diff --git a/docs/_static/llama-stack-spec.html b/docs/_static/llama-stack-spec.html
index 643e1faeeb..1e67f329f0 100644
--- a/docs/_static/llama-stack-spec.html
+++ b/docs/_static/llama-stack-spec.html
@@ -9228,11 +9228,21 @@
"type": "object",
"properties": {
"tool_responses": {
- "type": "array",
- "items": {
- "$ref": "#/components/schemas/ToolResponseMessage"
- },
- "description": "The tool call responses to resume the turn with."
+ "oneOf": [
+ {
+ "type": "array",
+ "items": {
+ "$ref": "#/components/schemas/ToolResponse"
+ }
+ },
+ {
+ "type": "array",
+ "items": {
+ "$ref": "#/components/schemas/ToolResponseMessage"
+ }
+ }
+ ],
+ "description": "The tool call responses to resume the turn with. NOTE: ToolResponseMessage will be deprecated. Use ToolResponse."
},
"stream": {
"type": "boolean",
diff --git a/docs/_static/llama-stack-spec.yaml b/docs/_static/llama-stack-spec.yaml
index eb31b61fb7..cebba8368a 100644
--- a/docs/_static/llama-stack-spec.yaml
+++ b/docs/_static/llama-stack-spec.yaml
@@ -6153,11 +6153,16 @@ components:
type: object
properties:
tool_responses:
- type: array
- items:
- $ref: '#/components/schemas/ToolResponseMessage'
+ oneOf:
+ - type: array
+ items:
+ $ref: '#/components/schemas/ToolResponse'
+ - type: array
+ items:
+ $ref: '#/components/schemas/ToolResponseMessage'
description: >-
- The tool call responses to resume the turn with.
+ The tool call responses to resume the turn with. NOTE: ToolResponseMessage
+ will be deprecated. Use ToolResponse.
stream:
type: boolean
description: Whether to stream the response.
diff --git a/llama_stack/apis/agents/agents.py b/llama_stack/apis/agents/agents.py
index eb33997887..79df0fa40c 100644
--- a/llama_stack/apis/agents/agents.py
+++ b/llama_stack/apis/agents/agents.py
@@ -302,7 +302,7 @@ class AgentTurnResumeRequest(BaseModel):
agent_id: str
session_id: str
turn_id: str
- tool_responses: List[ToolResponseMessage]
+ tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]]
stream: Optional[bool] = False
@@ -363,7 +363,7 @@ async def resume_agent_turn(
agent_id: str,
session_id: str,
turn_id: str,
- tool_responses: List[ToolResponseMessage],
+ tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]],
stream: Optional[bool] = False,
) -> Union[Turn, AsyncIterator[AgentTurnResponseStreamChunk]]:
"""Resume an agent turn with executed tool call responses.
@@ -374,6 +374,7 @@ async def resume_agent_turn(
:param session_id: The ID of the session to resume.
:param turn_id: The ID of the turn to resume.
:param tool_responses: The tool call responses to resume the turn with.
+ NOTE: ToolResponseMessage will be deprecated. Use ToolResponse.
:param stream: Whether to stream the response.
:returns: A Turn object if stream is False, otherwise an AsyncIterator of AgentTurnResponseStreamChunk objects.
"""
diff --git a/llama_stack/providers/inline/agents/meta_reference/agent_instance.py b/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
index f868bee2cd..720e73503b 100644
--- a/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
+++ b/llama_stack/providers/inline/agents/meta_reference/agent_instance.py
@@ -216,13 +216,25 @@ async def _run_turn(
steps = []
messages = await self.get_messages_from_turns(turns)
if is_resume:
- messages.extend(request.tool_responses)
+ if isinstance(request.tool_responses[0], ToolResponseMessage):
+ tool_response_messages = request.tool_responses
+ tool_responses = [
+ ToolResponse(call_id=x.call_id, tool_name=x.tool_name, content=x.content)
+ for x in request.tool_responses
+ ]
+ else:
+ tool_response_messages = [
+ ToolResponseMessage(call_id=x.call_id, tool_name=x.tool_name, content=x.content)
+ for x in request.tool_responses
+ ]
+ tool_responses = request.tool_responses
+ messages.extend(tool_response_messages)
last_turn = turns[-1]
last_turn_messages = self.turn_to_messages(last_turn)
last_turn_messages = [
x for x in last_turn_messages if isinstance(x, UserMessage) or isinstance(x, ToolResponseMessage)
]
- last_turn_messages.extend(request.tool_responses)
+ last_turn_messages.extend(tool_response_messages)
# get steps from the turn
steps = last_turn.steps
@@ -238,14 +250,7 @@ async def _run_turn(
step_id=(in_progress_tool_call_step.step_id if in_progress_tool_call_step else str(uuid.uuid4())),
turn_id=request.turn_id,
tool_calls=(in_progress_tool_call_step.tool_calls if in_progress_tool_call_step else []),
- tool_responses=[
- ToolResponse(
- call_id=x.call_id,
- tool_name=x.tool_name,
- content=x.content,
- )
- for x in request.tool_responses
- ],
+ tool_responses=tool_responses,
completed_at=now,
started_at=(in_progress_tool_call_step.started_at if in_progress_tool_call_step else now),
)
diff --git a/llama_stack/providers/inline/agents/meta_reference/agents.py b/llama_stack/providers/inline/agents/meta_reference/agents.py
index db33bca4ac..a46fa8eb70 100644
--- a/llama_stack/providers/inline/agents/meta_reference/agents.py
+++ b/llama_stack/providers/inline/agents/meta_reference/agents.py
@@ -27,6 +27,7 @@
from llama_stack.apis.inference import (
Inference,
ToolConfig,
+ ToolResponse,
ToolResponseMessage,
UserMessage,
)
@@ -168,7 +169,7 @@ async def resume_agent_turn(
agent_id: str,
session_id: str,
turn_id: str,
- tool_responses: List[ToolResponseMessage],
+ tool_responses: Union[List[ToolResponse], List[ToolResponseMessage]],
stream: Optional[bool] = False,
) -> AsyncGenerator:
request = AgentTurnResumeRequest(
diff --git a/tests/integration/agents/test_agents.py b/tests/integration/agents/test_agents.py
index f221582c8f..277b37448a 100644
--- a/tests/integration/agents/test_agents.py
+++ b/tests/integration/agents/test_agents.py
@@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
+from typing import Any, Dict
from uuid import uuid4
import pytest
@@ -40,6 +41,25 @@ def get_boiling_point(liquid_name: str, celcius: bool = True) -> int:
return -1
+@client_tool
+def get_boiling_point_with_metadata(liquid_name: str, celcius: bool = True) -> Dict[str, Any]:
+ """
+ Returns the boiling point of a liquid in Celcius or Fahrenheit
+
+ :param liquid_name: The name of the liquid
+ :param celcius: Whether to return the boiling point in Celcius
+ :return: The boiling point of the liquid in Celcius or Fahrenheit
+ """
+ if liquid_name.lower() == "polyjuice":
+ if celcius:
+ temp = -100
+ else:
+ temp = -212
+ else:
+ temp = -1
+ return {"content": temp, "metadata": {"source": "https://www.google.com"}}
+
+
@pytest.fixture(scope="session")
def agent_config(llama_stack_client_with_mocked_inference, text_model_id):
available_shields = [shield.identifier for shield in llama_stack_client_with_mocked_inference.shields.list()]
@@ -551,8 +571,9 @@ def test_rag_and_code_agent(llama_stack_client_with_mocked_inference, agent_conf
assert expected_kw in response.output_message.content.lower()
-def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_config):
- client_tool = get_boiling_point
+@pytest.mark.parametrize("client_tools", [(get_boiling_point, False), (get_boiling_point_with_metadata, True)])
