diff --git a/README.md b/README.md
index f71f34702f..929619be93 100644
--- a/README.md
+++ b/README.md
@@ -6,7 +6,7 @@
Try out our MemGPT chatbot on Discord!
- ⭐ NEW: You can now run MemGPT with local LLMs and AutoGen! ⭐
+ ⭐ NEW: You can now run MemGPT with local LLMs and AutoGen! ⭐
[![Discord](https://img.shields.io/discord/1161736243340640419?label=Discord&logo=discord&logoColor=5865F2&style=flat-square&color=5865F2)](https://discord.gg/9GEQrxmVyE)
[![arXiv 2310.08560](https://img.shields.io/badge/arXiv-2310.08560-B31B1B?logo=arxiv&style=flat-square)](https://arxiv.org/abs/2310.08560)
@@ -74,16 +74,6 @@ Now, you can run MemGPT with:
```sh
memgpt run
```
-The `run` command supports the following optional flags (if set, will override config defaults):
-* `--agent`: (str) Name of agent to create or to resume chatting with.
-* `--human`: (str) Name of the human to run the agent with.
-* `--persona`: (str) Name of agent persona to use.
-* `--model`: (str) LLM model to run [gpt-4, gpt-3.5].
-* `--preset`: (str) MemGPT preset to run agent with.
-* `--first`: (str) Allow user to sent the first message.
-* `--debug`: (bool) Show debug logs (default=False)
-* `--no-verify`: (bool) Bypass message verification (default=False)
-* `--yes`/`-y`: (bool) Skip confirmation prompt and use defaults (default=False)
You can run the following commands in the MemGPT CLI prompt:
* `/exit`: Exit the CLI
@@ -103,284 +93,11 @@ You can run the following commands in the MemGPT CLI prompt:
Once you exit the CLI with `/exit`, you can resume chatting with the same agent by specifying the agent name in `memgpt run --agent `.
-### Adding Custom Personas/Humans
-You can add new human or persona definitions either by providing a file (using the `-f` flag) or text (using the `--text` flag).
-```
-# add a human
-memgpt add human [-f ] [--text ]
-
-# add a persona
-memgpt add persona [-f ] [--text ]
-```
-
-You can view available persona and human files with the following command:
-```
-memgpt list [human/persona]
-```
-
-### Data Sources (i.e. chat with your data)
-MemGPT supports pre-loading data into archival memory. You can attach data to your agent (which will place the data in your agent's archival memory) in two ways:
-
-1. Run `memgpt attach --agent --data-source `
-2. While chatting with the agent, enter the `/attach` command and select the data source.
-
-#### Loading Data
-We currently support loading from a directory and database dumps. We highly encourage contributions for new data sources, which can be added as a new [CLI data load command](https://github.com/cpacker/MemGPT/blob/main/memgpt/cli/cli_load.py).
-
-Loading from a directory:
-```
-# loading a directory
-memgpt load directory --name \
- [--input-dir ] [--input-files ...] [--recursive]
-```
-Loading from a database dump:
-```sh
-memgpt load database --name \
- --query \ # Query to run on database to get data
- --dump-path \ # Path to dump file
- --scheme \ # Database scheme
- --host \ # Database host
- --port \ # Database port
- --user \ # Database user
- --password \ # Database password
- --dbname # Database name
-```
-To encourage your agent to reference its archival memory, we recommend adding phrases like "search your archival memory..." for the best results.
-
-#### Viewing available data sources
-You can view loaded data source with:
-```
-memgpt list sources
-```
-
-### Using other endpoints
-
-#### Azure
-To use MemGPT with Azure, expore the following variables and then re-run `memgpt configure`:
-```sh
-# see https://github.com/openai/openai-python#microsoft-azure-endpoints
-export AZURE_OPENAI_KEY = ...
-export AZURE_OPENAI_ENDPOINT = ...
-export AZURE_OPENAI_VERSION = ...
-
-# set the below if you are using deployment ids
-export AZURE_OPENAI_DEPLOYMENT = ...
-export AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT = ...
-```
-
-Note: your Azure endpoint must support functions or you will get an error. See https://github.com/cpacker/MemGPT/issues/91 for more information.
-
-#### Custom Endpoints
-To use custom endpoints, run `export OPENAI_API_BASE=` and then re-run `memgpt configure` to set the custom endpoint as the default endpoint.
