
Programmer’s Guide

Microsoft® MASM
Assembly-Language Development System
Version 6.1

For MS-DOS ® and Windows ™ Operating Systems

Microsoft Corporation

Filename: LMAPGTTL.DOC Project:
Template: FRONTA1.DOT Author: Bart Simpson, Who the Hell Are You? Last Saved By: Mike Eddy
Revision #: 16 Page: 1 of 1 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: i

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document maybe reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

©1992 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, XENIX, CodeView, and QuickC are registered trademarks and Microsoft
QuickBasic, QuickPascal, Windows and Windows NT are trademarks of Microsoft Corporation in
the USA and other countries.

U.S. Patent No. 4,955,066

Hercules is a registered trademark of Hercules Computer Technology.
IBM, PS/2, and OS/2 are registered trademarks of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
NEC and V25 are registered trademarks and V35 is a trademark of NEC Corporation.

Document No. DB35747-1292
Printed in the United States of America.

Filename: LMAPGCPY.DOC Project:
Template: FRONTA1.DOT Author: Ruth L Silverio Last Saved By: Mike Eddy
Revision #: 6 Page: 2 of 1 Printed: 03/06/94 06:06 PM
Printed On: Distiller Colorlayer: ? Document Page: ii

iii

Contents

Introduction . xiii
New and Extended Features in MASM 6.1. xiii

MASM Features New Since Version 5.1 . xiv
MASM Features New Since Version 6.0 . xv
ML and MASM Command Lines . xvi
Compatibility with Earlier Versions of MASM . xvi

A Word About Instruction Timings . xvii
Books for Further Reading . xviii
Document Conventions. xix
Getting Assistance and Reporting Problems . xx

Chapter 1 Understanding Global Concepts . 1
The Processing Environment . 1

8086-Based Processors . 2
Operating Systems . 4
Segmented Architecture . 5
Segment Protection . 6
Segmented Addressing. 7
Segment Arithmetic . 7

Language Components of MASM . 8
Reserved Words . 8
Identifiers . 9
Predefined Symbols. 10
Integer Constants and Constant Expressions . 11
Operators . 13
Data Types . 14
Registers . 16
Statements . 21

The Assembly Process . 22
Generating and Running Executable Programs. 23
Using the OPTION Directive . 24
Conditional Directives . 28

Chapter 2 Organizing Segments . 31
Physical Memory Segments . 32
Logical Segments. 32

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 3 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: iii

iv Contents

Using Simplified Segment Directives . 33
Defining Basic Attributes with .MODEL . 34
Specifying a Processor and Coprocessor . 38
Creating a Stack . 38
Creating Data Segments . 39
Creating Code Segments . 40
Starting and Ending Code with .STARTUP and .EXIT. 41

Using Full Segment Definitions . 44
Defining Segments with the SEGMENT Directive. 44
Controlling the Segment Order. 47
Setting the ASSUME Directive for Segment Registers 49
Defining Segment Groups . 51

Chapter 3 Using Addresses and Pointers . 53
Programming Segmented Addresses . 53

Initializing Default Segment Registers . 53
Near and Far Addresses . 57

Operands . 60
Register Operands . 61
Immediate Operands . 61
Direct Memory Operands . 62
Indirect Memory Operands . 64

The Program Stack . 71
Saving Operands on the Stack . 71
Saving Flags on the Stack . 73
Saving Registers on the Stack (80186–80486 Only) 74

Accessing Data with Pointers and Addresses . 74
Defining Pointer Types with TYPEDEF . 75
Defining Register Types with ASSUME. 77
Basic Pointer and Address Operations . 78

Chapter 4 Defining and Using Simple Data Types . 85
Declaring Integer Variables . 85

Allocating Memory for Integer Variables . 85
Data Initialization. 87

Working with Simple Variables . 88
Copying Data. 89
Adding and Subtracting Integers . 92
Multiplying and Dividing Integers . 95

Manipulating Numbers at the Bit Level . 98

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 4 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: iv

Contents v

Logical Instructions . 99
Shifting and Rotating Bits . 100
Multiplying and Dividing with Shift Instructions 102

Chapter 5 Defining and Using Complex Data Types . 105
Arrays and Strings . 105

Declaring and Referencing Arrays . 105
Declaring and Initializing Strings . 108
Processing Strings . 110

Structures and Unions. 117
Declaring Structure and Union Types . 118
Defining Structure and Union Variables . 121
Referencing Structures, Unions, and Fields . 126
Nested Structures and Unions. 128

Records. 129
Declaring Record Types. 130
Defining Record Variables. 131
Record Operators . 133

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 135
Using Floating-Point Numbers . 136

Declaring Floating-Point Variables and Constants 136
Storing Numbers in Floating-Point Format. 138

Using a Math Coprocessor . 139
Coprocessor Architecture. 140
Instruction and Operand Formats . 141
Coordinating Memory Access. 145
Using Coprocessor Instructions. 146

Using An Emulator Library. 155
Using Binary Coded Decimal Numbers . 156

Defining BCD Constants and Variables . 157
BCD Calculations on a Coprocessor . 157
BCD Calculations on the Main Processor . 158