+def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_config, client_tools):
+ client_tool, expectes_metadata = client_tools
agent_config = {
**agent_config,
"input_shields": [],
@@ -577,7 +598,9 @@ def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_co
assert len(steps) == 3
assert steps[0].step_type == "inference"
assert steps[1].step_type == "tool_execution"
- assert steps[1].tool_calls[0].tool_name == "get_boiling_point"
+ assert steps[1].tool_calls[0].tool_name.startswith("get_boiling_point")
+ if expectes_metadata:
+ assert steps[1].tool_responses[0].metadata["source"] == "https://www.google.com"
assert steps[2].step_type == "inference"
last_step_completed_at = None
diff --git a/tests/integration/fixtures/recorded_responses/chat_completion.json b/tests/integration/fixtures/recorded_responses/chat_completion.json
index 4b0d9b1c10..9e70e3df01 100644
--- a/tests/integration/fixtures/recorded_responses/chat_completion.json
+++ b/tests/integration/fixtures/recorded_responses/chat_completion.json
@@ -102,7 +102,22 @@
{
"event": {
"delta": {
- "text": " boiling point of polyjuice is -100 degrees Fahrenheit.",
+ "text": " boiling point of polyjuice is -100 degrees",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " Fahrenheit.",
"type": "text"
},
"event_type": {
@@ -312,7 +327,22 @@
{
"event": {
"delta": {
- "text": "type\": \"function\", \"name\": \"get_boiling_point",
+ "text": "type\": \"function\", \"name\": \"",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "get_boiling_point\", \"parameters",
"type": "text"
},
"event_type": {
@@ -327,7 +357,7 @@
{
"event": {
"delta": {
- "text": "\", \"parameters\": {\"liquid_name\": \"polyjuice\",",
+ "text": "\": {\"liquid_name\": \"polyjuice\", \"",
"type": "text"
},
"event_type": {
@@ -342,7 +372,7 @@
{
"event": {
"delta": {
- "text": " \"celcius\": \"false\"}}",
+ "text": "celcius\": \"false\"}}",
"type": "text"
},
"event_type": {
@@ -366,7 +396,7 @@
"celcius": "false",
"liquid_name": "polyjuice"
},
- "call_id": "b9ded2e6-bef1-40bc-8a5b-a8c1018d0ba2",
+ "call_id": "00c0968b-d7d4-450d-a6ff-03d64ae9f772",
"tool_name": "get_boiling_point"
},
"type": "tool_call"
@@ -590,45 +620,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "{\"type\": \"function\", \"",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "name\": \"get_boiling_point\",",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": " \"parameters\": {\"liquid_name\": \"polyju",
+ "tool_call": "{\"type\": \"function\", \"name\": \"get_boiling",
"type": "tool_call"
},
"event_type": {
@@ -647,7 +639,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "ice\", \"celcius\":",
+ "tool_call": "_point\", \"parameters\": {\"liquid_name\": \"polyjuice",
"type": "tool_call"
},
"event_type": {
@@ -666,7 +658,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": " \"true\"}}",
+ "tool_call": "\", \"celcius\": \"true\"}}",
"type": "tool_call"
},
"event_type": {
@@ -690,7 +682,7 @@
"celcius": "true",
"liquid_name": "polyjuice"
},
- "call_id": "98c011b5-f5de-416e-9a06-c2e3d0fa5581",
+ "call_id": "eda85f20-da80-4e11-a0e4-3849159ae70f",
"tool_name": "get_boiling_point"
},
"type": "tool_call"
@@ -831,7 +823,7 @@
{
"event": {
"delta": {
- "text": " boiling point of polyjuice is -100\u00b0C",
+ "text": " boiling point of polyjuice is -100\u00b0C.",
"type": "text"
},
"event_type": {
@@ -846,7 +838,60 @@
{
"event": {
"delta": {
- "text": ".",
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Call get_boiling_point and answer What is the boiling point of polyjuice?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name='get_boiling_point_with_metadata', arguments={'liquid_name': 'polyjuice', 'celcius': 'true'})]), ToolResponseMessage(role='tool', call_id='', tool_name='get_boiling_point_with_metadata', content='-100')])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='get_boiling_point_with_metadata', description='Returns the boiling point of a liquid in Celcius or Fahrenheit', parameters={'liquid_name': ToolParamDefinition(param_type='string', description='The name of the liquid', required=True, default=None), 'celcius': ToolParamDefinition(param_type='bool', description='Whether to return the boiling point in Celcius', required=False, default=True)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "The",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " boiling point of polyjuice is -100\u00b0C.",
"type": "text"
},
"event_type": {
@@ -1103,7 +1148,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "\": {\"liquid_name\": \"polyjuice\", \"celci",
+ "tool_call": "\": {\"liquid_name\": \"poly",
"type": "tool_call"
},
"event_type": {
@@ -1122,7 +1167,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "us\": \"true\"}}",
+ "tool_call": "juice\", \"celcius\": \"true\"}}",
"type": "tool_call"
},
"event_type": {
@@ -1146,7 +1191,7 @@
"celcius": "true",
"liquid_name": "polyjuice"
},
- "call_id": "15326d2e-d284-4c7e-86b1-5bfbba74a914",
+ "call_id": "8b8b3ad5-5e47-4f56-a823-e2d82fa72d9c",
"tool_name": "get_boiling_point"
},
"type": "tool_call"
@@ -1184,7 +1229,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Give me a sentence that contains the word: hello', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [])]": {
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Call get_boiling_point and answer What is the boiling point of polyjuice?', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='get_boiling_point_with_metadata', description='Returns the boiling point of a liquid in Celcius or Fahrenheit', parameters={'liquid_name': ToolParamDefinition(param_type='string', description='The name of the liquid', required=True, default=None), 'celcius': ToolParamDefinition(param_type='bool', description='Whether to return the boiling point in Celcius', required=False, default=True)})])]": {
"chunks": [
{
"event": {
@@ -1204,8 +1249,12 @@
{
"event": {
"delta": {
- "text": "The",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -1219,8 +1268,12 @@
{
"event": {
"delta": {
- "text": " customer smiled and said \"hello\" to the friendly store clerk.",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "{\"type\": \"function\", \"name\": \"",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -1234,35 +1287,35 @@
{
"event": {
"delta": {
- "text": "",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "get_boiling_point_with_metadata\", \"",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "complete"
+ "value": "progress"
},
"logprobs": null,
- "stop_reason": {
- "__enum__": "StopReason",
- "value": "end_of_turn"
- }
+ "stop_reason": null
},
"metrics": null
- }
- ],
- "type": "generator"
- },
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\ndf.head()'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.info())\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
- "chunks": [
+ },
{
"event": {
"delta": {
