud at the pre-processing phase, provide value

over the original representation of the point cloud. We therefore remove the

pre-processig module (presented in Figure 5.1) and compare the resulting

performance to that obtained using the full model. Table 6.4 demonstrates

that DeepUME performs consistently better with the inclusion of the pre-

processig module.

6.6.2 Coordinates joint-resampling or features joint-

resampling?

In our proposed framework, the Transformer layer executes a joint-resampling

procedure in the coordinated space of R3. This is unlike other networks,

where the joint-resampling process is executed in feature space. Applying the

Transformer in the coordinate space has a notable computational advantage

as in this case, the embedding size of each point is significantly lower. In

our our network the embedding size of each point on the coordinate space

is 3 while in the feature space it is 512. Hence, performing a coordinate

sampling allows for a dramatic decrease in computational complexity, both in

the train and evaluation processes (twice faster). We compare our framework
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Zero-intersection noise Gaussian noise

Model dC dH RMSE(R) RMSE(t) dC dH RMSE(R) RMSE(t)

No pre-processing 0.094 0.913 83.506 0.140 0.087 0.896 82.260 0.140
Features joint-sampling 0.007 0.082 14.913 0.027 0.001 0.012 1.533 0.002
MLP instead of UME 0.003 0.046 12.964 0.023 0.001 0.011 1.488 0.003

DeepUME (full model) 0.002 0.024 8.630 0.019 0.001 0.011 1.069 0.002

Table 6.4: Ablation study results on the unseen dataset FAUST [Bogo et al., 2014]. DeepUME
full model achieves equal or better registration results in all tested scenarios and in all metrics.

with the two strategies - resampling in coordinate space and resampling in

features space. The results presented in Table 6.4 show that the decrease in

computational complexity does not cause a decrease in registration accuracy.

6.6.3 UME or MLP?

While MLP (Multi Layer Perceptron) provides, in principle, a universal ap-

proximation, the UME integration into a DNN framework is designed to

provide an accurate computation of a rigid motion under noisy sampling of

point clouds. A natural question to ask is whether the UME parameter ex-

traction may be replaced by a general learned module, such that registration

with comparable accuracy is achieved. As expected, Table 6.4 shows that

the model performs better with the UME layer than a general MLP.
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Chapter 7

Discussion

7.1 Integrating closed-form methods into a

DNN framework

The deep learning technique could serve as a feature extraction tool to replace

the original point coordinate. The conventional optimization could provide a

theoretical guarantee for the convergence. Firstly, advanced loss calculation

strategies are developed to apply an optimization strategy to calculate an

estimated transformation from the learned feature. Secondly, calculate the

loss between the estimated transformation and ground truth. Many exist-

ing methods [Wang and Solomon, 2019a], [Huang et al., 2020] demonstrate

that combining both advantages could achieve both high accuracy and effi-

ciency. For instance, deep closest point (DCP [Wang and Solomon, 2019a])

uses deep features to estimate correspondences and use SVD to calculate the

transformation. FMR [Huang et al., 2020] applies deep learning to extract
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global feature and uses Lukas-Kanade (LK) algorithm to minimize the feature

difference. [Fey et al., 2020] uses deep learning to calculate the soft corre-

spondences and use message passing network to refine the correspondences.

DeepGMR [Yuan et al., 2020] uses deep learning to calculate the correspon-

dences between Gaussian models and points and optimize the transformation

based on GMM optimization.

These existing approaches provide initial trials on conventional optimiza-

tion and deep neural networks to solve registration problems. Combining con-

ventional optimization theory and recent deep neural networks is a promising

way to provide high accuracy and efficiency and theoretically guarantee cur-

rent deep learning based registration methods. The research direction is to

design advanced loss calculation strategies to optimize the neural network by

combining the existing optimization strategies [Huang et al., 2021].

7.2 Conclusions

We derived a novel solution to the highly practical problem of aligning dif-

ferently sampled and noisy point clouds. The solution integrates the closed

form UME registration into a DNN framework. Since the UME is an oper-

ator defined on functions of the coordinates, in order to enable registration,

these functions need to be invariant to the transformation. We generate such

invariant features using an unsupervised deep neural network architecture de-

signed to jointly resample the two point clouds to minimize the effect of the

sampling noise. The derived new discrete version of the UME operator and

its integration into the DNN framework enable us to achieve accurate regis-
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tration in various noisy scenarios. In addition, projecting the point clouds on

transformation invariant coordinate system, removes a major obstacle in the

learning process of DGCNN-based networks when registration under large

rotations is considered.
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