
WASAZNIK, SELVIK, KULIA - TDT4255 EXCERCISE 2 1

A Pipelined MIPS-Processor
Excercise 2 in TDT4255

WASAZNIK, Aleksander Gustaw, SELVIK, Andreas Løve, and KULIA Geir

Abstract— The multi-cycle CPU described in our previous
paper was extended to a single-cycle pipelined CPU. Advanced
hazard-mitigation-techniques were introduced; including data-
forwarding, hazard detection and static branch-prediction.

This resulted in large gains in the speed of the CPU. The CPU
is now able to process one instruction every cycle, at a maximum
clock-speed of almost 90 MHz.

The CPU performs well in testing on a FPGA with a frequency
of 25 MHz, and maintains full backwards compatibility for bina-
ries made for our previous processor. The pipeline is transparent
to the programmer as all hazards are detected and mitigated.

I. INTRODUCTION

The processor described is an evolution of our previous
design of a multi-cycle MIPS processor as described in
[1]. The processor was converted to use a pipelined design.
Thereupon several innovations for ease-of-programming (in the
form of hazard detection) and speed-optimization were intro-
duced: Data-forwarding, pipeline-interlocking, static branch-
prediction, and fast jumping. Each of these techniques and their
implementation will be explained throughout this document.

It is recommended that the reader be familiar with the
workings of a multi-cycle processor-architecture as described
in [2, p. 242], as the primary focus of this paper will be the
changes introduced to our previous design, which is very close
to this design.

II. INNOVATIONS

Provided here is an overview for the spotlight features
implemented in our design. The details of implementation for
each of these is provided in Section III: Implementation.

A. Pipelining
Following the design outlined in [2, p. 272], a 5-stage

pipeline was implemented. This allowed our processor to
execute up to five instructions simultaneously, offering the
processor between two and three times the throughput of our
previous design, at the cost of some extra latency.

The processor was divided into the stages: instruction fetch,
decode, execute, memory and write-back, the contents of which
are described in detail in Section III: Implementation. The
stages were separated by pipes consisting of flip-flops. Signals
from external memory and the register file were not flip-flop-
ed as they were synchronous, and provided the necessary delay
on their own. The naive implementation of the pipeline was
prone to several data hazards. The remedies implemented for
them are described in the next few sections.

B. Data-forwarding

An instruction making use of data produced by any of the
previous 3 instructions would have referenced data not yet
committed to the register file.

To prevent use of stale data, a data-forwarding-system
was implemented. The data-forwarding-system sidestepped the
pipeline to access the most recent data for a specific register.

This innovation allowed the processor to run at optimal
speed even when faced with register-dependencies between
instructions.

C. Hazard detection with stalls

With the 5-stage pipeline design from [2, p. 272], a load
followed by use of that value in the next instruction is not
possible without a stall even with a data-forwarding unit, as the
result of load-operations became ready first in the writeback
stage as opposed to other instructions where it is ready in the
memory stage.

A system was devised to insert a safe noop-instruction
before an instruction dependent on a load not yet performed.
This ensured the data loaded was not used before it was
available.

D. Branch-prediction

Static branch-prediction in the form of assume-not-taken
was implemented to allow the pipeline to continue uninter-
rupted if the branch was predicted correctly. If the branch
was mispredicted, the system would invalidate two of the
instructions in the pipeline, and continue on the correct path.

III. IMPLEMENTATION

A. Pipeline

The overview of the pipeline design is shown in Figure 1.
The implementation in VHDL was proven to be very cumber-
some simply because of the drastic proliferation of instances of
signals crossing multiple pipes. Attempts at managing these to
produce maintainable code include grouping signals traveling
though one pipe as records in VHDL, with the intention of
flip-flopping the record as a whole. This was however made
difficult by the signals from the synchronous entities, which
were not to be flip-flopped.

To make the RTL-drawings produced by the Xilinx toolchain
readable, both the stages and the pipes were made entities.
Xilinx did not draw records as a single signal.

WASAZNIK, SELVIK, KULIA - TDT4255 EXCERCISE 2 2

PC

Memory
Hazard

Detection

Decode ALU

Branch Test

M
U

X

Forwarding

Instruction
Memory

Register
File

Memory

IF ID ID EX MEM WBEX MEM

Fig. 1. Overview of the pipeline design and flow of data. The dotted lines denotes logical boundaries of the different stages. Entities that lie on the boundaries
denote synchronous components, and as such act as part of a pipe. The stages represent a part of the pipeline in which a particular instruction is active.

