|
| 1 | +# RAG Configuration Guide |
| 2 | + |
| 3 | +This document explains how to configure and customize your RAG pipeline using the `llama-stack` configuration YAML file. You will: |
| 4 | + |
| 5 | +* Initialize a vector store |
| 6 | +* Download and point to a local embedding model |
| 7 | +* Configure an inference provider (LLM) |
| 8 | +* Enable Agent-based RAG querying |
| 9 | + |
| 10 | +--- |
| 11 | + |
| 12 | +## Table of Contents |
| 13 | + |
| 14 | +* [Introduction](#introduction) |
| 15 | +* [Prerequisites](#prerequisites) |
| 16 | + * [Set Up the Vector Database](#set-up-the-vector-database) |
| 17 | + * [Download an Embedding Model](#download-an-embedding-model) |
| 18 | +* [Configure Vector Store and Embedding Model](#configure-vector-store-and-embedding-model) |
| 19 | +* [Add an Inference Model (LLM)](#add-an-inference-model-llm) |
| 20 | +* [Complete Configuration Reference](#complete-configuration-reference) |
| 21 | +* [References](#references) |
| 22 | + |
| 23 | + |
| 24 | +--- |
| 25 | + |
| 26 | +# Introduction |
| 27 | + |
| 28 | +RAG in Lightspeed Core Stack (LCS) is yet only supported via the Agents API. The agent is responsible for planning and deciding when to query the vector index. |
| 29 | + |
| 30 | +The system operates a chain of command. The **Agent** is the orchestrator, using the LLM as its reasoning engine. When a plan requires external information, the Agent queries the **Vector Store**. This is your database of indexed knowledge, which you are responsible for creating before running the stack. The **Embedding Model** is used to convert the queries to vectors. |
| 31 | + |
| 32 | +> [!NOTE] |
| 33 | +> The same Embedding Model should be used to both create the store and to query it. |
| 34 | +
|
| 35 | +--- |
| 36 | + |
| 37 | +# Prerequisites |
| 38 | + |
| 39 | +## Set Up the Vector Database |
| 40 | + |
| 41 | +Use the [`rag-content`](https://github.com/lightspeed-core/rag-content) repository to build a compatible vector database. |
| 42 | + |
| 43 | +> [!IMPORTANT] |
| 44 | +> The resulting DB must be compatible with Llama Stack (e.g., FAISS with SQLite metadata, SQLite-vec). This can be configured when using the tool to generate the index. |
| 45 | +
|
| 46 | +--- |
| 47 | + |
| 48 | +## Download an Embedding Model |
| 49 | + |
| 50 | +Download a local embedding model such as `sentence-transformers/all-mpnet-base-v2` by using the script in [`rag-content`](https://github.com/lightspeed-core/rag-content) or manually download and place in your desired path. |
| 51 | + |
| 52 | +> [!NOTE] |
| 53 | +> Llama Stack can also download a model for you, which will make the first start-up slower. In the YAML configuration file `run.yaml` specify a supported model name as `provider_model_id` instead of a path. LLama Stack will then download the model to the `~/.cache/huggingface/hub` folder. |
| 54 | +
|
| 55 | +--- |
| 56 | + |
| 57 | +## Configure Vector Store and Embedding Model |
| 58 | + |
| 59 | +Update the `run.yaml` file used by Llama Stack to point to: |
| 60 | + |
| 61 | +* Your downloaded **embedding model** |
| 62 | +* Your generated **vector database** |
| 63 | + |
| 64 | +Example: |
| 65 | + |
| 66 | +```yaml |
| 67 | +models: |
| 68 | +- model_id: <embedding-model-name> # e.g. sentence-transformers/all-mpnet-base-v2 |
| 69 | + metadata: |
| 70 | + embedding_dimension: <embedding-dimension> # e.g. 768 |
| 71 | + model_type: embedding |
| 72 | + provider_id: sentence-transformers |
| 73 | + provider_model_id: <path-to-embedding-model> # e.g. /home/USER/embedding_model |
| 74 | + |
| 75 | +providers: |
| 76 | + inference: |
| 77 | + - provider_id: sentence-transformers |
| 78 | + provider_type: inline::sentence-transformers |
| 79 | + config: {} |
| 80 | + |
| 81 | + # FAISS vector store |
| 82 | + vector_io: |
| 83 | + - provider_id: custom-index |
| 84 | + provider_type: inline::faiss |
| 85 | + config: |
| 86 | + kvstore: |
| 87 | + type: sqlite |
| 88 | + db_path: <path-to-vector-index> # e.g. /home/USER/vector_db/faiss_store.db |
| 89 | + namespace: null |
| 90 | + |
| 91 | +vector_dbs: |
| 92 | +- embedding_dimension: <embedding-dimension> # e.g. 768 |
| 93 | + embedding_model: <embedding-model-name> # e.g. sentence-transformers/all-mpnet-base-v2 |
| 94 | + provider_id: custom-index |
| 95 | + vector_db_id: <index-id> |
| 96 | +``` |
| 97 | +
|
| 98 | +Where: |
| 99 | +- `provider_model_id` is the path to the folder of the embedding model (or alternatively, the supported embedding model to download) |
| 100 | +- `db_path` is the path to the vector index (.db file in this case) |
| 101 | +- `vector_db_id` is the index ID used to generate the db |
| 102 | + |
| 103 | +--- |
| 104 | + |
| 105 | +## Add an Inference Model (LLM) |
| 106 | + |