- "text": "",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "parameters\": {\"liquid_name\": \"poly",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "start"
+ "value": "progress"
},
"logprobs": null,
"stop_reason": null
@@ -1272,8 +1325,12 @@
{
"event": {
"delta": {
- "text": "The",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "juice\", \"celcius\": \"true\"}}",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -1287,42 +1344,64 @@
{
"event": {
"delta": {
- "text": " error message indicates that the `bwrap.core` module",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "celcius": "true",
+ "liquid_name": "polyjuice"
+ },
+ "call_id": "3438f2d7-895f-4a94-8e1f-c2f01860ce88",
+ "tool_name": "get_boiling_point_with_metadata"
+ },
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
"value": "progress"
},
"logprobs": null,
- "stop_reason": null
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
},
"metrics": null
},
{
"event": {
"delta": {
- "text": " is not found. This is likely because the `bwrap` package is not installed",
+ "text": "",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
+ "value": "complete"
},
"logprobs": null,
- "stop_reason": null
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
},
"metrics": null
- },
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Give me a sentence that contains the word: hello', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [])]": {
+ "chunks": [
{
"event": {
"delta": {
- "text": ". To fix this, you can install the `bwrap",
+ "text": "",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
+ "value": "start"
},
"logprobs": null,
"stop_reason": null
@@ -1332,7 +1411,7 @@
{
"event": {
"delta": {
- "text": "` package using pip:\n\n```\npip install bwrap\n",
+ "text": "The",
"type": "text"
},
"event_type": {
@@ -1347,7 +1426,7 @@
{
"event": {
"delta": {
- "text": "```\n\nHowever, since the `bwrap",
+ "text": " customer smiled and said \"hello\" to the friendly store clerk",
"type": "text"
},
"event_type": {
@@ -1362,7 +1441,7 @@
{
"event": {
"delta": {
- "text": "` package is not a real package, you can ignore this error",
+ "text": ".",
"type": "text"
},
"event_type": {
@@ -1377,27 +1456,35 @@
{
"event": {
"delta": {
- "text": " and continue with the code.\n\nThe code above will print a summary of",
+ "text": "",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
+ "value": "complete"
},
"logprobs": null,
- "stop_reason": null
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
},
"metrics": null
- },
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\ndf.head()'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.info())\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
{
"event": {
"delta": {
- "text": " the CSV file, including the number of non-null values in each column",
+ "text": "",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
+ "value": "start"
},
"logprobs": null,
"stop_reason": null
@@ -1407,7 +1494,7 @@
{
"event": {
"delta": {
- "text": ", the data types of each column, and a summary of the central",
+ "text": "The",
"type": "text"
},
"event_type": {
@@ -1422,7 +1509,7 @@
{
"event": {
"delta": {
- "text": " tendency and dispersion of each numeric column.",
+ "text": " error message indicates that the `bwrap.core` module",
"type": "text"
},
"event_type": {
@@ -1437,21 +1524,156 @@
{
"event": {
"delta": {
- "text": "",
+ "text": " is not found. This is likely because the `bwrap` package is not installed",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "complete"
+ "value": "progress"
},
"logprobs": null,
- "stop_reason": {
- "__enum__": "StopReason",
- "value": "end_of_turn"
- }
+ "stop_reason": null
},
"metrics": null
- }
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ". To fix this, you can install the `bwrap",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "` package using pip:\n\n```\npip install bwrap\n",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "```\n\nHowever, since the `bwrap",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "` package is not a real package, you can ignore this error",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " and continue with the code.\n\nThe code above will print a summary of",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " the CSV file, including the number of non-null values in each column",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": ", the data types of each column, and a summary of the central",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": " tendency and dispersion of each numeric column.",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
],
"type": "generator"
},
@@ -1673,7 +1895,7 @@
{
"event": {
"delta": {
- "text": " error message indicates that the `bwrap.core` module is",
+ "text": " error message indicates that the `b",
"type": "text"
},
"event_type": {
@@ -1688,7 +1910,7 @@
{
"event": {
"delta": {
- "text": " not found. This is likely because the",
+ "text": "wrap.core` module is not found",
"type": "text"
},
"event_type": {
@@ -1703,7 +1925,7 @@
{
"event": {
"delta": {
- "text": " `bwrap` package is not installed. To fix this,",
+ "text": ". This is likely because the `",
"type": "text"
},
"event_type": {
@@ -1718,7 +1940,7 @@
{
"event": {
"delta": {
- "text": " you can install the `bwrap` package",
+ "text": "bwrap` package is not installed",
"type": "text"
},
"event_type": {
@@ -1733,7 +1955,7 @@
{
"event": {
"delta": {
- "text": " using pip:\n\n```\npip install bwrap",
+ "text": ". To fix this, you can install the",
"type": "text"
},
"event_type": {
@@ -1748,7 +1970,7 @@
{
"event": {
"delta": {
- "text": "\n```\n\nHowever, if you don't",
+ "text": " `bwrap` package using pip:\n\n```\npip install",
"type": "text"
},
"event_type": {
@@ -1763,7 +1985,7 @@
{
"event": {
"delta": {
- "text": " have permission to install packages, you can use",
+ "text": " bwrap\n```\n\nHowever, if",
"type": "text"
},
"event_type": {
@@ -1778,7 +2000,7 @@
{
"event": {
"delta": {
- "text": " the `knowledge_search` function to get information about",
+ "text": " you don't have the `bwrap` package installed,",
"type": "text"
},
"event_type": {
@@ -1793,7 +2015,7 @@
{
"event": {
"delta": {
- "text": " the CSV file instead:\n\n```\n{\n ",
+ "text": " you can't use the `",
"type": "text"
},
"event_type": {
@@ -1808,7 +2030,7 @@
{
"event": {
"delta": {
- "text": " \"type\": \"function\",\n \"name\": \"",
+ "text": "b",
"type": "text"
},
"event_type": {
@@ -1823,7 +2045,7 @@
{
"event": {
"delta": {
- "text": "knowledge_search\",\n \"parameters\": {\n",
+ "text": "wrap.core` module.",
"type": "text"
},
"event_type": {
@@ -1838,7 +2060,7 @@
{
"event": {
"delta": {
- "text": " \"query\": \"describe a csv file\"\n }\n",
+ "text": " In this case, you can",
"type": "text"
},
"event_type": {
@@ -1853,7 +2075,7 @@
{
"event": {
"delta": {
- "text": "}\n```\n\nThis will return a description of",
+ "text": " try to load the CSV file using the `p",
"type": "text"
},
"event_type": {