ID/EX

Forwarding Logic

Execute rs

Execute rt

Memory wb

Writeback wb

Execute

Wb Data memory

Wb Data execute

Fig. 2. Overview of the data forwarding unit.

B. Data-forwarding-unit
The data-forwarding unit consists of two parts: the logic

and the forwarding muxers. The control of the two muxers
is independent and duplicate of each other. The logic dictates
that the muxers should draw from the freshest source of the
specified registers, if they match the writeback registers of the
forwarded data. The layout of the muxers is shown in Fig. 2.

C. Hazard-detection-unit
The hazard-detection-unit is responsible for detecting usage

of registers with not yet satisfied memory request. If the
instruction currently in execute-stage is a memory load, it

PC 0 1 1 2

instruction load use use

hazard

decoded load noop use

Fig. 3. A demonstraction of a hazard-detection.

should insert a noop if the next instruction is dependent on
the result from the load. A RTL-drawing of the logic and the
interaction with the surrounding pipeline is shown in Fig. 4.

When the hazard is detected, insert stall is set high. This
signal will tell the decode stage to force the write enable flags
to 0, effectively converting the preceding instruction to a noop.
In addition we have to make sure that the killed instruction
is executed in the following cycle. This is achieved in the
if to id pipe by keeping a flip-flop with the last instruction
and using this during a stall. Further, to avoid skipping an
instruction the program counter in the instruction decode is
frozen for a cycle.

D. Branch-prediction

As our branch prediction is ”assume not taken”, we could
use the ”take branch” signal to flush the pipeline. This was
implemented by simply OR-ing the ”takebranch” signal into
the reset signal of the pipes between IF and ID, ID and EX,
and EX and MEM. This flushes the correct part of the pipeline
every time the branch is predicted wrong, ie. taken.

WASAZNIK, SELVIK, KULIA - TDT4255 EXCERCISE 2 3

=

=

RT from ID

RT from EX

RS from ID

OR

Memory read EX

Instruction

Fetch

IF/ID

Instruction

Decode

Insert Stall

Fig. 4. Overview of the the hazard detection unit. The circuit determin wheter
an hazard has occurred and stall Instruction Fetch, Instruction Deocde and the
IF/ID pipe accordingly.

IV. VERIFICATION

A. Pipeline

Our pipeline was tested by running a modified version of
the test we got handed out. The tests runs a MIPS program
that loads values, calculates and stores. Then it checks whether
memory contains the expected values. We modified it to insert
4 noop instruction between every instruction, as we did not
handle hazards at this time. The test passes, and we get the
same result as we did in the previous multicycle design.

B. Data-forwarding-unit

The forwarding unit relied on relatively simple logic. It
has two independent instances of a function deciding whether
to forward data, and from where. Of more interest was the
question of whether it was properly integrated with the rest
of the processor. To test this, a MIPS-program was written
in assembly, designed to fully exercise the forwarding data-
paths. The program aided in identifying a mismatched signal,
that was fixed. The program can be found in Fig. 6.

C. Forwarding unit

To test our forwarding unit, we wrote a MIPS program with
hazards that requires forwarding both from the memory stage
and the write-back stage. And for each forwarding stage we
have one case for each of the different forwarding paths. The
test also exercises the case of accumulating values in a single
register, to test the freshness-prioritizing. The MIPS assembly
can be found in figure 6.

D. Hazard-detection

The hazard detection unit is tested in the same way as the
forwarding unit, by a MIPS program that is crafted such that
it will produce a different result if the hazard detection unit
doesn’t stall the pipeline properly. As can be seen from figure
7, it does two test; load add store and load store. The test
passes.

E. Static branch prediction
The MIPS program found in figure 8 is executed and mem-

ory results are checked to see whether the correct instructions
were executed.

The test passes.

F. Complete processor
Mulptiple test-programs was devised to exercise all the

possible hazards, as described above. The programs are shown
in Appendix A. In addition, we ran the original full system
test that was run on the previous design. It contains multiple
hazards. All test passes.

G. Implementation on FPGA
Using the provided Hostcomm framework, the same pro-

gram as used in the simulation of the complete processor (in
Subsection IV-F were performed on processor running on a
Xilinx FPGA.

The processor was able to run on the FPGA and produced
the correct memory values, as shown in appendix B-A.

V. DISCUSSION

A. Branch-prediction
In our design a static assume-not-taken branch-predictor was

implemented. A good quality of this design is that a correct
prediction incurs no overhead. It is however particularly bad
for loops (that are not unrolled), as it will mispredict on every
but the last iteration.