| 107 | +Add a provider for your language model (e.g., OpenAI): |
| 108 | + |
| 109 | +```yaml |
| 110 | +models: |
| 111 | +[...] |
| 112 | +- model_id: my-model |
| 113 | + provider_id: openai |
| 114 | + model_type: llm |
| 115 | + provider_model_id: <model-name> # e.g. gpt-4o-mini |
| 116 | +
|
| 117 | +providers: |
| 118 | +[...] |
| 119 | + inference: |
| 120 | + - provider_id: openai |
| 121 | + provider_type: remote::openai |
| 122 | + config: |
| 123 | + api_key: ${env.OPENAI_API_KEY} |
| 124 | +``` |
| 125 | + |
| 126 | +Make sure to export your API key: |
| 127 | + |
| 128 | +```bash |
| 129 | +export OPENAI_API_KEY=<your-key-here> |
| 130 | +``` |
| 131 | + |
| 132 | +> [!NOTE] |
| 133 | +> When experimenting with different `models`, `providers` and `vector_dbs`, you might need to manually unregister the old ones with the Llama Stack client CLI (e.g. `llama-stack-client vector_dbs list`) |
| 134 | + |
| 135 | + |
| 136 | +--- |
| 137 | + |
| 138 | +# Complete Configuration Reference |
| 139 | + |
| 140 | +To enable RAG functionality, make sure the `agents`, `tool_runtime`, and `safety` APIs are included and properly configured in your YAML. |
| 141 | + |
| 142 | +Below is a real example of a working config, with: |
| 143 | + |
| 144 | +* A local `all-mpnet-base-v2` embedding model |
| 145 | +* A `FAISS`-based vector store |
| 146 | +* `OpenAI` as the inference provider |
| 147 | +* Agent-based RAG setup |
| 148 | + |
| 149 | +> [!TIP] |
| 150 | +> We recommend starting with a minimal working configuration (one is automatically generated by the `rag-content` tool when generating the database) and extending it as needed by adding more APIs and providers. |
| 151 | + |
| 152 | +```yaml |
| 153 | +version: 2 |
| 154 | +image_name: rag-configuration |
| 155 | +
|
| 156 | +apis: |
| 157 | +- agents |
| 158 | +- inference |
| 159 | +- vector_io |
| 160 | +- tool_runtime |
| 161 | +- safety |
| 162 | +
|
| 163 | +models: |
| 164 | +- model_id: gpt-test |
| 165 | + provider_id: openai # This ID is a reference to 'providers.inference' |
| 166 | + model_type: llm |
| 167 | + provider_model_id: gpt-4o-mini |
| 168 | +
|
| 169 | +- model_id: sentence-transformers/all-mpnet-base-v2 |
| 170 | + metadata: |
| 171 | + embedding_dimension: 768 |
| 172 | + model_type: embedding |
| 173 | + provider_id: sentence-transformers # This ID is a reference to 'providers.inference' |
| 174 | + provider_model_id: /home/USER/lightspeed-stack/embedding_models/all-mpnet-base-v2 |
| 175 | + |
| 176 | +providers: |
| 177 | + inference: |
| 178 | + - provider_id: sentence-transformers |
| 179 | + provider_type: inline::sentence-transformers |
| 180 | + config: {} |
| 181 | +
|
| 182 | + - provider_id: openai |
| 183 | + provider_type: remote::openai |
| 184 | + config: |
| 185 | + api_key: ${env.OPENAI_API_KEY} |
| 186 | +
|
| 187 | + agents: |
| 188 | + - provider_id: meta-reference |
| 189 | + provider_type: inline::meta-reference |
| 190 | + config: |
| 191 | + persistence_store: |
| 192 | + type: sqlite |
| 193 | + db_path: .llama/distributions/ollama/agents_store.db |
| 194 | + responses_store: |
| 195 | + type: sqlite |
| 196 | + db_path: .llama/distributions/ollama/responses_store.db |
| 197 | +
|
| 198 | + safety: |
| 199 | + - provider_id: llama-guard |
| 200 | + provider_type: inline::llama-guard |
| 201 | + config: |
| 202 | + excluded_categories: [] |
| 203 | +
|
| 204 | + vector_io: |
| 205 | + - provider_id: ocp-docs |
| 206 | + provider_type: inline::faiss |
| 207 | + config: |
| 208 | + kvstore: |
| 209 | + type: sqlite |
| 210 | + db_path: /home/USER/lightspeed-stack/vector_dbs/ocp_docs/faiss_store.db |
| 211 | + namespace: null |
| 212 | +
|
| 213 | + tool_runtime: |
| 214 | + - provider_id: rag-runtime |
| 215 | + provider_type: inline::rag-runtime |
| 216 | + config: {} |
| 217 | +
|
| 218 | +# Enable the RAG tool |
| 219 | +tool_groups: |
| 220 | +- provider_id: rag-runtime |
| 221 | + toolgroup_id: builtin::rag |
| 222 | + args: null |
| 223 | + mcp_endpoint: null |
| 224 | +
|
| 225 | +vector_dbs: |
| 226 | +- embedding_dimension: 768 |
| 227 | + embedding_model: sentence-transformers/all-mpnet-base-v2 |
| 228 | + provider_id: ocp-docs # This ID is a reference to 'providers.vector_io' |
| 229 | + vector_db_id: openshift-index # This ID was defined during index generation |
| 230 | +``` |
| 231 | + |
| 232 | +# References |
| 233 | + |
| 234 | +* [Llama Stack - RAG](https://llama-stack.readthedocs.io/en/latest/building_applications/rag.html) |
| 235 | +* [Llama Stack - Configuring a “Stack"](https://llama-stack.readthedocs.io/en/latest/distributions/configuration.html) |
| 236 | +* [Llama Stack - Sample configurations](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/distributions) |
0 commit comments