Chapter 7 Controlling Program Flow . 161
Jumps . 161

Unconditional Jumps . 162
Conditional Jumps. 164

Loops . 172
Loop-Generating Directives . 173
Writing Loop Conditions . 178

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 5 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: v

vi Contents

Procedures . 180
Defining Procedures . 180
Passing Arguments on the Stack. 182
Declaring Parameters with the PROC Directive . 184
Using Local Variables . 188
Creating Local Variables Automatically . 190
Declaring Procedure Prototypes . 193
Calling Procedures with INVOKE . 194
Generating Prologue and Epilogue Code. 198

MS-DOS Interrupts . 204
Calling MS-DOS and ROM-BIOS Interrupts . 204
Replacing an Interrupt Routine . 206

Chapter 8 Sharing Data and Procedures Among Modules and Libraries 211
Selecting Data-Sharing Methods. 211
Sharing Symbols with Include Files. 212

Organizing Modules . 212
Declaring Symbols Public and External . 214
Positioning External Declarations . 228

Using Alternatives to Include Files . 219
PUBLIC and EXTERN. 220
Other Alternatives . 221

Developing Libraries . 221
Associating Libraries with Modules . 222
Using EXTERN with Library Routines . 223

Chapter 9 Using Macros . 225
Text Macros . 226
Macro Procedures . 226

Creating Macro Procedures . 227
Passing Arguments to Macros . 228
Specifying Required and Default Parameters. 229
Defining Local Symbols in Macros . 232

Assembly-Time Variables and Macro Operators . 233
Text Delimiters and the Literal-Character Operator 234
Expansion Operator . 235
Substitution Operator . 237

Defining Repeat Blocks with Loop Directives . 239
REPEAT Loops . 240
WHILE Loops . 241

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 6 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: vi

Contents vii

FOR Loops and Variable-Length Parameters . 242
FORC Loops . 244

String Directives and Predefined Functions. 245
Returning Values with Macro Functions. 248

Returning Values with EXITM. 248
Using Macro Functions with Variable-Length Parameter Lists 249
Expansion Operator in Macro Functions . 251

Advanced Macro Techniques . 251
Defining Macros within Macros . 251
Testing for Argument Type and Environment . 252
Using Recursive Macros . 255

Chapter 10 Writing a Dynamic-Link Library For Windows 257
Overview of DLLs . 257

Loading a DLL . 258
Building a DLL . 260

DLL Code . 261
DLL Data. 265
DLL Stack . 265
DLL Extension Names . 266
Summary . 266

Example of a DLL: SYSINFO . 267
Entry Routine for SYSINFO . 268
Expanding SYSINFO . 270

Chapter 11 Writing Memory-Resident Software . 273
Terminate-and-Stay-Resident Programs . 273

Structure of a TSR. 274
Passive TSRs . 274
Active TSRs . 275

Interrupt Handlers in Active TSRs . 275
Auditing Hardware Events for TSR Requests. 275
Monitoring System Status . 277
Determining Whether to Invoke the TSR . 279

Example of a Simple TSR: ALARM . 279
Using MS-DOS in Active TSRs . 285

Understanding MS-DOS Stacks . 285
Determining MS-DOS Activity . 285
Interrupting MS-DOS Functions . 286
Monitoring the Critical Error Flag . 287

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 7 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: vii

viii Contents

Preventing Interference . 288
Trapping Errors . 288
Preserving an Existing Condition . 289
Preserving Existing Data. 290

Communicating Through the Multiplex Interrupt . 290
The Multiplex Handler . 291
Using the Multiplex Interrupt Under MS-DOS Version 2.x 292

Deinstalling a TSR . 292
Example of an Advanced TSR: SNAP. 293

Building SNAP.EXE . 294
Outline of SNAP . 295

Chapter 12 Mixed-Language Programming . 307
Naming and Calling Conventions . 308

Naming Conventions. 309
The C Calling Convention . 309
The Pascal Calling Convention . 310
The STDCALL and SYSCALL Calling Conventions 311

Writing an Assembly Procedure For a Mixed-Language Program 312
The MASM/High-Level–Language Interface . 313

The C/MASM Interface . 315
The C++/MASM Interface . 322
The FORTRAN/MASM Interface . 323
The Basic/MASM Interface. 328

Chapter 13 Writing 32-Bit Applications . 335
32-Bit Memory Addressing . 335
MASM Directives for 32-Bit Programming . 336
Sample Program . 337

Appendixes

Appendix A Differences Between MASM 6.1 and 5.1 . 341
New Features of Version 6.1 . 342

The Assembler, Environment, and Utilities . 342
Segment Management . 343
Data Types . 344
Procedures, Loops, and Jumps . 347
Simplifying Multiple-Module Projects . 348
Expanded State Control. 349

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 8 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: viii

Contents ix

New Processor Instructions . 350
Renamed Directives . 350
Macro Enhancements . 351
MASM 6.1 Programming Practices. 352

Compatibility Between MASM 5.1 and 6.1 . 352
Rewriting Code for Compatibility . 353
Using the OPTION Directive . 361
Changes to Instruction Encodings . 377

Appendix B BNF Grammar . 379

Appendix C Generating and Reading Assembly Listings 397
Generating Listing Files . 397