@@ -1868,7 +2090,7 @@
{
"event": {
"delta": {
- "text": " the CSV file.",
+ "text": "andas` library directly.\n\nHere is the corrected code:\n\n```",
"type": "text"
},
"event_type": {
@@ -1883,35 +2105,27 @@
{
"event": {
"delta": {
- "text": "",
+ "text": "python\nimport pandas as pd\ndf = pd.read_csv",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "complete"
+ "value": "progress"
},
"logprobs": null,
- "stop_reason": {
- "__enum__": "StopReason",
- "value": "end_of_turn"
- }
+ "stop_reason": null
},
"metrics": null
- }
- ],
- "type": "generator"
- },
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.head())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.head())\\nprint(df.info())\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)}), ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
- "chunks": [
+ },
{
"event": {
"delta": {
- "text": "",
+ "text": "(\"/var/folders/cz/vyh7y1d11x",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "start"
+ "value": "progress"
},
"logprobs": null,
"stop_reason": null
@@ -1921,7 +2135,7 @@
{
"event": {
"delta": {
- "text": "The",
+ "text": "g881lsxsshnc5c000",
"type": "text"
},
"event_type": {
@@ -1936,7 +2150,7 @@
{
"event": {
"delta": {
- "text": " error message indicates that the `bwrap.core` module",
+ "text": "0gn/T/tmp8d5c",
"type": "text"
},
"event_type": {
@@ -1951,7 +2165,7 @@
{
"event": {
"delta": {
- "text": " is not found. This is likely",
+ "text": "8spc/zOZSE5",
"type": "text"
},
"event_type": {
@@ -1966,7 +2180,7 @@
{
"event": {
"delta": {
- "text": " because the `bwrap` package is not installed. To fix this",
+ "text": "zcinflation.csv\")\nprint(df.head())\nprint(df.info())\n",
"type": "text"
},
"event_type": {
@@ -1981,7 +2195,7 @@
{
"event": {
"delta": {
- "text": ", you can install the `bwrap` package using pip:\n\n```\n",
+ "text": "print(df.describe())\n```\n\nThis code will",
"type": "text"
},
"event_type": {
@@ -1996,7 +2210,7 @@
{
"event": {
"delta": {
- "text": "pip install bwrap\n```\n\nHowever, if you don't have",
+ "text": " load the CSV file and print the first few rows, information about",
"type": "text"
},
"event_type": {
@@ -2011,7 +2225,7 @@
{
"event": {
"delta": {
- "text": " permission to install packages, you can use the `knowledge_search` function to",
+ "text": " the data, and summary statistics.",
"type": "text"
},
"event_type": {
@@ -2026,27 +2240,35 @@
{
"event": {
"delta": {
- "text": " get information about the CSV file instead:\n\n```\n{\n",
+ "text": "",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
+ "value": "complete"
},
"logprobs": null,
- "stop_reason": null
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
},
"metrics": null
- },
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.head())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.head())\\nprint(df.info())\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)}), ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "chunks": [
{
"event": {
"delta": {
- "text": " \"type\": \"function\",\n \"name\": \"",
+ "text": "",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
+ "value": "start"
},
"logprobs": null,
"stop_reason": null
@@ -2056,7 +2278,7 @@
{
"event": {
"delta": {
- "text": "knowledge_search\",\n \"parameters\": {\n ",
+ "text": "The",
"type": "text"
},
"event_type": {
@@ -2071,7 +2293,7 @@
{
"event": {
"delta": {
- "text": " \"query\": \"describe a csv file\"\n }\n}\n``",
+ "text": " error message indicates that the `bwrap.core` module",
"type": "text"
},
"event_type": {
@@ -2086,7 +2308,7 @@
{
"event": {
"delta": {
- "text": "`\n\nThis will return a description of the CSV file.",
+ "text": " is not found. This is likely",
"type": "text"
},
"event_type": {
@@ -2101,35 +2323,27 @@
{
"event": {
"delta": {
- "text": "",
+ "text": " because the `bwrap` package is not installed. To fix this",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "complete"
+ "value": "progress"
},
"logprobs": null,
- "stop_reason": {
- "__enum__": "StopReason",
- "value": "end_of_turn"
- }
+ "stop_reason": null
},
"metrics": null
- }
- ],
- "type": "generator"
- },
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.head())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
- "chunks": [
+ },
{
"event": {
"delta": {
- "text": "",
+ "text": ", you can install the `bwrap` package using pip:\n\n```\n",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "start"
+ "value": "progress"
},
"logprobs": null,
"stop_reason": null
@@ -2139,12 +2353,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "started"
- },
- "tool_call": "",
- "type": "tool_call"
+ "text": "pip install bwrap\n```\n\nHowever, if you don't have",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2158,12 +2368,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "import pandas as pd\ndf = pd.read",
- "type": "tool_call"
+ "text": " permission to install packages, you can use the `knowledge_search` function to",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2177,12 +2383,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "_csv(\"/var/folders/cz/vyh7y1d11",
- "type": "tool_call"
+ "text": " get information about the CSV file instead:\n\n```\n{\n",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2196,12 +2398,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "xg881lsxsshnc5c0000gn/T/tmpc_",
- "type": "tool_call"
+ "text": " \"type\": \"function\",\n \"name\": \"",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2215,12 +2413,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "ozqkdv/GwQ6oJB4inflation",
- "type": "tool_call"
+ "text": "knowledge_search\",\n \"parameters\": {\n ",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2234,12 +2428,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": ".csv\")\nprint(df.head())\nprint(df.info())\nprint(df.describe",
- "type": "tool_call"
+ "text": " \"query\": \"describe a csv file\"\n }\n}\n``",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2253,12 +2443,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "())",
- "type": "tool_call"
+ "text": "`\n\nThis will return a description of the CSV file.",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2269,37 +2455,6 @@
},
"metrics": null
},
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "succeeded"
- },
- "tool_call": {
- "arguments": {
- "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpc_ozqkdv/GwQ6oJB4inflation.csv\")\nprint(df.head())\nprint(df.info())\nprint(df.describe())"
- },
- "call_id": "551648f3-c903-44ef-84ae-0f1dcbaaa68f",
- "tool_name": {
- "__enum__": "BuiltinTool",
- "value": "code_interpreter"
- }
- },
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": {
- "__enum__": "StopReason",
- "value": "end_of_turn"
- }
- },
- "metrics": null
- },
{
"event": {
"delta": {
@@ -2321,7 +2476,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.head())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)}), ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.head())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
