
Inpainting by Sensitive Mean Filtering

Leo Büttiker Urs Fässler Nicolas Rüegg
Group moebs, Department of Computer Science, ETH Zurich, Switzerland

Abstract—A task often required in image processing is
inpainting – the reconstruction of missing pixels where the
location of the missing pixels is known. While many differ-
ent methods for inpainting exist, we present a particularly
intuitive method based on Mean Filtering. Our method called
Inpainting by Sensitive Mean Filtering is extremly fast and
achieves qualitatively good results. To support this claim we
present results of our method compared to Inpainting with
Overcomplete Dictionaries and an algorithm based on partial
differential equations.

I. INTRODUCTION

Images often contain missing values for certain pixels
or pixel patches. Examples are scratches or random noise
in an image. Using an inpainting method, one tries to
approximate values for these pixels. In Inpainting with
Overcomplete Dictionaries, overcomplete Haar wavelet or
DCT dictionaries are often used to reconstruct the missing
pixels. These methods both proved to be quite slow even for
relatively small images. Another algorithm for inpainting is
Inpainting NaNs – an algorithm based on partial differential
equations.

In this paper, we present a simpler and faster method for
inpainting of small parts of images. In section II, we describe
our Inpainting by Sensitive Mean Filtering method. It is an
intuitive and simple method in which missing pixel values
are approximated by using existing neighboring pixels.

Experiments discussed in III have shown that considering
random noise, our method achieves appealing results over a
broad range of images.

In section IV we discuss the advantages and disadvantages
in terms of computation time and error of our method in
comparison to the methods Inpainting with Overcomplete
Dictionaries and Inpainting NaNs.

Finally, section V gives an outlook on future work and
section VI summarizes our results.

II. SENSITIVE MEAN FILTERING

The Sensitive Mean Filter is an extension of the well
known mean filter as described in [1]. This algorithm sets the
value of every pixel to the mean of itself and its surrounding
pixels. This is based on the idea that values of spatial close
pixels usually just vary moderately.

Unlike the classical mean filter, our method uses a bitmask
which indicates the missing pixels. By exploiting this addi-
tional information, we can build the mean just over given
pixels and can also guarantee not to corrupt correct pixels.

Our method can formally be described as follows: Let
fm,n be a [0, 1] pixel value of a M × N gray scale image
and let l be the given M ×N mask indicating the missing
pixels, where

lm,n =

{
1 if pixel (m,n) is set
0 if pixel (m,n) missing (1)

For a (2K+1)×(2L+1) kernel, we calculate the value of
a pixel f ′i,j in the approximation of the image f ′ as follows:

f ′i,j =

i+K∑
m=i−K

j+L∑
n=j−L

fm,n

i+K∑
m=i−K

j+L∑
n=j−L

lm,n

(2)

We assume missing pixels in f to be set to 0. Therefore,
formula 2 calculates the mean over the given correct pixels.

We calculate the value for f ′i,j on a 3 × 3 kernel as
long as the denominator is not equal to zero. I.e., a pixel
is surrounded by at least one given pixel. If this approach
fails, we take a 5 × 5 kernel. If this also fails, we set the
missing pixel to the overall mean of the image.

As a post processing step, smoothing is performed. For
this we use the Linear Noise Cleaning method as described
in [2].

In a first step, we set the given correct pixels from f in the
approximated image f ′ and apply a discrete convolution on
it with the impulse response array H1. It defines a low-pass
noise cleaning filter.

H1 =
1

100

1 8 1
8 64 8
1 8 1

 (3)

In a second step, we set the given correct pixels from
f again and use a different filter H2. This kernel places
emphasis on the directly neighboring pixels.

H2 =
1

8

0 1 0
1 4 1
0 1 0

 (4)

As a final step, we set the given correct pixels from f for
the last time to get the reconstructed image.

Sensitive Mean Filtering can be implemented computa-
tionally efficient as a set of matrix operations.



III. RESULTS

From a subjective point of view, our method achieves
visually excellent results for missing patches of less than
5 × 5 pixels. This is true for randomly as well as non-
randomly missing pixels as Figure 1 and Figure 2 show.

We tested our method on twelve different 512 × 512
gray scale images, each with ten different masks of missing
pixels. Each mask consisted of 60% randomly missing
pixels. The set of images encompasses the categories Natural
Pictures, Comics and Textures with four images in each one.
The category Natural Pictures includes photographs, Comics
contains comic images with hard transitions of intensity
and Textures consists of photographs of small repeating
structures such as a brick wall or grass.

To quantify the error of our method, we used the Mean
Square Error (MSE) over every single reconstructed image:

MSE =
1

M N

M∑
i=1

N∑
j=1

[fi,j − f ′i,j ]
2 (5)

The visually appealing result in Figures 1 and 2 is
confirmed by the expectation value over all MSEs which
is 0.0054. The standard deviation is 0.0076.