Precedence of Command-Line Options and Listing Directives 399
Reading the Listing File . 399

Generated Code . 399
Error Messages. 400
Symbols and Abbreviations . 400
Reading Tables in a Listing File . 404

Appendix D MASM Reserved Words . 407
Operands and Symbols . 407

Special Operands for the 80386/486 . 409
Predefined Symbols. 409

Registers . 409
Operators and Directives . 410
Processor Instructions. 412

8086/8088 Processor Instructions . 412
80186 Processor Instructions . 413
80286 Processor Instructions . 413
80286 and 80386 Privileged-Mode Instructions . 413
80386 Processor Instructions . 413
80486 Processor Instructions . 414
Instruction Prefixes . 414

Coprocessor Instructions. 414
8087 Coprocessor Instructions . 414
80287 Privileged-Mode Instruction . 415
80387 Instructions. 415

Appendix E Default Segment Names . 417

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 9 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: ix

x Contents

Glossary. 421

Index . 435

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 10 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: x

Contents xi

Figures and Tables

Figures
1.1 Segment Allocation . 6
1.2 Calculating Physical Addresses. 8
1.3 Registers for 8088-80286 Processors. 17
1.4 Extended Registers for the 80386/486 Processors 18
1.5 Flags for 8088-80486 Processors . 20
3.1 Stack Status Before and After Pushes and Pops . 72
4.1 Integer Formats . 87
4.2 Shifts and Rotates . 101
6.1 Encoding for Real Numbers in IEEE Format . 138
6.2 Coprocessor Data Registers . 140
6.3 Status of the Register Stack . 142
6.4 Status of the Register Stack and Memory Locations 143
6.5 Status of the Previously Initialized Register Stack. 144
6.6 Status of the Already Initialized Register Stack 144
6.7 Status of the Register Stack: Main Memory and Coprocessor. 148
6.8 Coprocessor Control Registers . 154
6.9 Coprocessor and Processor Control Flags. 155
7.1 Program Arguments on the Stack . 183
7.2 Local Variables on the Stack . 190
7.3 Operation of Interrupts . 206
8.1 Using EXTERNDEF for Variables . 215
8.2 Using PROTO and INVOKE . 217
8.3 Using PUBLIC and EXTERN . 221
11.1 Time Line of Interaction Between Interrupt Handlers
for a Typical TSR . 278
11.2 Flowchart for SNAP.EXE: Installation Phase. 296
11.3 Flowchart for SNAP.EXE Resident Phase . 297
11.4 Flowchart for SNAP.EXE Deinstallation Phase 298
12.1 C String Format. 316
12.2 C Stack Frame. 320
12.3 FORTRAN String Frame . 324
12.4 FORTRAN Stack Frame . 327
12.5 Basic String Descriptor Format . 330
12.6 Basic Stack Frame . 333
B.1 BNF Definition of the TYPEDEF Directive . 380

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 11 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: xi

xii Contents

Tables
1.1 8086 Family of Processors. 2
1.2 The MS-DOS and Windows Operating Systems Compared 4
1.3 Operator Precedence . 14
2.1 Attributes of Memory Models . 35
3.1 Indirect Addressing with 16-Bit Registers . 68
4.1 Division Operations . 97
5.1 Requirements for String Instructions . 112
6.1 Ranges of Floating-Point Variables . 136
6.2 Coprocessor Operand Formats . 141
6.3 Control-Flag Settings After Comparison or Test 151
7.1 Conditional Jumps Based on Comparisons of Two Values 167
9.1 MASM Macro Operators. 234
11.1 MS-DOS Internal Stacks . 286
12.1 Naming and Calling Conventions . 309
12.2 Register Conventions for Simple Return Values 317
A.1 Requirements for String Instructions . 353
C.1 Options for Generating or Modifying Listing Files 398
C.2 Symbols and Abbreviations in Listings. 400
C.3 Symbols in Timing Column . 401

Filename: LMAPGTOC.DOC Project:
Template: FRONTA1.DOT Author: Don Hayward Last Saved By: Ruth L Silverio
Revision #: 18 Page: 12 of 10 Printed: 03/06/94 06:11 PM
Printed On: Distiller Colorlayer: ? Document Page: xii

xiii

Introduction

The Microsoft® Macro Assembler Programmer’s Guide provides the information
you need to write and debug assembly-language programs with the Microsoft
Macro Assembler (MASM), version 6.1. This book documents enhanced features
of the language and the programming environment for MASM 6.1.

This Programmer’s Guide is written for experienced programmers who know
assembly language and are familiar with an assembler. The book does not teach the
basics of assembly language; it does explain Microsoft-specific features. If you
want to learn or review the basics of assembly language, refer to “Books for
Further Reading” in this introduction.

This book teaches you how to write efficient code with the new and advanced
features of MASM. Getting Started explains how to set up MASM 6.1.
Environment and Tools introduces the integrated development environment called
the Programmer’s WorkBench (PWB). It also includes a detailed reference to
Microsoft tools and utilities such as Microsoft ® CodeView ®, LINK, and NMAKE.
The Microsoft Macro Assembler Reference provides a full listing of all MASM
instructions, directives, statements, and operators, and it serves as a quick reference
to utility commands.