"chunks": [
{
"event": {
@@ -2364,26 +2519,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "import pandas as pd\ndf = pd.read",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "_csv(\"/var/folders/cz/v",
+ "tool_call": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/c",
"type": "tool_call"
},
"event_type": {
@@ -2402,7 +2538,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "yh7y1d11xg881",
+ "tool_call": "z/vyh7y1d11xg881lsxsshnc",
"type": "tool_call"
},
"event_type": {
@@ -2421,7 +2557,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "lsxsshnc5c0000gn/T/tmpn9tl",
+ "tool_call": "5c0000gn/T/tmp8d5c8spc",
"type": "tool_call"
},
"event_type": {
@@ -2440,7 +2576,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "gts1/qYsQ3ZJLinflation.csv",
+ "tool_call": "/zOZSE5zcinflation.csv\")\nprint(df.head())\nprint",
"type": "tool_call"
},
"event_type": {
@@ -2459,7 +2595,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "\")\nprint(df.head())\nprint(df.info())\nprint(df.describe())",
+ "tool_call": "(df.info())\nprint(df.describe())",
"type": "tool_call"
},
"event_type": {
@@ -2480,9 +2616,9 @@
},
"tool_call": {
"arguments": {
- "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpn9tlgts1/qYsQ3ZJLinflation.csv\")\nprint(df.head())\nprint(df.info())\nprint(df.describe())"
+ "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmp8d5c8spc/zOZSE5zcinflation.csv\")\nprint(df.head())\nprint(df.info())\nprint(df.describe())"
},
- "call_id": "6c3c4895-55a7-4083-b5d1-6ee42bcbe5fa",
+ "call_id": "09b4d9a1-8ee4-4de4-a5a3-91cad464e668",
"tool_name": {
"__enum__": "BuiltinTool",
"value": "code_interpreter"
@@ -2523,7 +2659,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\ndf = pd.read_csv(\"\")\\nprint(df.head())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)}), ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
"chunks": [
{
"event": {
@@ -2585,7 +2721,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "_csv(\"/var/folders/cz/vyh",
+ "tool_call": "_csv(\"/var/folders/cz/v",
"type": "tool_call"
},
"event_type": {
@@ -2604,7 +2740,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "7y1d11xg881lsxsshnc5c",
+ "tool_call": "yh7y1d11xg881",
"type": "tool_call"
},
"event_type": {
@@ -2623,7 +2759,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "0000gn/T/tmpc_ozqkdv/Gw",
+ "tool_call": "lsxsshnc5c0000gn/T/tmpn9tl",
"type": "tool_call"
},
"event_type": {
@@ -2642,7 +2778,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "Q6oJB4inflation.csv\")\n",
+ "tool_call": "gts1/qYsQ3ZJLinflation.csv",
"type": "tool_call"
},
"event_type": {
@@ -2661,7 +2797,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "print(df.head())",
+ "tool_call": "\")\nprint(df.head())\nprint(df.info())\nprint(df.describe())",
"type": "tool_call"
},
"event_type": {
@@ -2682,9 +2818,9 @@
},
"tool_call": {
"arguments": {
- "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpc_ozqkdv/GwQ6oJB4inflation.csv\")\nprint(df.head())"
+ "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpn9tlgts1/qYsQ3ZJLinflation.csv\")\nprint(df.head())\nprint(df.info())\nprint(df.describe())"
},
- "call_id": "204b3ad9-ff20-4fab-a055-13da99874d88",
+ "call_id": "6c3c4895-55a7-4083-b5d1-6ee42bcbe5fa",
"tool_name": {
"__enum__": "BuiltinTool",
"value": "code_interpreter"
@@ -2725,7 +2861,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)}), ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport code_interpreter\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print the data types of each column\\nprint(df.dtypes)\\n\\n# Print the summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport code_interpreter\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print the data types of each column\\nprint(df.dtypes)\\n\\n# Print the summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
"chunks": [
{
"event": {
@@ -2745,31 +2881,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "started"
- },
- "tool_call": "",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "import pandas as pd\ndf = pd.read_csv(\"/",
- "type": "tool_call"
+ "text": "I",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2783,12 +2896,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "var/folders/cz/vyh7",
- "type": "tool_call"
+ "text": "'m unable to access the file you provided. However, I can",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2802,12 +2911,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "y1d11xg881lsxsshnc5c0000",
- "type": "tool_call"
+ "text": " suggest a general approach to describe a CSV file",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2821,12 +2926,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "gn/T/tmpn9tlgts1",
- "type": "tool_call"
+ "text": ".\n\nYou can use the pandas",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2840,12 +2941,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "/qYsQ3ZJLin",
- "type": "tool_call"
+ "text": " library in Python to load and inspect the CSV",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2859,12 +2956,8 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": "flation.csv\")\nprint(df.head())",
- "type": "tool_call"
+ "text": " file. Here's a general outline of the",
+ "type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -2878,66 +2971,12 @@
{
"event": {
"delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "succeeded"
- },
- "tool_call": {
- "arguments": {
- "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpn9tlgts1/qYsQ3ZJLinflation.csv\")\nprint(df.head())"
- },
- "call_id": "e6c48b40-6504-4043-b3fa-644bd7fafd0f",
- "tool_name": {
- "__enum__": "BuiltinTool",
- "value": "code_interpreter"
- }
- },
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": {
- "__enum__": "StopReason",
- "value": "end_of_turn"
- }
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "text": "",
- "type": "text"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "complete"
- },
- "logprobs": null,
- "stop_reason": {
- "__enum__": "StopReason",
- "value": "end_of_turn"
- }
- },
- "metrics": null
- }
- ],
- "type": "generator"
- },
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If you are running this code in a notebook, you can use the `upload` button to upload the file. If you are running this code in a script, you need to provide the file path.\\n\\nHere is an example of how you can describe the csv file if you have it in the same directory as your script:\\n\\n```python\\nimport pandas as pd\\n\\n# Load data\\ndf = pd.read_csv(\\'inflation.csv\\')\\n\\n# Print summary of the data\\nprint(df.head()) # Print the first few rows of the data\\nprint(df.info()) # Print information about the data\\nprint(df.describe()) # Print summary statistics about the data\\n```\\n\\nThis will print the first few rows of the data, information about the data, and summary statistics about the data.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': \"import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load data\\ndf = pd.read_csv('inflation.csv')\\n\\n# Convert date column to datetime\\ndf['date'] = pd.to_datetime(df['date'])\\n\\n# Group by year and calculate average inflation\\naverage_inflation = df.groupby(df['date'].dt.year)['inflation'].mean()\\n\\n# Plot time series\\nplt.figure(figsize=(10,6))\\nplt.plot(average_inflation.index, average_inflation.values, marker='o')\\nplt.title('Average Yearly Inflation')\\nplt.xlabel('Year')\\nplt.ylabel('Average Inflation')\\nplt.grid(True)\\nplt.show()\"})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