Other branch-predictors were considered. But, as it was not
part of the requirements of the exercises, they were not pursued
in favour of other parts of the exercise.

1) Assume taken: Assume taken in a prediction rule that
works very well for programs that loop. However even when
successful, assuming taken gives the some penalty as a jump:
two cycles.

2) Assume backwards taken: Assume-backwards branching-
strategy is a good mixture of the two. Backwards branches
are indicative of loops, so they are taken. Forward branches
on the other hand are indicative of conditional execution, that
may be uncertain or where the programmer can decide what
is most likely. Choosing then the option with least overhead,
the branch is assumed not taken.

3) Dynamic prediction: A more advanced form of branch-
prediction keeps track of whether a branch in a particular
location in the program tends to be taken.

4) Tournament prediction: Several branch-predictors can be
implemented in a processor design. The processor then keeps
track of which is the most efficient (most correct predictions)
in the current stretch of program.

B. The necessity of the memory-stage
As our data-memory is synchronous, is should have been

thought of as part of the pipe from one stage to the next. This
left the memory-stage in out design almost empty, with only
the branching-test remaining.

WASAZNIK, SELVIK, KULIA - TDT4255 EXCERCISE 2 4

clk

processor enable

reset

branch en

branch addr 0x10

PC 0x05 0x06 0x07 0x10 0x11 0x00 0x01 0x02 0x03

Fig. 5. Sample waveform of the test bench for the program counters. The
processor enable is added to delay the updating of the program counter while
the processor is disabled.

C. PC start value

As the program counter is incremented on every clock up
where processor enable is set, the easiest solution to make sure
it starts at 0 is to start the PC at ”1111111”

D. Load-store-forwarding

A special case of pipe-interlocking could be avoided: The
case of a store using a result loaded in the previous instruction.
In the case of a store-operation the data needs not to pass
through the ALU, but can instead be forwarded directly from
the writeback stage to the memory stage.

This functionality doubled the speed at which memory-
memory-copying could be performed.

It is doubtful that the extra complexity the memory-stage
introduced was worth any gains it resulted in. If the branch-
predictor was moved to either execute or writeback, the
memory-stage could have been removed from the design, even
through it virtually was still there.

VI. TEST BENCH

A. Test Bench

The test benches were mainly reused from the last exercise,
and just extended with a few signals

B. Program Counter

Many test benches were reused from the last exercise[1],
and extended with a few signals. Fig. 5 shows an example
waveform where the previous test bench has been extended.

C. Data Hazard

The test bench to control whether the processor handled data
hazards correctly consisted of four tests. It first tried to read
after a write, then write after a read, write after a write and
also to add a register with itself ten times.

VII. CONCLUSION

The processor was successfully implemented with a maxi-
mum clock frequency of 87 MHz reported by the timing analy-
sis tool. Compared to our previous design, which used either 2
or 3 cycles per instruction at 87 MHz, the maximum throughput
was improved by up to 200% as it now completes up to one
instruction per cycle, in comparison with the old design. The
pipelined processor has support for data forwarding, pipeline
interlocking and static branch prediction. The processor ran
successfully on the FPGA, and passed all test programs that
were carefully constructed to detect errors.

APPENDIX A
ASSAMBLY TESTPROGRAM

Figures 6, 7, and 8 show the testprograms used to verify the
processor, both in simulation and on the FPGA.

APPENDIX B
PROOFS OF VERIFICATION BY SCREENSHOTS

A. Testing on a FPGA
This screenshot shown in fig. 9 serves as proof of a

successful test of the processor running on a FPGA. The code
run is the canonical testbench, as handed out.

REFERENCES

[1] A. L. Selvik, A. Wasaznik and G. Kulia, Report, Lab Exercise 1, 1st
print, TDT4255 Computer Architecture, NTNU, Norway, 2014

[2] D. A. Patterson, J. L. Hennessy, Computer Organization and Design, fith
edition, Morgan Kaufmann, 2014

WASAZNIK, SELVIK, KULIA - TDT4255 EXCERCISE 2 5

Fig. 6. Forwarding test-program: This program was used to excercise all aspectes of the fowarding unit.
1 lw $1 0($0) # Load 1 in to $1 from memory addr 0.

2 nop # Empty pipeline.

3 nop

4 nop

5 nop

6

7 # Test simple forwarding rt from memory:

8 add $2 $1 $0

9 sw $2 4($0) # Expect: 1 on addr 4

10

11 # Test simple forwarding rt from writeback:

12 add $2 $1 $0

13 nop # Let the data propagate to writeback.

