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Abstract

A simple multi-cycle CPU was implemented on a Spartan-6 FPGA. It implements a subset
of the MIPS instruction set. The core focus has been performance through keeping the
hardware as simple as possible. By writing VHDL with hardware in mind at every step a
simple and understandable RTL was achieved. After some additional optimization a max
clock frequency of 85MHz was reached. With instructions taking 2 to 3 cycles this results
in a performance which is significantly faster than the earlier implementations.
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Chapter 1

Introduction

This report explains the implementation of a multi-cycle processor in VHDL, including the
design choices made, as per requirement in Excercise 1 of the course TDT4255 Computer
Architecture at NTNU[1, p. 44].

1.1 Requirements

The main requirement for the design of the processor was that it should use a simplified
version of MIPS instruction. The encoding format having been described in the com-
pendium appendix [1, p. 64]. The processor should have instructions for each of the types
of instructions described in Table 1.1 with the operation code (opcode) specified by figure
1.2.

Table 1.1: Requirements
Arithmetic logic unit (ALU): ADD, SUB, SLT, AND, OR instructions
Branch: Conditional branch instruction
Memory: LOAD and STORE instructions
Load Immediate (LUI): load the upper 16 bits of a register with the given value
Jump instruction: J-jump to the specified address
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Table 1.2: Opcode
Opcode Operation
000 000 ALU operations (and, or, add, slt, sll)
000 100 Branch if Equal (Beq)
000 010 Jump
100 011 Load word (lw)
101 011 Store word (sw)
001 111 Load upper immediate

The design was to be accompanied with testbenches for all significant parts of the processor.
The result of these and handed out tests must be reported. The design should also be
demonstrated to run on the development boards at the lab.

The requirements are described in full details in the compendium [1, p. 44].

1.2 Goals

The primary goal, after successfully implementing the requirements, was to optimize the
processor for performance.

As a strategy to achieve this, we aimed to write VHDL code that synthesizes into clear and
understandable RTL. This was going to aid in both checking for optimality and correctness.

Another overarching goal was to produce readable and maintanable VHDL code. Some-
thing that could help achieving the aforementioned goals through easily understandable
and modifiable code.

1.3 Workflow

It was decided that the RTL sketch provided in the compenduim was a good design. The
sketch was refined and split into entities, and RTL for the individual entites was devised.
Testbenches were then written to match the expected behaviour of the entities. Then the
actual implementation was written.

3



1.4 Tools

Manufacturer Equipment Name Model
Xilinx Integrated Software Environment (ISE) Version 12.4
Xilinx ISE Simulator (ISim) Version 12.4
NTNU Hostcom TDT Programming Utility
Texas Instruments Avnet Spartan-6 LX16 Evaluation Kit S6EV-LX16-PCB-B
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Chapter 2

Solution Description
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Figure 2.1: The top level RTL sketch. Signals in italic with a square at the end are
connected to the decode module.

2.1 Top level design

See figure 2.1 for the top level RTL. The Program Counter (PC from now on) contains
the current instruction memory address, which is sent to the instruction memory. After a
clock cycle, the instruction signal contains the instruction at the specified memory location.
Different parts of the instruction is then routed to different parts of the processor. A central
role is played by the decode unit, connected to all the open squares in figure 2.1, it uses
the op code of the instruction to make sure the processor completes the correct operation.

2.2 Program Counter

Inputs and Output

Input: Clock, next_PC, update_PC
Output: current_PC

Function
The Program Counter (PC) is set to next_PC on a rising clock edge if update_PC
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Figure 2.2: RTL sketch for the Program Counter

is set. The next_PC is controlled by the decode module through two muxes; branch
and jump.

If none of them are set, next_PC is simply current_PC + 1.

If jump is set, next_PC is set to immediate-value part of the instruction.

If branch is set and the result of from the ALU is 0, the next_PC is set to current_PC
+ the immidiate value from the instruction.

7



2.3 Registers

Inputs and Output

Inputs: Clock, read_select_A, read_select_B, write_select,
write_data, write_enable

Outputs: register_data_A, register_data_B

Function

This entity represents the register-file of the processor. There are 32 registers. As per
specification, register 0 is considered special, and always contains the value 0.

The two read_select-signals control which registers are read out on the two outputs.
Additionally, on clock-rise, if write_enable is active, write_data is latched onto the
register chosen by write_select.