-
-
-Deprecated API
-
-Debugging command not found
-
-If you get `command not found` (Linux/MacOS), or a `CommandNotFoundException` (Windows), the directory where pip installs scripts is not in your PATH. You can either add that directory to your path (`pip show pip | grep Scripts`) or instead just run:
-```sh
-python -m memgpt
-```
-
-
-
-Building from source
-
-Clone this repo: `git clone https://github.com/cpacker/MemGPT.git`
-
-Using poetry:
-1. Install poetry: `pip install poetry`
-2. Run `poetry install`
-3. Run `poetry run memgpt`
-
-Using pip:
-1. Run `pip install -e .`
-2. Run `python3 main.py`
-
-
-
-If you're using Azure OpenAI, set these variables instead:
-
-```sh
-# see https://github.com/openai/openai-python#microsoft-azure-endpoints
-export AZURE_OPENAI_KEY = ...
-export AZURE_OPENAI_ENDPOINT = ...
-export AZURE_OPENAI_VERSION = ...
-
-# set the below if you are using deployment ids
-export AZURE_OPENAI_DEPLOYMENT = ...
-export AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT = ...
-
-# then use the --use_azure_openai flag
-memgpt --use_azure_openai
-```
-
-To create a new starter user or starter persona (that MemGPT gets initialized with), create a new `.txt` file in `~/.memgpt/humans` or `~/.memgpt/personas`, then use the `--persona` or `--human` flag when running `main.py`. For example:
-```sh
-# assuming you created a new file ~/.memgpt/humans/me.txt
-memgpt
-# Select me.txt during configuration process
-```
--- OR --
-```sh
-# assuming you created a new file ~/.memgpt/humans/me.txt
-memgpt --human me.txt
-```
-You can also specify any of the starter users in [/memgpt/humans/examples](/memgpt/humans/examples) or any of the starter personas in [/memgpt/personas/examples](/memgpt/personas/examples).
-
-### GPT-3.5 support
-You can run MemGPT with GPT-3.5 as the LLM instead of GPT-4:
-```sh
-memgpt
-# Select gpt-3.5 during configuration process
-```
--- OR --
-```sh
-memgpt --model gpt-3.5-turbo
-```
-
-**Note that this is experimental gpt-3.5-turbo support. It's quite buggy compared to gpt-4, but it should be runnable.**
-
-Please report any bugs you encounter regarding MemGPT running on GPT-3.5 to https://github.com/cpacker/MemGPT/issues/59.
-
-### Local LLM support
-You can run MemGPT with local LLMs too. See [instructions here](/memgpt/local_llm) and report any bugs/improvements here https://github.com/cpacker/MemGPT/discussions/67.
-
-### `main.py` flags
-```text
---first
- allows you to send the first message in the chat (by default, MemGPT will send the first message)
---debug
- enables debugging output
-```
-
-
-Configure via legacy flags
-
-```text
---model
- select which model to use ('gpt-4', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo')
---persona
- load a specific persona file
---human
- load a specific human file
---archival_storage_faiss_path=
- load in document database (backed by FAISS index)
---archival_storage_files=""
- pre-load files into archival memory
---archival_storage_files_compute_embeddings=""
- pre-load files into archival memory and also compute embeddings for embedding search
---archival_storage_sqldb=
- load in SQL database
-```
-
-
-## Example applications
-
-Use MemGPT to talk to your Database!
-
-MemGPT's archival memory let's you load your database and talk to it! To motivate this use-case, we have included a toy example.
-
-Consider the `test.db` already included in the repository.
-
-id | name | age
---- | --- | ---
-1 | Alice | 30
-2 | Bob | 25
-3 | Charlie | 35
-
-To talk to this database, run:
-
-```sh
-memgpt --archival_storage_sqldb=memgpt/personas/examples/sqldb/test.db
-```
-
-And then you can input the path to your database, and your query.
-
-```python
-Please enter the path to the database. test.db
-...
-Enter your message: How old is Bob?
-...
-🤖 Bob is 25 years old.
-```
-
-
- Loading local files into archival memory
- MemGPT enables you to chat with your data locally -- this example gives the workflow for loading documents into MemGPT's archival memory.
-
-To run our example where you can search over the SEC 10-K filings of Uber, Lyft, and Airbnb,
-
-1. Download the .txt files from [Hugging Face](https://huggingface.co/datasets/MemGPT/example-sec-filings/tree/main) and place them in `memgpt/personas/examples/preload_archival`.
-
-2. In the root `MemGPT` directory, run
- ```bash
- memgpt --archival_storage_files="memgpt/personas/examples/preload_archival/*.txt" --persona=memgpt_doc --human=basic
- ```
-
-If you would like to load your own local files into MemGPT's archival memory, run the command above but replace `--archival_storage_files="memgpt/personas/examples/preload_archival/*.txt"` with your own file glob expression (enclosed in quotes).