- "chunks": [
- {
- "event": {
- "delta": {
- "text": "",
+ "text": " steps you can follow:\n\n1. Import the pandas library:",
"type": "text"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
- "value": "start"
+ "value": "progress"
},
"logprobs": null,
"stop_reason": null
@@ -2947,7 +2986,7 @@
{
"event": {
"delta": {
- "text": "This",
+ "text": " `import pandas as pd`\n2. Load the CSV file",
"type": "text"
},
"event_type": {
@@ -2962,7 +3001,7 @@
{
"event": {
"delta": {
- "text": " code will create a time series plot of the average yearly inflation.",
+ "text": " into a dataframe: `df = pd.read_csv('file.csv",
"type": "text"
},
"event_type": {
@@ -2977,7 +3016,7 @@
{
"event": {
"delta": {
- "text": " The x-axis represents the year",
+ "text": "')`\n3. Print the first few rows",
"type": "text"
},
"event_type": {
@@ -2992,7 +3031,7 @@
{
"event": {
"delta": {
- "text": " and the y-axis represents the average inflation",
+ "text": " of the dataframe: `print(df.head())`\n4",
"type": "text"
},
"event_type": {
@@ -3007,7 +3046,7 @@
{
"event": {
"delta": {
- "text": ". The plot will show the trend of average yearly inflation over the",
+ "text": ". Print the data types of each column",
"type": "text"
},
"event_type": {
@@ -3022,7 +3061,7 @@
{
"event": {
"delta": {
- "text": " years.\n\nPlease note that you need to replace 'inflation.csv",
+ "text": ": `print(df.dtypes)`\n5",
"type": "text"
},
"event_type": {
@@ -3037,7 +3076,7 @@
{
"event": {
"delta": {
- "text": "' with the actual path to your csv file. Also, this",
+ "text": ". Print the summary statistics of the dataframe:",
"type": "text"
},
"event_type": {
@@ -3052,7 +3091,7 @@
{
"event": {
"delta": {
- "text": " code assumes that the csv file has a column named 'date'",
+ "text": " `print(df.describe())`\n\nThis will give you a",
"type": "text"
},
"event_type": {
@@ -3067,7 +3106,7 @@
{
"event": {
"delta": {
- "text": " and another column named 'inflation'. If",
+ "text": " general idea of the structure and content of the CSV file.",
"type": "text"
},
"event_type": {
@@ -3082,7 +3121,7 @@
{
"event": {
"delta": {
- "text": " your csv file has different column names, you",
+ "text": " If you need more specific information, you can use other pandas functions",
"type": "text"
},
"event_type": {
@@ -3097,7 +3136,7 @@
{
"event": {
"delta": {
- "text": " need to adjust the code accordingly.",
+ "text": " to inspect the dataframe.",
"type": "text"
},
"event_type": {
@@ -3130,7 +3169,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If you are running this code in a notebook, you can use the `upload` button to upload the file. If you are running this code in a script, you need to provide the file path.\\n\\nHere is an example of how you can describe the csv file if you have it in the same directory as your script:\\n\\n```python\\nimport pandas as pd\\n\\n# Load data\\ndf = pd.read_csv(\\'inflation.csv\\')\\n\\n# Print summary of the data\\nprint(df.head()) # Print the first few rows of the data\\nprint(df.info()) # Print information about the data\\nprint(df.describe()) # Print summary statistics about the data\\n```\\n\\nThis will print the first few rows of the data, information about the data, and summary statistics about the data.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None)])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')]), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport code_interpreter\\n\\n# Load the CSV file\\ndf = pd.read_csv(\"\")\\n\\n# Print the first few rows of the dataframe\\nprint(df.head())\\n\\n# Print the data types of each column\\nprint(df.dtypes)\\n\\n# Print the summary statistics of the dataframe\\nprint(df.describe())'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
"chunks": [
{
"event": {
@@ -3173,45 +3212,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": " data\ndf = pd.read_csv('inflation.csv')\n\n#",
- "type": "tool_call"
- },
- "event_type": {
- "__enum__": "ChatCompletionResponseEventType",
- "value": "progress"
- },
- "logprobs": null,
- "stop_reason": null
- },
- "metrics": null
- },
- {
- "event": {
- "delta": {
- "parse_status": {
- "__enum__": "ToolCallParseStatus",
- "value": "in_progress"
- },
- "tool_call": " Convert date column to datetime\ndf['date'] = pd.to",
+ "tool_call": "import pandas as pd\nimport code_interpreter\n\n#",
"type": "tool_call"
},
"event_type": {
@@ -3230,7 +3231,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "_datetime(df['date'])\n\n# Group by year and calculate average",
+ "tool_call": " Load the CSV file\ndf = pd.read_csv(\"/",
"type": "tool_call"
},
"event_type": {
@@ -3249,7 +3250,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": " inflation\naverage_inflation = df.groupby(df['date'].",
+ "tool_call": "var/folders/cz/vyh7y",
"type": "tool_call"
},
"event_type": {
@@ -3268,7 +3269,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "dt.year)['inflation'].mean()\n\n# Plot",
+ "tool_call": "1d11xg881lsxsshnc5c000",
"type": "tool_call"
},
"event_type": {
@@ -3287,7 +3288,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": " time series\nplt.figure(figsize=(10,6))\nplt",
+ "tool_call": "0gn/T/tmpjxdo91ce/g1r3",
"type": "tool_call"
},
"event_type": {
@@ -3306,7 +3307,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": ".plot(average_inflation.index, average_inflation.values, marker='",
+ "tool_call": "WGZRinflation.csv\")\n\n# Print the first few rows of",
"type": "tool_call"
},
"event_type": {
@@ -3325,7 +3326,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "o')\nplt.title('Average Yearly Inflation')\nplt.xlabel",
+ "tool_call": " the dataframe\nprint(df.head())\n\n#",
"type": "tool_call"
},
"event_type": {
@@ -3344,7 +3345,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "('Year')\nplt.ylabel('",
+ "tool_call": " Print the data types of each column",
"type": "tool_call"
},
"event_type": {
@@ -3363,7 +3364,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "Average Inflation')\nplt.grid(True)\n",
+ "tool_call": "\nprint(df.dtypes)\n\n# Print the summary statistics",
"type": "tool_call"
},
"event_type": {
@@ -3382,7 +3383,7 @@
"__enum__": "ToolCallParseStatus",
"value": "in_progress"
},
- "tool_call": "plt.show()",
+ "tool_call": " of the dataframe\nprint(df.describe())",
"type": "tool_call"
},
