-
Notifications
You must be signed in to change notification settings - Fork 11
/
run_GXN.sh
94 lines (89 loc) · 1.85 KB
/
run_GXN.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/bin/bash
# input arguments
DATA="${1-DD}" # MUTAG, ENZYMES, NCI1, NCI109, DD, PTC, PROTEINS, COLLAB, IMDBBINARY, IMDBMULTI
fold=${2-0} # which fold as testing data
GPU=${3-3}
test_number=${4-0} # if specified, use the last test_number graphs as test data
# general settings
gpu_or_cpu=gpu
CONV_SIZE="32-32-32-1"
k1=0.8
k2=0.7
sortpooling_k=0.6 # If k <= 1, then k is set to an integer so that k% of graphs have nodes less than this integer
FP_LEN=0 # final dense layer's input dimension, decided by data
n_hidden=128 # final dense layer's hidden size
bsize=20 # batch size
dropout=True
cross_weight=1.0
fuse_weight=0.9
Rhop=1
data_root='/DATA2/data/msli/GraphClassificationData_'
# dataset-specific settings
case ${DATA} in
IMDBBINARY)
num_epochs=200
learning_rate=0.001
sortpooling_k=0.9
k1=0.8
k2=0.5
;;
IMDBMULTI)
num_epochs=200
learning_rate=0.001
sortpooling_k=0.9
k1=0.8
k2=0.7
;;
COLLAB)
num_epochs=100
learning_rate=0.001
sortpooling_k=0.9
k1=0.9
k2=0.5
;;
DD)
num_epochs=100
learning_rate=0.0005
k1=0.8
k2=0.6
;;
PROTEINS)
num_epochs=100
learning_rate=0.001
sortpooling_k=0.6
k1=0.8
k2=0.7
;;
ENZYMES)
num_epochs=500
learning_rate=0.0001
sortpooling_k=0.8
k1=0.7
k2=0.5
;;
*)
num_epochs=500
learning_rate=0.00001
;;
esac
CUDA_VISIBLE_DEVICES=${GPU} python3 main.py \
-seed 1 \
-data $DATA \
-fold $fold \
-learning_rate $learning_rate \
-num_epochs $num_epochs \
-hidden $n_hidden \
-latent_dim $CONV_SIZE \
-sortpooling_k $sortpooling_k \
-k1 $k1 \
-k2 $k2 \
-out_dim $FP_LEN \
-batch_size $bsize \
-gm $gm \
-mode $gpu_or_cpu \
-dropout $dropout \
-test_number ${test_number}\
-cross_weight $cross_weight\
-fuse_weight $fuse_weight\
-Rhop $Rhop \
-data_root $data_root