-
-#### Enhance with embeddings search
-In the root `MemGPT` directory, run
- ```bash
- memgpt main.py --archival_storage_files_compute_embeddings="" --persona=memgpt_doc --human=basic
- ```
-
-This will generate embeddings, stick them into a FAISS index, and write the index to a directory, and then output:
-```
- To avoid computing embeddings next time, replace --archival_storage_files_compute_embeddings= with
- --archival_storage_faiss_path= (if your files haven't changed).
-```
-
-If you want to reuse these embeddings, run
-```bash
-memgpt --archival_storage_faiss_path="" --persona=memgpt_doc --human=basic
-```
-
-
-
-
-Talking to LlamaIndex API Docs
-
-MemGPT also enables you to chat with docs -- try running this example to talk to the LlamaIndex API docs!
-
-1.
- a. Download LlamaIndex API docs and FAISS index from [Hugging Face](https://huggingface.co/datasets/MemGPT/llamaindex-api-docs).
- ```bash
- # Make sure you have git-lfs installed (https://git-lfs.com)
- git lfs install
- git clone https://huggingface.co/datasets/MemGPT/llamaindex-api-docs
- mv llamaindex-api-docs
- ```
-
- **-- OR --**
-
- b. Build the index:
- 1. Build `llama_index` API docs with `make text`. Instructions [here](https://github.com/run-llama/llama_index/blob/main/docs/DOCS_README.md). Copy over the generated `_build/text` folder to `memgpt/personas/docqa`.
- 2. Generate embeddings and FAISS index.
- ```bash
- cd memgpt/personas/docqa
- python3 scrape_docs.py
- python3 generate_embeddings_for_docs.py all_docs.jsonl
- python3 build_index.py --embedding_files all_docs.embeddings.jsonl --output_index_file all_docs.index
-
-3. In the root `MemGPT` directory, run
- ```bash
- memgpt --archival_storage_faiss_path= --persona=memgpt_doc --human=basic
- ```
- where `ARCHIVAL_STORAGE_FAISS_PATH` is the directory where `all_docs.jsonl` and `all_docs.index` are located.
- If you downloaded from Hugging Face, it will be `memgpt/personas/docqa/llamaindex-api-docs`.
- If you built the index yourself, it will be `memgpt/personas/docqa`.
-
-
+## Documentation
+See full documentation at: https://memgpt.readthedocs.io/
## Support
-
-If you have any further questions, or have anything to share, we are excited to hear your feedback!
-
-* By default MemGPT will use `gpt-4`, so your API key will require `gpt-4` API access
-* For issues and feature requests, please [open a GitHub issue](https://github.com/cpacker/MemGPT/issues) or message us on our `#support` channel on [Discord](https://discord.gg/9GEQrxmVyE)
+For issues and feature requests, please [open a GitHub issue](https://github.com/cpacker/MemGPT/issues) or message us on our `#support` channel on [Discord](https://discord.gg/9GEQrxmVyE)
## Datasets
Datasets used in our [paper](https://arxiv.org/abs/2310.08560) can be downloaded at [Hugging Face](https://huggingface.co/MemGPT).
@@ -394,28 +111,3 @@ Datasets used in our [paper](https://arxiv.org/abs/2310.08560) can be downloaded
- [x] CLI UI improvements ([issue](https://github.com/cpacker/MemGPT/issues/11))
- [x] Add support for other LLM backends ([issue](https://github.com/cpacker/MemGPT/issues/18), [discussion](https://github.com/cpacker/MemGPT/discussions/67))
- [ ] Release MemGPT family of open models (eg finetuned Mistral) ([discussion](https://github.com/cpacker/MemGPT/discussions/67))
-
-## Development
-
-_Reminder: if you do not plan on modifying the source code, simply install MemGPT with `pip install pymemgpt`!_
-
-First, install Poetry using [the official instructions here](https://python-poetry.org/docs/#installing-with-the-official-installer).
-
-Then, you can install MemGPT from source with:
-```
-git clone git@github.com:cpacker/MemGPT.git
-poetry shell
-poetry install
-```
-We recommend installing pre-commit to ensure proper formatting during development:
-```
-pip install pre-commit
-pre-commit install
-pre-commit run --all-files
-```
-
-### Contributing
-We welcome pull requests! Please run the formatter before submitting a pull request:
-```
-poetry run black . -l 140
-```