For more information on these same topics, see the online Microsoft Advisor, which
is a complete reference to Macro Assembler language topics, to the utilities, and to
PWB. You should be able to find most of the information you need in the Microsoft
Advisor.

New and Extended Features in MASM 6.1
MASM 6.1 continues the break with tradition established by version 6.0. It
incorporates conveniences of high-level languages while offering all the traditional
advantages of assembly-language programming.

For example, MASM 6.1 includes the Programmer’s WorkBench, which provides
the same integrated software development environment enjoyed by programmers of
Microsoft high-level languages such as C and Basic. From within PWB you can
edit, build, debug, or run a program. You can perform most of these operations with
either menu selections or keyboard commands. You can also customize PWB to suit
your individual programming and editing requirements and preferences.

Filename: LMAPGINT.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 13 of 8 Printed: 03/06/94 06:08 PM
Printed On: Distiller Colorlayer: ? Document Page: xiii

xiv Programmer’s Guide

MASM Features New Since Version 5.1
MASM 6.1 includes several features designed to make programming more efficient
and productive. The following list briefly describes how MASM 6.1 improves on
the language features of the popular version 5.1.

◆ MASM 6.1 has many enhancements related to types. You can now use the same
type specifiers in initializations as in other contexts (BYTE instead of DB).
You can also define your own types, including pointer types, with the new
TYPEDEF directive. See Chapter 3, “Using Addresses and Pointers,” and
Chapter 4, “Defining and Using Simple Data Types.”

◆ The syntax for defining and using structures and records has been enhanced
since version 5.1. You can also define unions with the new UNION directive.
See Chapter 5, “Defining and Using Complex Data Types.”

◆ MASM now generates complete CodeView information for all types. See
Chapter 3, “Using Addresses and Pointers,” and Chapter 4, “Defining and
Using Simple Data Types.”

◆ New control-flow directives let you use high-level – language constructs such as
loops and if-then-else blocks defined with .REPEAT and .UNTIL (or
.UNTILCXZ); .WHILE and .ENDW; and .IF, .ELSE, and .ELSEIF. The
assembler generates the appropriate code to implement the control structure. See
Chapter 7, “Controlling Program Flow.”

◆ MASM now has more powerful features for defining and calling procedures.
The extended PROC syntax for generating stack frames has been enhanced
since version 5.1. You can also use the PROTO directive to prototype a
procedure, which you can then call with the INVOKE directive. INVOKE
automatically generates code to pass arguments (converting them to a related
type, if appropriate) and makes the call according to the specified calling
convention. See Chapter 7, “Controlling Program Flow.”

◆ MASM optimizes jumps by automatically determining the most efficient coding
for a jump and then generating the appropriate code. See Chapter 7,
“Controlling Program Flow.”

◆ Maintaining multiple-module programs is easier in MASM 6.1 than in version
5.1. The EXTERNDEF and PROTO directives make it easy to maintain all
global definitions in include files shared by all the source modules of a project.
See Chapter 8, “Sharing Data and Procedures Among Modules and Libraries.”

The assembler has many new macro features that make complex macros clearer and
easier to write:

◆ You can specify default values for macro arguments or mark arguments as
required. And with the VARARG keyword, one parameter can accept a
variable number of arguments.

Filename: LMAPGINT.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 14 of 8 Printed: 03/06/94 06:08 PM
Printed On: Distiller Colorlayer: ? Document Page: xiv

Introduction xv

◆ You can implement loops inside of macros in various ways. For example, the
new WHILE directive expands the statements in a macro body while an
expression is not zero.

◆ You can define macro functions, which return text macros. Several predefined
text macros are also provided for processing strings. Macro operators and other
features related to processing text macros and macro arguments have been
enhanced. For more information on all these macro features, see Chapter 9,
“Using Macros.”

MASM 6.1 has other improved capabilities, such as:

◆ The .STARTUP and .EXIT directives automatically generate appropriate
startup and exit code for your assembly-language programs. See Chapter 2,
“Organizing Segments.”

◆ MASM 6.1 supports flat memory model, available with the new Microsoft ®

Windows NT ™ operating system. Flat model allows segments as large as 4
gigabytes instead of 64K (kilobytes). Offsets are 32 bits instead of 16 bits. See
Chapter 2, “Organizing Segments.”

◆ The program H2INC.EXE converts C include files to MASM include files and
translates data structures and declarations. See Chapter 20 in Environment and
Tools.

◆ MASM 6.1 provides a library of assembly routines that let you create a
terminate-and-stay-resident program (TSR) in a high-level language.

MASM 6.1 includes many other minor new features as well as extensive support
for features of earlier versions of MASM. For a complete list of enhancements,
refer to Appendix A, “Differences between MASM 6.1 and 5.1.” The cross-
references in Appendix A guide you to the chapters where the new features are
described in detail.

MASM Features New Since Version 6.0
MASM 6.1 offers several new features:

◆ ML now runs in 32-bit protected mode under MS-DOS, giving it direct access
to extended memory for assembling very large source files.