The register-file does not react to resets of the system, and retains any values between
resets. Also, the value of registers (with the exception of register 0) is undefined until
written to once.
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Figure 2.3: RTL sketch for the control entity

2.4 Control

Inputs and Output

Inputs: Clock, reset, processor_enabled, opcode
Outputs: update_pc, global_write_enable

Function

This entity keeps track of the state the processor is in. There are five states in the
processor: disabled, fetch, execute and memory_wait. Any transisions happen on
clock rise. Both a reset and processor_enable inactive forces the processor into the
disabled-state. See figure 2.4 for all the transitions.

Disabled The processor sits in this state as long as processor_enable is low or reset
is high. When that is no longer the case, the state is changed to first_fetch on
the next clock rise. The purpose of the state is to ensure that at least a whole
cycle is spent in fetch after a reset.

Fetch The purpose of this state is to allow the external memories one cycle to ready
data. The signal global_write_enable is disabled. This disallows any commits
to registers or memory, as the instruction is not yet valid.
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Execute This state enables global_write_enable. Thus at the end of the state, ef-
fects of the instruction are committed to registers and memory. If the current
instruction is a load or store the next state is memory_wait, otherwise it is fetch.
If fetch is the next state, set update_pc high so that it is updated at the end of
this state.

Stall As the data memory needs a cycle to access, the load and store instructions
need an extra clock cycle delay before fetching the next instruction. That delay
is implemented with this state; jumping to fetch after one cycle. It also set
update_pc high.

Disabled
0/0start

Fetch
0/0

Execute
1/1

Stall
1/1

reset

lw or sw

not (lw or sw)

State
update_pc

/
write_enable

Figure 2.4: The state machine at the heart of the control entity
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Figure 2.5: RTL sketch for the ALU Control entity

2.5 ALU Control

Inputs and Output

Inputs: Function (instruction[5-0]), ALU override
Output: ALU function

Function
As long as the ALU override is set to disabled, ALU Control will simply convert the
function field from the instruction to the cor rect function of our alu_funct_t type, be
it alu_add, alu_sub or any of the other implemented functions. The ALU Override
signal however allows the decode to override the ALU operation, this is necesarry for
functions such as load where the ALU has to compute an addition, but the instruction
does not end with the add function value.
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2.6 Decode

Inputs and Output

Inputs: opcode, write_enable
Outputs: reg_dest

pc_control, mem_to_reg
alu_override, mem_write_enable
alu_src, reg_write_enable

Function
The decode entity is an asynchronous entity responsible for setting up the control-
signals marked with a square in figure 2.1.

The functionality is equivalent to a lookup table for each of the signals. The signals
are functions of opcode and write_enable.
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Figure 2.6: RTL sketch for the ALU Control entity

2.7 Arithmetic logic unit

Inputs and Outputs

Inputs: operand_left, operand_right, operator
Output: result, result_is_zero

Function

The arithmetic logic unit, ALU, is the core of the processors computing and is what preform
the integer arithmetic and logical operations.

An ALU implemented were able to do addition and subtraction as well as shift left and
logical “and” and “or”. An early RTL sketch of the planned implementation is shown in
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figure 2.6.

The input contains a vector of which the operations will be preformed on. The outgoing
resulting vector will be decided by the ALU operation select via a multiplexer. Then the
output will hold the result chosen by the multiplexer. If all bits in the outgoing vector are
zero the Zero-flag will be set high.
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Chapter 3

Tests and results

There was made several test benches for all the essential and complex units in the design.
In this chapter the tests will be explained.

3.1 Control

This test bench checked the expected behaviour of the output of the control unit both when
the processor was enabled and disabled. Black box testing was used for both cases. It was
assumed only valid values of the opcode.

During the testing of control unit when the processor was enabled, all valid values of opcode
was tested with two or three clock cycles on each value corresponding to the specifications.
Then the corresponding output was examined for correct output on right clock cycle. All
tests were successful when the processor was finished. See figure A for a screenshot.

3.2 ALU

The ALU testbench tests all the functions supported by the ALU with multiple values.
For each test, it verifies both the result and the result_is_zero flag. Care was taken when
choosing numbers to tests. Interesting values that might lead to edge cases, such as adding
1 to the biggest number, using 0 and negative numbers was chosen.