"event_type": {
@@ -3403,9 +3404,9 @@
},
"tool_call": {
"arguments": {
- "code": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load data\ndf = pd.read_csv('inflation.csv')\n\n# Convert date column to datetime\ndf['date'] = pd.to_datetime(df['date'])\n\n# Group by year and calculate average inflation\naverage_inflation = df.groupby(df['date'].dt.year)['inflation'].mean()\n\n# Plot time series\nplt.figure(figsize=(10,6))\nplt.plot(average_inflation.index, average_inflation.values, marker='o')\nplt.title('Average Yearly Inflation')\nplt.xlabel('Year')\nplt.ylabel('Average Inflation')\nplt.grid(True)\nplt.show()"
+ "code": "import pandas as pd\nimport code_interpreter\n\n# Load the CSV file\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpjxdo91ce/g1r3WGZRinflation.csv\")\n\n# Print the first few rows of the dataframe\nprint(df.head())\n\n# Print the data types of each column\nprint(df.dtypes)\n\n# Print the summary statistics of the dataframe\nprint(df.describe())"
},
- "call_id": "81d7a873-376b-438e-916d-d5454e6ed09e",
+ "call_id": "fbc1b233-207f-4f7b-8298-8d72a86d6f2c",
"tool_name": {
"__enum__": "BuiltinTool",
"value": "code_interpreter"
@@ -3446,7 +3447,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If you are using a local file, you can use the `load_data` function from the `code_interpreter` library to load the file. \\n\\nHere is an example of how you can do it:\\n\\n```\\nimport pandas as pd\\nfrom code_interpreter import load_data\\n\\n# Load data\\ndf = load_data(\\'inflation.csv\\')\\n\\n# Print summary of the data\\nprint(df.head())\\nprint(df.info())\\nprint(df.describe())\\n```\\n\\nThis will load the csv file and print the first few rows, a summary of the data, and some descriptive statistics. \\n\\nPlease replace \\'inflation.csv\\' with the actual path to your csv file. \\n\\nIf you are using a remote file, you need to provide the actual file path or the file itself. \\n\\nPlease provide the actual file path or the file itself, and I will be happy to help you describe it.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load data\\ndf = pd.read_csv(\"inflation.csv\")\\n\\n# Convert date column to datetime\\ndf[\\'date\\'] = pd.to_datetime(df[\\'date\\'])\\n\\n# Group by year and calculate average inflation\\naverage_inflation = df.groupby(df[\\'date\\'].dt.year)[\\'inflation\\'].mean()\\n\\n# Plot time series\\nplt.figure(figsize=(10,6))\\nplt.plot(average_inflation.index, average_inflation.values, marker=\\'o\\')\\nplt.title(\\'Average Yearly Inflation\\')\\nplt.xlabel(\\'Year\\')\\nplt.ylabel(\\'Average Inflation\\')\\nplt.grid(True)\\nplt.show()'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)}), ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
"chunks": [
{
"event": {
@@ -3466,8 +3467,12 @@
{
"event": {
"delta": {
- "text": "It",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3481,8 +3486,12 @@
{
"event": {
"delta": {
- "text": " seems that the file \"inflation.csv\" does not exist.",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "import pandas as pd\ndf = pd.read_csv",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3496,8 +3505,12 @@
{
"event": {
"delta": {
- "text": " \n\nTo plot the average yearly inflation as a time series, you",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "(\"/var/folders/cz/vyh7y1d11x",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3511,8 +3524,12 @@
{
"event": {
"delta": {
- "text": " need to provide the actual file path or the",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "g881lsxsshnc5c0000gn/T",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3526,8 +3543,12 @@
{
"event": {
"delta": {
- "text": " file itself. If you are using a local file, you can",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "/tmp8d5c8spc/zOZSE5zcin",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3541,8 +3562,12 @@
{
"event": {
"delta": {
- "text": " use the `load_data` function from the `code_interpreter",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "flation.csv\")\nprint(df.head())",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3556,9 +3581,82 @@
{
"event": {
"delta": {
- "text": "` library to load the file. \n\nHere is an example of how",
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmp8d5c8spc/zOZSE5zcinflation.csv\")\nprint(df.head())"
+ },
+ "call_id": "c19a0d1e-6b44-408f-9839-819436425778",
+ "tool_name": {
+ "__enum__": "BuiltinTool",
+ "value": "code_interpreter"
+ }
+ },
+ "type": "tool_call"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "progress"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv file, can you describe it?', context=None), ToolResponseMessage(role='tool', call_id='', tool_name=, content=[TextContentItem(type='text', text='# User provided a file accessible to you at \"\"\\nYou can use code_interpreter to load and inspect it.')])])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)}), ToolDefinition(tool_name='knowledge_search', description='Search for information in a database.', parameters={'query': ToolParamDefinition(param_type='string', description='The query to search for. Can be a natural language sentence or keywords.', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
"type": "text"
},
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
+ "stop_reason": null
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "started"
+ },
+ "tool_call": "",
+ "type": "tool_call"
+ },
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
"value": "progress"
@@ -3571,8 +3669,12 @@
{
"event": {
"delta": {
- "text": " you can do it:\n\n```\nimport pandas as pd\nfrom code_inter",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "import pandas as pd\ndf = pd.read_csv(\"/",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3586,8 +3688,12 @@
{
"event": {
"delta": {
- "text": "preter import load_data\n\n# Load data\ndf",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "var/folders/cz/vyh7",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3601,8 +3707,12 @@
{
"event": {
"delta": {
- "text": " = load_data('inflation.csv')\n\n#",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "y1d11xg881lsxsshnc5c0000",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3616,8 +3726,12 @@
{
"event": {
"delta": {
- "text": " Convert date column to datetime\ndf['date'] = pd.to",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "gn/T/tmpn9tlgts1",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3631,8 +3745,12 @@
{
"event": {
"delta": {
- "text": "_datetime(df['date'])\n\n# Group by year",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "/qYsQ3ZJLin",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3646,8 +3764,12 @@
{
"event": {
"delta": {
- "text": " and calculate average inflation\naverage_inflation = df.groupby(df['date",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "in_progress"
+ },
+ "tool_call": "flation.csv\")\nprint(df.head())",