◆ A collection of tools lets you write a dynamic-link library (DLL) for the
Microsoft ® Windows ™ operating system without the Windows Software
Development Kit. The LIBW.LIB library provides access to all functions in the
Windows application programming interface (API), so your DLL can display
menus, dialog boxes, and scroll bars. Chapter 10, “Writing a Dynamic-Link
Library for Windows,” shows you how.

Filename: LMAPGINT.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 15 of 8 Printed: 03/06/94 06:08 PM
Printed On: Distiller Colorlayer: ? Document Page: xv

xvi Programmer’s Guide

◆ Program listings now show instruction timings. The number of required
processor cycles appears adjacent to each instruction in the listing, based on the
selected processor. For an example listing and instructions on how to use this
feature, see Appendix C, “Generating and Reading Assembly Listings.”

◆ All utilities have been updated for version 6.1. Documentation is clearer and
better arranged, with a new Environment and Tools reference book.

◆ Version 6.1 generates debugging information for CodeView version 4.0 and
later.

◆ MASM 6.1 provides even greater compatibility with version 5.1 than does
MASM 6.0. Many programs written with version 5.1 will assemble unchanged
under MASM 6.1.

ML and MASM Command Lines
MASM 6.1 provides an updated version of the command-line driver, ML,
introduced in version 6.0. ML is more powerful and flexible than the MASM driver
of version 5.1. ML assembles and links with one command. It recognizes all the old
MASM driver command syntax, however, to support existing batch files and
makefiles that use MASM command lines.

Note The name MASM has traditionally referred to the Microsoft Macro
Assembler. It is used in that context throughout this book. However, MASM also
refers to MASM.EXE, which has been replaced by ML.EXE. In MASM 6.1,
MASM.EXE is a small utility that translates command-line options to those
accepted by ML.EXE, and then calls ML.EXE. The distinction between ML.EXE
and MASM.EXE is made whenever necessary. Otherwise, MASM refers to the
assembler and its features.

Compatibility with Earlier Versions of MASM
MASM 6.1 is fully compatible with version 6.0 and, in many cases, with version
5.1. Code written for MASM 5.1 will often assemble correctly without modification
under MASM 6.1. However, MASM 6.1 provides the OPTION directive to let you
selectively modify the assembly process. In particular, you can use the M510
argument with OPTION or the /Zm command-line option to set most features to be
compatible with version 5.1 code.

For information about obsolete features that will not assemble correctly under
MASM 6.1, see Appendix A, “Differences Between MASM 6.1 and 5.1.” The
appendix also explains how to update code to use the new features.

Filename: LMAPGINT.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 16 of 8 Printed: 03/06/94 06:08 PM
Printed On: Distiller Colorlayer: ? Document Page: xvi

Introduction xvii

A Word About Instruction Timings
As an assembly-language programmer, whether novice or expert, you are probably
interested in producing lightning-fast code. After all, one of the main reasons to
program in assembly is to take advantage of its ability to streamline execution
speeds to the limit of the processor. This book will help you write efficient and fast
programs.

When discussing the speed of individual instructions, the chapters in this book often
speak of “timing,” which is the number of processor cycles required to carry out an
instruction. The Reference lists instruction timings for processors in the 8086
family. It is tempting to use timing as the only criterion when judging an
instruction’s actual execution speed, but the world within the processor is not so
simple.

The clock for instruction timing does not begin ticking until the processor has read
and begins to execute an instruction. When you read about instruction timings (in
this book or any other), keep in mind that other factors also influence the real speed
of an instruction: the instruction’s size, whether it resides in cache memory,
whether it accesses memory, its position in the processor’s prefetch queue, and the
processor type. These factors make it impossible to say precisely how fast an
instruction executes. Accept the references to timing in this book as guidelines, but
use these simple rules to write fast code:

◆ Whenever possible, use registers rather than constant values, and constant
values rather than memory.

◆ Minimize changes in program flow.

◆ Smaller is often better. For example, the instructions

 dec bx

 sub bx, 1

accomplish the same thing and have the same timings on 80386/486 processors.
But the first instruction is 3 bytes smaller than the second, and so may reach the
processor faster.

• When possible, use the string instructions described in Chapter 5, “Defining and
Using Complex Data Types.”

Filename: LMAPGINT.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 17 of 8 Printed: 03/06/94 06:08 PM
Printed On: Distiller Colorlayer: ? Document Page: xvii

xviii Programmer’s Guide

Books for Further Reading
The following books may help you learn to program in assembly language or write
specialized programs. These books are listed only for your convenience. Microsoft
makes no specific recommendations concerning any of these books.

Books About Programming in Assembly Language
Abrash, Michael. Zen of Assembly Language. Glenview, IL: Scott, Foresman and
Co., 1990. Out of print.

Duntemann, Jeff. Assembly Language from Square One: For the PC AT and
Compatibles. Glenview, IL: Scott, Foresman and Co., 1990. Out of print.

Fernandez, Judi N., and Ruth Ashley. Assembly Language Programming for the
80386. New York: McGraw-Hill, 1990.

Miller, Alan R. DOS Assembly Language Programming. San Francisco: SYBEX,
1988. Out of print.

Scanlon, Leo J. 80286 Assembly Language Programming on MS-DOS Computers.
New York: Brady Communications, 1986. Out of print.