We experienced no problems with the ALU and this test, and as the VHDL implementation
is simple and uses functions from the std_numeric library, there was never anything wrong
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with our operations, so the main purpose of this test became to make sure the correct
operations are executed.

See screenshot at figure A

3.3 ALU Control

As the ALU control entity simply translates a stdlogicvectortoanenumandallowsabypass, thetestbenchsimplytestsallthevalidalufunctionvectorsandoverrides.SeescreenshotatfigureA

3.4 Decode

The decode test is an exhaustive table based test. It starts by checking that no opcodes
enables any write signal if write_enable is not set. After which it goes through all our
supported opcodes and verifies that the signals that matter for that opcode are being set,
leaving room for don’t care values. See screenshot A.

3.5 Top Level Test

The top level test that came with the exercise was used. It writes a 31 instruction long
program to instruction memory and executes it, checking the data memory for the expected
values.

One of the instructions, namely add $10 $1 $10 reads from a register never assigned to.
This is undefined in the design presented, see the discussion at 4.3.1. The test does not
actually make any checks regarding this. See screenshot A.

3.6 Program Counter

The PC-test excercises the step, branch and jump functionality of the PC. See screenshot:
A

3.7 Testing on the FPGA

Tested with the provided DummyArch implementation of the MIPS processor provided,
the hostcomm utility was able to make a connection.
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A rudimentary implementation was devised and uploaded. The hostcomm utility was un-
able to make a connection to the framework on the FPGA this time. The solution was to
delete the xilinx project, create a new one, and re-add all files.

A custom program for processor was quickly written to test the design on the FPGA. The
program consisted of repeatedly adding one (read from a memory location) to a register
and writing the result to memory. The result of the test seemed to only affect the lowest
byte. The problem was wrong endianness of the one-value in memory.

It was decided that the program in the handed out file tb_MIPSProcessor.vhd should be
used for testing. The program was converted into binary and had its endianness reversed.
It was uploded to the FPGA, and so was appropriate data. The run was succsessful as
documented by Figure 5. The data fectched back is correct.
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Chapter 4

Discussion

4.1 Entities

4.1.1 Arithmetic logic unit

The Arithmetic logic unit, ALU, though it is one of the most complicated parts of the
processor, was made easy by the ieee.numeric_std library. The test for the ALU also make
use of the same library. The synthesizer even removed the shift used for the load-upper-
immediate instruction. Since it shifted a constant 16bit, it was reduced to just connection
the bits to higher output bits, with ground on the lower.

4.1.2 Buffer vs. Out in Port Specifications

It was often useful to use the output signal of an entity in the entity itself. The alternatives
considered were to either use an intermediate signal, or have the output to be a buffer.
Though discommended by some, notably Xilinx, after much research, no good argument
against using it in normal cases was to be found. However, in tri-state logic it might give
inaccurate simulation results [2]. This is not a situation that is affecting the cases were
buffers were implemented. No buffer related errors occurred while testing the processor.

4.1.3 The program counter

The program counter, though in theory simple, was a mayor source of problems to be
considered.
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On the first attempt, the PC_latch was clocked on the logical value pc_update emitted by
the control entity. This gave warnings from the compiler, as this is bad practice. Instead
it was necessary to use the global clock.

It is imperative that the PC updates at the beginning of the fetch state. This means that
pc_update must be set in the previous cycle. An obvious solution would be to add an
extra state. However, as this increases number of cycles used to process an instruction, this
solution was not favored. Instead, with a slight increase in complexity, pc_update is set on
either execute or memory_wait, whichever precedes the fetch state.

An alternative design that was considered was to set the update_pc signal in the fetch
state. While this means that the pc is actually changed at the end of the fetch state, a
bypass of the PC by the means of a mux when in fetch state would be introduced. This
approach needed some consideration, as the signal would quite likely have time to make
more than one round-trip propagating trough the add-one path (or maybe even branch,
depending on the instruction). The proposed solution to this problem was to add a latch
for the next PC signal, so that it would change at most once per cycle.

The choice was whether to introduce complexity in the PC or Control. Both solutions can
be tested quite easily. Setting update-pc on fetch is more “aesthetically pleasing”, but a
latch and a mux is undoubtedly both more hardware-heavy and have slower propagation
time than a few logical gates. Thus the former alternative was chosen on the merit of being
more optimal in hardware.