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
@@ -3661,14 +3783,68 @@
{
"event": {
"delta": {
- "text": "'].dt.year)['inflation'].mean()\n\n# Plot time series\n",
- "type": "text"
+ "parse_status": {
+ "__enum__": "ToolCallParseStatus",
+ "value": "succeeded"
+ },
+ "tool_call": {
+ "arguments": {
+ "code": "import pandas as pd\ndf = pd.read_csv(\"/var/folders/cz/vyh7y1d11xg881lsxsshnc5c0000gn/T/tmpn9tlgts1/qYsQ3ZJLinflation.csv\")\nprint(df.head())"
+ },
+ "call_id": "e6c48b40-6504-4043-b3fa-644bd7fafd0f",
+ "tool_name": {
+ "__enum__": "BuiltinTool",
+ "value": "code_interpreter"
+ }
+ },
+ "type": "tool_call"
},
"event_type": {
"__enum__": "ChatCompletionResponseEventType",
"value": "progress"
},
"logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ },
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "complete"
+ },
+ "logprobs": null,
+ "stop_reason": {
+ "__enum__": "StopReason",
+ "value": "end_of_turn"
+ }
+ },
+ "metrics": null
+ }
+ ],
+ "type": "generator"
+ },
+ "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': 'import pandas as pd\\n# Load data\\ndf = pd.read_csv(\"\")\\n# Rows\\nprint(\"Number of rows and columns in the data:\", df.shape)\\n# Columns\\nprint(\"Columns of the data are:\", len(df.columns))\\n# Column names\\nprint(\"Columns of the data are:\", df.columns)\\n# Column dtypes\\nprint(\"Datatype of the columns are:\", df.dtypes)'})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\"), CompletionMessage(role='assistant', content='It seems that the file \"\" does not exist. \\n\\nTo describe the csv file, you need to provide the actual file path or the file itself. If the file is too large to be uploaded, you can provide a sample of the file or the code you used to create the file. \\n\\nHere is an example of how you can describe a csv file using pandas:\\n\\n```\\nimport pandas as pd\\n# Load data\\ndf = pd.read_csv(\\'inflation.csv\\')\\n# Print the first 5 rows of the data\\nprint(df.head())\\n# Print the last 5 rows of the data\\nprint(df.tail())\\n# Print the summary statistics of the data\\nprint(df.describe())\\n# Print the data types of each column\\nprint(df.dtypes)\\n```\\n\\nThis will give you an idea of what the csv file contains.', stop_reason=, tool_calls=[]), UserMessage(role='user', content='Plot average yearly inflation as a time series', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=, arguments={'code': \"import pandas as pd\\nimport matplotlib.pyplot as plt\\n\\n# Load data\\ndf = pd.read_csv('inflation.csv')\\n\\n# Convert 'date' column to datetime\\ndf['date'] = pd.to_datetime(df['date'])\\n\\n# Group by year and calculate average inflation\\naverage_inflation = df.groupby(df['date'].dt.year)['inflation'].mean()\\n\\n# Plot the time series\\nplt.figure(figsize=(10,6))\\nplt.plot(average_inflation.index, average_inflation.values, marker='o')\\nplt.title('Average Yearly Inflation')\\nplt.xlabel('Year')\\nplt.ylabel('Average Inflation')\\nplt.grid(True)\\nplt.show()\"})]), ToolResponseMessage(role='tool', call_id='', tool_name=, content=\"completed\\n[stderr]\\nTraceback (most recent call last):\\n line 5, in \\n from bwrap.core import main\\nModuleNotFoundError: No module named 'bwrap.core'\\n[/stderr]\")])_[('response_format', None), ('sampling_params', SamplingParams(strategy=TopPSamplingStrategy(type='top_p', temperature=0.0001, top_p=0.9), max_tokens=0, repetition_penalty=1.0)), ('stream', True), ('tool_config', ToolConfig(tool_choice=, tool_prompt_format=None, system_message_behavior=)), ('tool_prompt_format', None), ('tools', [ToolDefinition(tool_name=, description='Execute code', parameters={'code': ToolParamDefinition(param_type='string', description='The code to execute', required=True, default=None)})])]": {
+ "chunks": [
+ {
+ "event": {
+ "delta": {
+ "text": "",
+ "type": "text"
+ },
+ "event_type": {
+ "__enum__": "ChatCompletionResponseEventType",
+ "value": "start"
+ },
+ "logprobs": null,
"stop_reason": null
},
"metrics": null
@@ -3676,7 +3852,7 @@
{
"event": {
"delta": {
- "text": "plt.figure(figsize=(10,6))\nplt.plot(average_inflation",
+ "text": "This",
"type": "text"
},
"event_type": {
@@ -3691,7 +3867,7 @@
{
"event": {
"delta": {
- "text": ".index, average_inflation.values, marker",
+ "text": " code will create a line plot of the",
"type": "text"
},
"event_type": {
@@ -3706,7 +3882,7 @@
{
"event": {
"delta": {
- "text": "='o')\nplt.title('Average Yearly Inflation')\nplt",
+ "text": " average yearly inflation over time. The x-axis",
"type": "text"
},
"event_type": {
@@ -3721,7 +3897,7 @@
{
"event": {
"delta": {
- "text": ".xlabel('Year')\nplt.ylabel('Average Inflation')\nplt",
+ "text": " represents the year and the y-axis represents",
"type": "text"
},
"event_type": {
@@ -3736,7 +3912,7 @@
{
"event": {
"delta": {
- "text": ".grid(True)\nplt.show()\n```\n\nThis",
+ "text": " the average inflation. The plot will also",
"type": "text"
},
"event_type": {
@@ -3751,7 +3927,7 @@
{
"event": {
"delta": {
- "text": " will load the csv file, convert the date column to datetime",
+ "text": " include a title, labels",
"type": "text"
},
"event_type": {
@@ -3766,7 +3942,7 @@
{
"event": {
"delta": {
- "text": ", group by year and calculate the average inflation, and then plot the time",
+ "text": " for the x and y axes, and a grid to make it",
"type": "text"
},
"event_type": {
@@ -3781,7 +3957,7 @@
{
"event": {
"delta": {
- "text": " series.\n\nPlease replace 'inflation.csv' with the actual path to your",
+ "text": " easier to read.\n\nPlease note that you need to replace '",
"type": "text"
},
"event_type": {
@@ -3796,7 +3972,7 @@
{
"event": {
"delta": {
- "text": " csv file. \n\nIf you are using a",
+ "text": "inflation.csv' with the actual path",
"type": "text"
},
"event_type": {
@@ -3811,7 +3987,7 @@
{
"event": {
"delta": {
- "text": " remote file, you need to provide the actual file path or the",
+ "text": " to your csv file. Also, this code assumes that the csv",
"type": "text"
},
"event_type": {
@@ -3826,7 +4002,7 @@
{
"event": {
"delta": {
- "text": " file itself. \n\nPlease provide the actual file path or the file itself,",
+ "text": " file has a column named 'date' and",
"type": "text"
},
"event_type": {
@@ -3841,7 +4017,7 @@
{
"event": {
"delta": {
- "text": " and I will be happy to",
+ "text": " another column named 'inflation'. If your csv file has",
"type": "text"
},
"event_type": {
@@ -3856,7 +4032,7 @@
{
"event": {
"delta": {
- "text": " help you plot the average yearly inflation as a time series.",
+ "text": " different column names, you need to adjust the code accordingly.",
"type": "text"
},
"event_type": {
@@ -3889,7 +4065,7 @@
],
"type": "generator"
},
- "('meta-llama/Llama-3.1-8B-Instruct', [SystemMessage(role='system', content='You are a helpful assistant'), UserMessage(role='user', content='Here is a csv, can you describe it?', context=None), CompletionMessage(role='assistant', content='', stop_reason=, tool_calls=[ToolCall(call_id='', tool_name=