Turley, James L. Advanced 80386 Programming Techniques. Berkeley, CA:
Osborne McGraw-Hill, 1988.

Books About MS-DOS and BIOS
“Terminate-and-Stay-Resident Utilities.” MS-DOS Encyclopedia. Redmond, WA:
Microsoft Press, 1989.

Duncan, Ray. Advanced MS-DOS Programming: The Microsoft Guide for
Assembly Language and C Programmers. 2d ed. Redmond, WA: Microsoft
Press, 1988.

Duncan, Ray. Extending DOS: Programmer’s Guide to Protected-Mode DOS.
Redding, MA: Addison-Wesley. 1991.

Jourdain, Robert. Programmer’s Problem Solver for the IBM PC, XT and AT.
New York: Brady Communications, 1985. Out of print.

Microsoft MS-DOS Programmer’s Reference. Redmond, WA: Microsoft Press,
1991.

Norton, Peter and Richard Wilton. The New Peter Norton Programmer’s Guide to
the IBM PC and PS/2. Redmond, WA: Microsoft Press, 1988.

Wilton, Richard. Programmer’s Guide to PC & PS/2 Video Systems: Maximum
Video Performance from the EGA, VGA, HGC, and MCGA. Redmond, WA:
Microsoft Press, 1987. Out of print.

Filename: LMAPGINT.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 18 of 8 Printed: 03/06/94 06:08 PM
Printed On: Distiller Colorlayer: ? Document Page: xviii

Introduction xix

Books and Articles About Windows
Kauler, Barry. Windows Assembly Language & Systems Programming: Object-
Oriented & Systems Programming in Assembly Language for Windows 3.0 and
3.1. New York, NY: Prentice Hall, 1993.

Klein, Mike. Windows Programmer’s Guide to DLLs & Memory Management.
Carmel, IN: Sams, 1992.

Petzold, Charles. Programming Windows. 3d ed. Redmond, WA: Microsoft
Press, 1992.

Petzold, Charles. “Environments.” PC Magazine. New York, NY: Ziff-Davis
Publishing Company, June 1990–1992.

Programmer’s Reference. 4 vols. Microsoft Windows Software Development Kit
(SDK). Redmond, WA: Microsoft Press, 1992.

Books About Other Topics
Nelson, Ross P. The 80386/80486 Programming Guide. 2d ed. Redmond, WA:
Microsoft Press, 1991.

Startz, Richard. 8087/80287/80387 for the IBM PC and Compatibles:
Applications and Programming with Intel’s Math Coprocessors. Bowie, MD:
Robert J. Brady Co., 1988. Out of print.

Document Conventions
The following document conventions are used throughout this manual:

Example of
Convention Description

SAMPLE2.ASM Uppercase letters indicate filenames, segment names, registers,
and terms used at the command level.

.MODEL Boldface type indicates assembly-language directives, instructions,
type specifiers, and predefined macros, as well as keywords in
other programming languages.

placeholder Italic letters indicate placeholders for information you must supply,
such as a filename. Italics are used occasionally for emphasis in
the text.

target This font is used to indicate example programs, user input, and
screen output.

; A semicolon in the first column of an example signals illegal code.
A semicolon also marks a comment.

Filename: LMAPGINT.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 19 of 8 Printed: 03/06/94 06:08 PM
Printed On: Distiller Colorlayer: ? Document Page: xix

xx Programmer’s Guide

SHIFT Small capital letters signify names of keys on the keyboard. Notice
that a plus (+) indicates a combination of keys. For example,
CTRL+E means to hold down the CTRL key while pressing the E
key.

[[argument]] Items inside double square brackets are optional.

{register|memory} Braces and a vertical bar indicate a choice between two or more
items. You must choose one of the items unless double square
brackets surround the braces.

Repeating
elements...

A horizontal ellipsis (...) following an item indicates that more
items having the same form may appear.

Program

.

.

.

Fragment

A vertical ellipsis tells you that part of a program has been
intentionally omitted.

Getting Assistance and Reporting Problems
If you need help or think you have discovered a problem in the software, please
provide the following information to help us locate the source of the problem:

◆ The version of MS-DOS or Windows you run.

◆ Your system configuration: the type of machine you use, its total memory, and
its total free memory at assembler execution time, as well as any other
information you think might be useful.

◆ The command line you used for the assembler, linker, or other MASM tool that
was running when the problem occurred.

◆ Any object files or libraries you linked with if the problem occurred at link time.

If your program is very large, reduce it to the smallest possible program that still
produces the problem.

Note the circumstances of the error and notify Microsoft Corporation by following
the instructions in the section “Microsoft Support Services” in the introduction to
Environment and Tools. If you have comments or suggestions regarding any of the
books accompanying this product, please indicate them on the Document Feedback
page at the back of this book and send it to Microsoft.

If you have not yet registered your copy of the Macro Assembler, you should fill out
and return the Registration Card. This enables Microsoft to keep you informed of
updates and other information about the assembler.

Filename: LMAPGINT.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 33 Page: 20 of 8 Printed: 03/06/94 06:08 PM
Printed On: Distiller Colorlayer: ? Document Page: xx

1

C H A P T E R 1

Understanding Global Concepts

With the development of the Microsoft Macro Assembler (MASM) version 6.1,
you now have more options available to you for approaching a programming task.
This chapter explains the general concepts of programming in assembly language,
beginning with the environment and a review of the components you need to work
in the assembler environment. Even if you are familiar with previous versions of
MASM, you should examine this chapter for information on new terms and
features.