4.2 Generics and use-directives

4.2.1 Jump

The handed-out code gives generics to the MIPSProcessor: ADDR_WIDTH and DATA_WIDTH.
The task does not specify what these are used for, but it is easy to deduce that they are
the address-size for both the instruction- and the data-memory and the size of the signed
integers used as data.

In the RTL-sketch in the compendium, there is an entity that concatenates the top of PC
with the 16-bit immediate value. If we assume that ADDR_WIDTH does not go above
16, we can leave this entity out. A reason for wanting to get rid of the generic, is that this
facilitates writing nicer VHDL by allowing importing of a type defined in a central location.
When using generics, it becomes necessary to write type-constraints many times. It is the
difference between using std_logic_vector(data_width) and data_t.
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4.3 The register file

The synthetized RTL showed that we got two ram-entities, each of the size of the whole
register file. This is because one dual-port ram can at most service two simultaneous read
or write requests. Our design needs to be able to simultaneously read two registers and
write to another one. (The registers are free to all be the same one - that does not need
special considerations.)

The number of rams could be reduced by introducing another state in addition to the
execute, the commit state, in which we don’t read, but only write to memory. In the
execute state, we would not write to the ram. If we wanted to optimize for size on the
FPGA, this alternative design might be viable, but we choose to go for a design with fewer
cycles. This means more of the processor is in use simultaneously, giving us better speed
and better power efficiency.

Studying the timing analysis, it was noted that the longest signal path goes trough our
register-file. Adding this extra state would increase the max frequency of the processor.
However, due to lack of time on the project, it is not known whether this increase would
be enough to outweigh the extra state. It should also be noted that there are no clocks
on the development boards that go faster that the current max frequency. One could be
synthetized with a PLL, though.

The reason an ip-core was not used, is again because there is no standard RAM that can
service our asynchronous requests.

4.3.1 The reset functionality in register-file

At first it was intended to reinitialize the register-file to all zeros upon reset. However,
including the reset functionality caused the design to be rendered as a lot of flip-flops and
big muxers. It also triggered warnings from the HDL Advisor in the compiler. See appendix
B for more information. The compiler could not reduce the design to a dedicated RAM
on a SLICEM on the FPGA. Instead it was rendered as using flip-flops. Not including the
reset functionality rendered the register-file as using block RAM in the RTL.

Using a reset signal the entity was rendered with the utilization used in Table 4.3. Compared
to not using a reset signal with an without reset (Table 4.1), it was using a very large amount
of Slices. Using dedicated block RAM, the design was using a lot less of the FPGA and
gave a mayor boost in the maximum frequency the design could be run at.

The decision was made that the values in the registers will be treated as undetermined until
written to after a reset. This allows the design of the register to not include a reset. The
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cost of this is of course that we introduce non-determinism to pathologic code that uses
uninitialized registers.

Table 4.1: Fabric utilization for async, without reset RAM
Logic Utilization Used Available Utilization
Number of Slice LUTs 112 9 112 1%
Number of fully used LUT-FF pairs 0 112 0%
Number of bonded IOBs 113 232 48%
Number of BUFG/BUFGCTRLs 1 16 6%

Table 4.2: Fabric utilization for sync, without reset RAM
Logic Utilization Used Available Utilization
Number of Slice LUTs 2 9112 0%
Number of fully used LUT-FF pairs 0 2 0%
Number of bonded IOBs 113 232 48%
Number of BUFG/BUFGCTRLs 1 16 6%
Number of Block RAM/FIFO 1 32 3%

Table 4.3: Fabric utilization for async, with reset RAM
Logic Utilization Used Available Utilization
Number of Slice Registers 1024 18224 5%
Number of Slice LUTs 736 9112 8%
Number of fully used LUT-FF pairs 560 1200 46%
Number of bonded IOBs 114 232 49%
Number of BUFG/BUFGCTRLs 1 16 6%

4.3.2 Working, but suboptimal code

In the first stage of the implementation both test were run and messages and RTL from the
synthetizer were inspected. Several instances of working, but suboptimal code were found:

The initial implementation of control had a extranous state with a empty implementation.
The caused the design to render as using a RAM. There was once again observed a lack of
don’t-care notation in vhdl.