The experiments also showed that our method does not
depend on the mask for randomly generated masks.

Figure 3 shows that our method achieves significantly
smaller errors on the category Natural Pictures than on the
category Comics and Textures, respectively. The expectation
value of the error on Natural Pictures is 0.0011. For Comics
it is at 0.0093 and for Textures at 0.0057. We assume this to
be due to the harder transitions of intensity in Comics and
fine-grained structures in Textures.

Comics Textures Natural
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 3. Error (MSE) depending on the image category. Generated on
the test set of the twelve images and ten randomly generated masks of 60%
missing pixels.

On 512×512 images, our method implemented in Matlab
running on an Intel Core i5 CPU M 520 at 2.40GHz with
4GB memory needs approximately 0.26 seconds. It does not
depend on the rate of of missing pixels as Figure 7 shows.

IV. DISCUSSION

In this section we look at our method’s advantages and
disadvantages and compare it to Inpainting with Overcom-
plete Dictionaries with a Haar wavelet dictionary and a DCT
dictionary, as well as to Inpainting NaNs.

Inpainting NaNs is a boundary value solver. It is described
by its author as follows[3]: ”The basic idea is to formulate a
partial differential equation (PDE) that is assumed to apply
in the domain of the artifact to be inpainted. The perimeter
of the hole supplies boundary values for the PDE. Then the
PDE is approximated using finite difference methods (the
array elements are assumed to be equally spaced in each
dimension) and then a large (and very sparse) linear system
of equations is solved for the NaN elements in the array.”
In our context, the NaN elements are the missing pixels.

Inpainting with Overcomplete Dictionaries is imple-
mented as described in [4]. The parameters for the Haar
wavelet and DCT dictionary are chosen as in [5]. I.e., the
image is split into non-overlapping patches of size 8×8 and
the individual patches are coded into vectors x ∈ R64. With
the vectorized pixel patches as columns, the entire image
is coded in a matrix X ∈ R64×(d/8)2 , where d is the side
length of the quadratic image in pixels. For DCT as well
as Haar wavelets, the dictionary U ∈ R64×441 contains 441
linearly dependent atoms. Finally, using a Matching Pursuit
algorithm, matrix X is approximated by atoms from the
overcomplete dictionary U .1

An experiment over the test set of the twelve images
and ten randomly generated masks of 60% missing pixels
confirmed the competitiveness of our method. The resulting
error is shown in Figure 4. As Figure 5 shows, Inpainting
by Sensitive Mean Filtering also performs good for lower
and higher rates of missing pixels than 60%.

DCT dictionary Haar dictionary inpaint_nans sensitiveFiltering
0

0.01

0.02

0.03

0.04

0.05

Figure 4. Error (MSE) depending on the inpainting method. Generated on
the test set of twelve images and ten randomly generated masks of 60%
missing pixels.

But despite of the fact that Inpainting by Sensitive Mean
Filtering achieves competitive results regarding the quality

1The algorithm to generate the overcomplete Haar wavelet dictionary was
taken from [6]. The algorithm to generate the overcomplete DCT dictionary
was taken from [7], [8].



(a) Original (b) With missing pixels (c) Reconstructed with Sensitive Mean Filtering

Figure 1. The Inpainting by Sensitive Mean Filtering Method achieves visually appealing results on relatively small non-randomly missing pixels.

(a) Original (b) With 80% missing pixels (c) Reconstructed with Sensitive Mean Filtering

Figure 2. The Inpainting by Sensitive Mean Filtering Method achieves visually appealing results on relatively small patches of randomly missing pixels.

of the result, its biggest advantage is its speed. On the
test set of twelve different images and ten different masks
of randomly missing pixels (60% missing), our method is
significantly faster than the other methods as is shown in
Figure 6.

Despite all its advantages, one has to consider that our
method is not well suited for missing pixel patches of more
than 5 × 5 pixels as experiments with larger patches of
missing pixels have shown. This is due to our method’s
dependence on spatial close pixels and the relatively small
choice of the kernel, which for the implementation described
in this paper is of size 5× 5 maximally.

V. FUTURE WORK

To overcome the dependence on relatively small patches
of missing pixels, we also developed a method called In-
painting by Clustering. It is based on the idea that within
an image, there exist many similar areas. In this method, an
image is divided into (possibly overlapping) pixel patches

of equal size which then are vectorized. Subsequently, these
vectors are grouped into clusters using k-means. The actual
inpainting is done by setting the missing pixels of a vector
to the corresponding pixel values of the assigned cluster’s
centroid.