The first section of this chapter reviews available processors and operating systems
and how they work together. The section also discusses segmented architecture and
how it affects a protected-mode operating environment such as Windows.

The second section describes some of the language components of MASM that are
common to most programs, such as reserved words, constant expressions, operators,
and registers. The remainder of this book was written with the assumption that you
understand the information presented in this section.

The last section summarizes the assembly process, from assembling a program
through running it. You can affect this process by the way you develop your code.
Finally, this section explores how you can change the assembly process with the
OPTION directive and conditional assembly.

The Processing Environment
The processing environment for MASM 6.1 includes the processor on which your
programs run, the operating system your programs use, and the aspects of the
segmented architecture that influence the choice of programming models. This
section summarizes these elements of the environment and how they affect your
programming choices.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 1 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 1

2 Programmer’s Guide

8086-Based Processors
The 8086 “family” of processors uses segments to control data and code. The later
8086-based processors have larger instruction sets and more memory capacity, but
they still support the same segmented architecture. Knowing the differences
between the various 8086-based processors can help you select the appropriate
target processor for your programs.

The instruction set of the 8086 processor is upwardly compatible with its
successors. To write code that runs on the widest number of machines, select the
8086 instruction set. By using the instruction set of a more advanced processor, you
increase the capabilities and efficiency of your program, but you also reduce the
number of systems on which the program can run.

Table 1.1 lists modes, memory, and segment size of processors on which your
application may need to run. Each processor is discussed in more detail following.

Table 1.1 8086 Family of Processors

Processor
Available
Modes

Addressable
Memory

Segment
Size

8086/8088 Real 1 megabyte 16 bits

80186/80188 Real 1 megabyte 16 bits

80286 Real and Protected 16 megabytes 16 bits

80386 Real and Protected 4 gigabytes 16 or 32 bits

80486 Real and Protected 4 gigabytes 16 or 32 bits

Processor Modes
Real mode allows only one process to run at a time. The mode gets its name from
the fact that addresses in real mode always correspond to real locations in memory.
The MS-DOS operating system runs in real mode.

Windows 3.1 operates only in protected mode, but runs MS-DOS programs in real
mode or in a simulation of real mode called virtual-86 mode. In protected mode,
more than one process can be active at any one time. The operating system protects
memory belonging to one process from access by another process; hence the name
protected mode.

Protected-mode addresses do not correspond directly to physical memory. Under
protected-mode operating systems, the processor allocates and manages memory
dynamically. Additional privileged instructions initialize protected mode and
control multiple processes. For more information, see “Operating Systems,”
following.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 2 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 2

Chapter 1 Understanding Global Concepts 3

8086 and 8088
The 8086 is faster than the 8088 because of its 16-bit data bus; the 8088 has only
an 8-bit data bus. The 16-bit data bus allows you to use EVEN and ALIGN on an
8086 processor to word-align data and thus improve data-handling efficiency.
Memory addresses on the 8086 and 8088 refer to actual physical addresses.

80186 and 80188
These two processors are identical to the 8086 and 8088 except that new
instructions have been added and several old instructions have been optimized.
These processors run significantly faster than the 8086.

80286
The 80286 processor adds some instructions to control protected mode, and it runs
faster. It also provides protected mode services, allowing the operating system to
run multiple processes at the same time. The 80286 is the minimum for running
Windows 3.1 and 16-bit versions of OS/2 ®.

80386
Unlike its predecessors, the 80386 processor can handle both 16-bit and 32-bit
data. It supports the entire instruction set of the 80286, and adds several new
instructions as well. Software written for the 80286 runs unchanged on the 80386,
but is faster because the chip operates at higher speeds.

The 80386 implements many new hardware-level features, including paged
memory, multiple virtual 8086 processes, addressing of up to 4 gigabytes of
memory, and specialized debugging registers. Thirty-two–bit operating systems
such as Windows NT and OS/2 2.0 can run only on an 80386 or higher processor.

80486
The 80486 processor is an enhanced version of the 80386, with instruction
“pipelining” that executes many instructions two to three times faster. The chip
incorporates both a math coprocessor and an 8K (kilobyte) memory cache. (The
math coprocessor is disabled on a variation of the chip called the 80486SX.) The
80486 includes new instructions and is fully compatible with 80386 software.

8087, 80287, and 80387
These math coprocessors work concurrently with the 8086 family of processors.
Performing floating-point calculations with math coprocessors is up to 100 times
faster than emulating the calculations with integer instructions. Although there are
technical and performance differences among the three coprocessors, the main
difference to the applications programmer is that the 80287 and 80387 can operate
in protected mode. The 80387 also has several new instructions. The 80486 does
not use any of these coprocessors; its floating-point processor is built in and is
functionally equivalent to the 80387.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 3 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 3

4 Programmer’s Guide

Operating Systems
With MASM, you can create programs that run under MS-DOS, Windows, or
Windows NT — or all three, in some cases. For example, ML.EXE can produce
executable files that run in any of the target environments, regardless of the
programmer’s environment. For information on building programs for different
environments, see “Building and Running Programs” in Help for PWB.