14 sw $2 5($0) # Expect: 1 on addr 5

15

16

17 # Test simple forwarding rs from memory:

18 add $2 $0 $1

19 add $2 $2 $1

20 nop # We are not testing rt - let it go

21 nop # back to the register.

22 nop

23 nop

24 sw $2 6($0) # Expect: 2 on addr 6

25

26 # Test simple forwarding rs from writeback:

27 add $2 $0 $1

28 nop # Let the data propagate to writeback.

29 add $2 $2 $1

30 nop # We are not testing rt-forwarding -

31 nop #let the data go back to the register.

32 nop

33 nop

34 sw $2 7($0) # Expect: 2 on addr 7

35

36

37

38 # Test accumulation rt:

39 add $2 $1 $0

40 add $2 $1 $2

41 add $2 $1 $2

42 add $2 $1 $2

43 add $2 $1 $2

44 sw $2 8($0) # Expect: 5 on addr 8

45

46

47 # Test accumulation rs:

48 add $2 $0 $1

49 add $2 $2 $1

50 add $2 $2 $1

51 add $2 $2 $1

52 add $2 $2 $1

53 nop # We are not testing rt-forwarding -

54 nop # let the data go back to the register.

55 nop

56 nop

57 sw $2 9($0) # Expect: 5 on addr 9

58

59 # Test load nop store:

60 lw $2 0($0) # Load 1 to $2

61 nop

62 sw $2 10($0)

WASAZNIK, SELVIK, KULIA - TDT4255 EXCERCISE 2 6

Fig. 7. Hazard-detection test-program: This program was used to excercise the hazard-detection-unit.
1 #Setup by loading into $4

2 lw $4 2($0) #$4 = 5

3 noop # Empty pipeline, we are not testing this.

4 noop

5 noop

6 noop

7

8 #Start test 1

9 add $1 $4 $0 #$1 = 5

10 noop #Not testing this part, nop

11 noop

12 lw $1 1($0) #Load 10 into $1

13 add $2 $1 $0 #Add 0 to $1. This is the hazard we are testing.

14 noop #Not tested here

15 noop

16 noop

17 sw $2 10($0) #Store the result. 10 if it works, otherwise 5

18

19 # Test 2

20 add $1 $4 $0 # $1 = 5

21 noop

22 noop

23 lw $1 1($0) # load 10 into $1

24 noop # This is the task of the forwarding unit

25 sw $1 11($0) # Store $1. This is the hazard.

WASAZNIK, SELVIK, KULIA - TDT4255 EXCERCISE 2 7

Fig. 8. Branching test-program: This program was used to excercise branching.
1 lw $1 0($0) # Load 1 in to $1 from memory addr 0.

2

3 nop # Empty pipeline.

4 nop

5 nop

6 nop

7

8 # Test branching with distance 1:

9 beq $0 $0 1

10 sw $1 4($0) # Skip. Expect: 0 on addr 4

11 sw $1 5($0) # Expect: 1 on addr 5

12 sw $1 6($0) # Expect: 1 on addr 6

13 sw $1 7($0) # Expect: 1 on addr 7

14

15 nop # Empty pipeline.

16 nop

17 nop

18 nop

19

20 # Test branching with distance 2:

21 beq $0 $0 2

22 sw $1 8($0) # Skip. Expect: 0 on addr 8

23 sw $1 9($0) # Skip. Expect: 0 on addr 9

24 sw $1 10($0) # Expect: 1 on addr 10

25 sw $1 11($0) # Expect: 1 on addr 11

26

27 nop # Empty pipeline.

28 nop

29 nop

30 nop

31

32 # Test branching with distance 2:

33 beq $0 $0 2

34 sw $1 8($0) # Skip. Expect: 0 on addr 8

35 sw $1 9($0) # Skip. Expect: 0 on addr 9

36 sw $1 10($0) # Expect: 1 on addr 10

37 sw $1 11($0) # Expect: 1 on addr 11

38

39 nop # Empty pipeline.

40 nop

41 nop

42 nop

43

44 # Test branching with distance 3:

45 beq $0 $0 3

46 sw $1 12($0) # Skip. Expect: 0 on addr 12

47 sw $1 13($0) # Skip. Expect: 0 on addr 13

48 sw $1 14($0) # Skip. Expect: 0 on addr 14

49 sw $1 15($0) # Expect: 1 on addr 15

WASAZNIK, SELVIK, KULIA - TDT4255 EXCERCISE 2 8

Fig. 9. A sucessful run of the canonical problem, testing all features of the processor.