A set of non-scientifically conducted experiments lets us
assume that this method also achieves good results regarding
the error, but can by no means compete with the presented
Inpainting by Sensitive Mean Filtering in terms of speed.
Nevertheless, for applications with large patches of missing
pixels where computing power is not an issue, further
investigation of the Inpainting by Clustering method might
be worthy.

Considering the presented method Inpainting by Sensitive
Mean Filtering, it could be interesting to investigate in what
extent an iterative version could improve the results for
missing pixel patches of large scale. Furthermore it should
be investigated if border detection could help to improve the
algorithm on images with hard transitions, e.g. our Comics



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0001

0.001

0.01

0.1

1

inpaint_nans
Overcomplete DCT dictionary
Overcomplete Haar dictionary
sensitiveFiltering

Figure 5. Error (MSE) depending on the rate of missing pixels. Generated
on the test set of twelve images and ten randomly generated masks of
missing pixels for every rate of missing pixels.

DCT dictionary Haar dictionary inpaint_nans sensitiveFiltering
0

2

4

6

8

10

12

14

Figure 6. Time in seconds depending on the inpainting method. Generated
on the test set of twelve images and ten randomly generated masks of 60%
missing pixels. The means are 9.1 (DCT dictionary), 7.7 (Haar dictionary),
0.93 (inpaint nans) and 0.26 (sensitiveFiltering) seconds.

test set. Especially for masks with large missing patches, an
algorithm with an adaptive kernel size might also be worth
to consider.

VI. SUMMARY

The experiments for small patches of missing pixels
(less than 5 × 5) have shown, that our method Inpainting
by Sensitive Mean Filtering is superior to the methods
Inpainting with Overcomplete Dictionaries and Inpainting
NaNs in terms of speed, with no losses in quality. Due to the
relatively fast computation time, our method is in particular
an eligible candidate for applications with high demands on
speed or little computing power.

Our method also shows that for small areas of missing
pixels, a simple algorithm can achieve very good results.

REFERENCES

[1] M. McDonnell, “Box-filtering techniques,” Computer Graphics
and Image Processing, vol. 17, no. 1, pp. 65 –
70, 1981. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0146664X81800093

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

inpaint_nans
Overcomplete DCT dictionary
Overcomplete Haar dictionary
sensitiveFiltering

Figure 7. Time in seconds depending on rate of missing pixels. Generated
on the test set of twelve images and ten randomly generated masks of
missing pixels for every rate of missing pixels.

[2] W. K. Pratt, Digital image processing. Wiley, 1991.

[3] J. D’Errico, “inpaint nans,” 2006. [Online]. Avail-
able: http://www.mathworks.com/matlabcentral/fileexchange/
loadFile.do?objectId=4551&objectType=file

[4] J. M. Buhman and E. Lomakina, “Computational
intelligence lab - series 11, may 11th, 2011 (sparse
coding),” 2011. [Online]. Available: http://cil.inf.ethz.ch/
material/exercise/series11.pdf

[5] A. B. M. Aharon, M. Elad, “The k-svd: An algorithm for de-
signing of overcomplete dictionaries for sparse representation,”
vol. 54, no. 11, pp. 4311–4322, 2006.

[6] S. Christen, “Dictionary learning for super-resolution,”
2010. [Online]. Available: http://people.ee.ethz.ch/∼simonch/
lect/SA DL/report SA Dl for SR print.pdf

[7] R. Rubinstein, M. Zibulevsky, and M. Elad, “Learning sparse
dictionaries for sparse signal approximation,” 2009. [Online].
Available: http://www.cs.technion.ac.il/∼ronrubin/Publications/
sparsedict-rep.pdf

[8] R. Rubinstein, “Ksvd-box v13.” [Online]. Available: http:
//www.cs.technion.ac.il/∼ronrubin/software.html

http://www.sciencedirect.com/science/article/pii/S0146664X81800093
http://www.sciencedirect.com/science/article/pii/S0146664X81800093
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4551&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4551&objectType=file
http://cil.inf.ethz.ch/material/exercise/series11.pdf
http://cil.inf.ethz.ch/material/exercise/series11.pdf
http://people.ee.ethz.ch/~simonch/lect/SA_DL/report_SA_Dl_for_SR_print.pdf
http://people.ee.ethz.ch/~simonch/lect/SA_DL/report_SA_Dl_for_SR_print.pdf
http://www.cs.technion.ac.il/~ronrubin/Publications/sparsedict-rep.pdf
http://www.cs.technion.ac.il/~ronrubin/Publications/sparsedict-rep.pdf
http://www.cs.technion.ac.il/~ronrubin/software.html
http://www.cs.technion.ac.il/~ronrubin/software.html

	Introduction
	Sensitive Mean Filtering
	Results
	Discussion
	Future Work
	Summary
	References

