EN INFORMATIQUE

FONDAMENTALE

Some Curious Recursive Functions: Hofstadter's G and After

Pierre Letouzey (équipes ACS et Preuves) IRIF, Université Paris Cité / Picube, INRIA / CNRS

Nested Recursions

From the book "Gödel, Escher, Bach" [1]:

Definition: Hofstadter's G function

G(0) = 0

G(n) = n - G(G(n-1))

for all n > 0

More generally, with k nested recursive calls:

Definition: the F_k functions

$$\int F_k(0) = 0$$

$$\begin{cases} F_k(n) = n - F_k^{(k)}(n-1) \end{cases}$$

for all
$$n > 0$$

G as a Rational Tree

Let's repeat this branching pattern:

Now, with an ad-hoc trunk and node numbered via BFS:

Theorem:

For any node n > 1, its ancestor is G(n).

Exercise:

Which trees correspond to functions F_k ?

Fibonacci-like Sequences

For any $k \geq 1$:

Definition: the A_k sequences

$$\int A_n^{\kappa} = n + 1$$

when n < k

$$\overset{k}{a} = A^{k}_{a} + A^{k}_{a}$$

 $\forall k \geq 1, \forall n \geq 0, F_k(n) \leq F_{k+1}(n)$

 $\begin{cases} A_n^k = n+1 \\ A_n^k = A_{n-1}^k + A_{n-k}^k \end{cases}$

when $n \ge k$

- $\bullet A^1 : 1 2 4 8 16 32 64 128 256 \dots$
- A^2 : 1 2 3 5 8 13 21 34 55 89 ... (Fibonacci)
- A^3 : 1 2 3 4 6 9 13 19 28 41 ... (Narayana's Cows)
- $\bullet A^4 : 1 2 3 4 5 7 10 14 19 26 \dots$

Theorem: F_k shifts down A^k

 $\forall k \geq 1, \forall n \geq 0, F_k(A_n^k) = A_{n-1}^k$

Numerical Systems

Theorem (Zeckendorf):

Let $k \geq 1$. All $n \geq 0$ has a unique canonical decomposition ΣA_i^k (i.e. with indices i apart by at least k).

Theorem: F_k on decompositions

The function F_k shifts down the indices of canonical decompositions: $F_k(\Sigma A_i^k) = \Sigma A_{i-1}^k$ (with here 0-1=0).

For instance for k = 3 and n = 18:

- \bullet 18 = $A_0^3 + A_3^3 + A_6^3 = 1 + 4 + 13$
- $F_3(18) = A_0^3 + A_2^3 + A_5^3 = 1 + 3 + 9 = 13$
- 1 + 3 + 9 no more canonical, possible renormalization

Definition: rank

 $\operatorname{rank}_k(n)$: lowest index in the k-decomposition of n

Theorem: F_k flat spots

 $F_k(n) = F_k(n+1) \text{ iff } rank_k(n) = 0 \text{ (i.e. } n = 1 + \sum A_i^k)$

Linear Equivalents

For $k \geq 1$, let α_k be the positive root of $X^k + X - 1$. It is hence algebraic, and irrational except for k = 1.

Theorem:

For all $k \geq 1$, when $n \to \infty$ we have $F_k(n) = \alpha_k \cdot n + 1$ o(n)

More precisely:

• $F_1(n) = |(n+1)/2| = \lceil n/2 \rceil$

And $A_n^1 = 2^n$ and we retrieve the base-2 decomposition!

 $\bullet G(n) = F_2(n) = \lfloor \alpha_2 \cdot (n+1) \rfloor$

Here $\alpha_2 = 1/\phi = \phi - 1 \approx 0.618...$

 $\bullet F_3(n) - |\alpha_3.n| \in \{0,1\}$

Here $\alpha_3 \approx 0.6823...$, inverse of Pisot number P_3 . Let $\delta(n) = F_3(n) - \alpha_3 n$. Then plotting $(\delta(i), \delta(F_3(i)))$ leads to this Rauzy fractal [4, 2]!

 $\bullet F_4(n) - |\alpha_4.n| \in \{-1, 0, 1, 2\}$

Here $\alpha_4 \approx 0.7244...$, inverse of Pisot number Q_3 .

• After $k \geq 5$, $F_k(n) - \alpha_k \cdot n = o(n)$ but not bounded.

Note: α_5 is the inverse of the Plastic number (smallest Pisot), then α_k for $k \geq 5$ is above any Pisot inverse.

Pierre Letouzey, 2023-2024 (v2)

Morphic Words

We take $\mathcal{A} = \{1..k\}$ as alphabet.

Definition: the substitutions τ_k

$$\mathcal{A} o \mathcal{A}^*$$

$$\tau_k(n) = n + 1$$

for
$$1 \le n < k$$

$$\tau_k(k) = k.1$$

Definition: the morphic words x_k

The substitution τ_k is prolongeable at k. It hence admits an infinite word x_k (called morphic) as fixed point:

$$x_k = \lim_{n \to \infty} \tau_k^n(k) = \tau_k(x_k)$$

For example:

- x_2 is the Fibonacci word (with opposite letters)
- And $x_3 = 31233131231233123313...$

Theorem: alternative description of x_k

 x_k is also the limit of its finite prefixes X_n^k defined as:

$$\int X_n^k = k.1...n$$

for n < k

$$\begin{cases} X_n - k & \dots \\ X_n^k = M_{n-1}^k & M_{n-k}^k \end{cases}$$

for $n \ge k$

Also note that $|X_n^k| = A_n^k$

Theorem: linear complexity

The subword complexity of x_k (i.e. its number of distinct factors of size p) is $p \mapsto p.(k-1)+1$.

In particular, x_2 is Sturmian (as expected).

Theorem: relating x_k and rank_k and F_k

- At position $n \ge 0$, $x_k[n] = min(k, 1 + rank_k(n))$.
- In particular this letter is 1 iff F_k is flat there.
- Hence the number of 1 in the n first letters of x_k is $n - F_k(n)$.
- For any p < k, counting the letters > p gives $F_k^{(p)}$.
- All letters in x_k have (infinite) frequencies, for instance the frequency of 1 is $1 - \alpha_k$ (see Saari [3]).

Coq formalization

- Already 90% of this poster certified in Coq: https://github.com/letouzey/hofstadter_g
- Nearly 20 000 lines of Coq formalization
- Several proved facts were just conjectures on OEIS.
- At first, delicate (non-structural) function definitions over nat, and many tedious recursions (multiple cases).
- More recently, use of real and complex numbers, polynomial, matrix (e.g. Vandermonde and its determinant), some interval arithmetic for real approximation, etc.
- Use the QuantumLib library for its linear algebra part!

Thanks!

A huge thanks to **Paul-André Melliès**, one of the last universalists, and to combinatorics experts **Wolfgang Steiner** and Yining Hu and Shuo Li!

References

- [1] Hofstadter, Douglas R., Gödel, Escher, Bach: An Eternal Golden Braid, 1979, Basic Books, Inc., NY.
- [2] Pytheas Fogg, N., Substitutions in Dynamics, Arithmetics and Combinatorics, 2002, LNCS 1794.
- [3] Saari, K., On the Frequency of Letters in Morphic Sequences, CSR 2006, LNCS 3967.
- [4] Rauzy, G., Nombres algébriques et substitutions. Bulletin de la SMF, Vol 110 (1982).