The RAM was initially not rendered as block RAM. This is discussed in a section 4.3.1.
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4.3.3 Asynchronous components

At first, it was belived that not adding dependencies on the clock if not nessesary would
give us simpler hardware. The the register-file was implemted with asynchronus reads. The
RTL showed this as block RAM, however the HDL Advisor warned that the asynchrounus
design causes the ram to be rendered as LUTs (See appendix C). Our design could not be
reduced to a block-ram resource. This was resolved by clocking the reads. We now got a
message confirming the reduction (See appendix D).

However it was now nessessary to add another state to the state-machine. This was again
not done, because there was not enough time to create and test this system as well as
sythesize a faster clock using a PLL. We would likely need to change the clock source to
the 66MHz on-board clock. This again would have changed the timings of the uart in the
hostcomm framework. This was deemed unfesable at this stage of the project.

Tables 4.1 and 4.2 show the difference in used hardware on the FPGA. As evident, there
is not much difference, and the asynchronous version even has a lower propagation delay
because it’s missing a flip-flop. The way the rest of our system is designed, the asynchronous
leads to best peperformance.
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Chapter 5

Conclusion

A simple MIPS based processor has been implemented that successfully passes both the
tests written specifically for this processor and the test handed out with the exercise and
runs on the FPGA.

One of the main advantages of the processor is its minimalistic hardware. This was achieved
by always thinking about the RTL implementation while writing the code.

The goal in mind was to implement a fast processor with a neat RTL and therefore hopefully
generate relatively power efficient design.

Having strict specifications for all the modules defined in early RTL sketches, and having
good test benches before implementing the design was important to make it possible to
achieve these goals. We have learned a lot about the peculiarities of VHDL, the value of
test benches and RTL sketches, as well as how to read and understand parts of the Xilinx
reports.

The processor uses between two and three cycles per instruction, and with a final clock
speed at 85 MHz, we think the performace is quite solid.

The actual complexity of the processor is 361 slice LUTS where 316 is used to implement
logic. This means that less than 5 % of the FPGA’s circuitry is in use.

In conclusion, it has been an intensive assignment that has taught us a lot that will be of
tremendous help during the Computer Project as well as exercise 2. It was also the first
processor we implemented, something which is insanely cool.
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Appendix A

Screenshots of Testresults

Figure A.1: Screenshot of waveform from the test bench for the control unit.
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Figure A.2: Screenshot of output from the test bench for the control unit.

27



Figure A.3: Screenshot of the waveform and output of the decode test bench
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Figure A.4: Screenshot of the waveform and output of the ALU test bench
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Figure A.5: Screenshot of the waveform and output of the top level test bench
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Figure A.6: Screenshot of successful testbench of the program-counter entity testing step, branch and jump
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Figure A.7: Screenshot of successful testbench of the alu control entity, checking translation to function enum and override
functionality
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Figure A.8: Screenshot of the the hostcomm utitlity after successful run of the program in
tb_MIPSProcessor.vhd
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Appendix B

Xst:3019 - HDL ADVISOR

Xst:3019 - HDL ADVISOR - 1024 flip-flops were inferred for signal <regfile>. You may be
trying to describe a RAM in a way that is incompatible with block and distributed RAM
resources available on Xilinx devices, or with a specific template that is not supported.
Please review the Xilinx resources documentation and the XST user manual for coding
guidelines. Taking advantage of RAM resources will lead to improved device usage and
reduced synthesis time.
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Appendix C

Xst:3031 - HDL ADVISOR

Xst:3031 - HDL ADVISOR - The RAM <Mram_regfile> will be implemented on LUTs
either because you have described an asynchronous read or because of currently unsupported
block RAM features. If you have described an asynchronous read, making it synchronous
would allow you to take advantage of available block RAM resources, for optimized device
usage and improved timings. Please refer to your documentation for coding guidelines.
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Appendix D

Xst:3040 - HDL ADVISOR

Xst:3040 - The RAM <Mram_regfile> will be implemented as a BLOCK RAM, absorbing
the following register(s):

Post-PAR Static Timing Report:

Timing summary: —————

Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0)

Constraints cover 424283 paths, 0 nets, and 3150 connections

Design statistics: Minimum period: 11.764ns1 (Maximum frequency: 85.005MHz)
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