MS-DOS and Windows 3.1 provide different processing modes. MS-DOS runs in
the single-process real mode. Windows 3.1 operates in protected mode, allowing
multiple processes to run simultaneously.

Although Windows requires another operating system for loading and file services,
it provides many functions normally associated with an operating system. When an
application requests an MS-DOS service, Windows often provides the service
without invoking MS-DOS. For consistency, this book refers to Windows as an
operating system.

MS-DOS and Windows (in protected mode) differ primarily in system access
methods, size of addressable memory, and segment selection. Table 1.2 summarizes
these differences.

Table 1.2 The MS-DOS and Windows Operating Systems Compared

Operating
System

System
Access

Available
Active
Processes

Addressable
Memory

Contents of
Segment
Register

Word
Length

MS-DOS and
Windows real
mode

Direct to
hardware
and OS call

One 1 megabyte Actual
address

16 bits

Windows
virtual-86
mode

Operating
system call

Multiple 1 megabyte Segment
selectors

16 bits

Windows
protected mode

Operating
system call

Multiple 16 megabytes Segment
selectors

16 bits

Windows NT Operating
system call

Multiple 512
megabytes

Segment
selectors

32 bits

MS-DOS
In real-mode programming, you can access system functions by calling MS-DOS,
calling the basic input/output system (BIOS), or directly addressing hardware.
Access is through MS-DOS Interrupt 21h.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 4 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 4

Chapter 1 Understanding Global Concepts 5

Windows
As you can see in Table 1.2, protected mode allows for much larger data structures
than real mode, since addressable memory extends to 16 megabytes. In protected
mode, segment registers contain selector values rather than actual segment
addresses. These selectors cannot be calculated by the program; they must be
obtained by calling the operating system. Programs that attempt to calculate
segment values or to address memory directly do not work in protected mode.

Protected mode uses privilege levels to maintain system integrity and security.
Programs cannot access data or code that is in a higher privilege level. Some
instructions that directly access ports or affect interrupts (such as CLI, STI, IN,
and OUT) are available at privilege levels normally used only by systems
programmers.

Windows protected mode provides each application with up to 16 megabytes of
“virtual memory,” even on computers that have less physical memory. The term
virtual memory refers to the operating system’s ability to use a swap area on the
hard disk as an extension of real memory. When a Windows application requires
more memory than is available, Windows writes sections of occupied memory to
the swap area, thus freeing those sections for other use. It then provides the memory
to the application that made the memory request. When the owner of the swapped
data regains control, Windows restores the data from disk to memory, swapping out
other memory if required.

Windows NT
Windows NT uses the so-called “flat model” of 80386/486 processors. This model
places the processor’s entire address space within one 32-bit segment. The section
“Defining Basic Attributes with .MODEL” in Chapter 2 explains how to use the
flat model. In flat model, your program can (in theory) access up to 4 gigabytes of
virtual memory. Since code, data, and stack reside in the same segment, each
segment register can hold the same value, which need never change.

Segmented Architecture
The 8086 family of processors employs a segmented architecture — that is, each
address is represented as a segment and an offset. Segmented addresses affect many
aspects of assembly-language programming, especially addresses and pointers.

Segmented architecture was originally designed to enable a 16-bit processor to
access an address space larger than 64K. (The section “Segmented Addressing,”
later in this chapter, explains how the processor uses both the segment and offset to
create addresses larger than 64K.) MS-DOS is an example of an operating system
that uses segmented architecture on a 16-bit processor.

With the advent of protected-mode processors such as the 80286, segmented
architecture gained a second purpose. Segments can separate different blocks of

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 5 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 5

6 Programmer’s Guide

code and data to protect them from undesirable interactions. Windows takes
advantage of the protection features of the 16-bit segments on the 80286.

Segmented architecture went through another significant change with the release of
32-bit processors, starting with the 80386. These processors are compatible with
the older 16-bit processors, but allow flat model 32-bit offset values up to 4
gigabytes. Offset values of this magnitude remove the memory limitations of
segmented architecture. The Windows NT operating system uses 32-bit addressing.

Segment Protection
Segmented architecture is an important part of the Windows memory-protection
scheme. In a “multitasking” operating system in which numerous programs can run
simultaneously, programs cannot access the code and data of another process
without permission.

In MS-DOS, the data and code segments are usually allocated adjacent to each
other, as shown in Figure 1.1. In Windows, the data and code segments can be
anywhere in memory. The programmer knows nothing about, and has no control
over, their location. The operating system can even move the segments to a new
memory location or to disk while the program is running.

Code
Segment

Code
Segment

Real-Mode
Program Allocation

Protected-Mode
Program Allocation

Data
Segment

Data
Segment

First
available
address

Somewhere
in memory

Somewhere
in memory

Next address
after Code
Segment

Figure 1.1 Segment Allocation

Segment protection makes software development easier and more reliable in
Windows than in MS-DOS, because Windows immediately detects illegal memory
accesses. The operating system intercepts illegal memory accesses, terminates the
program, and displays a message. This makes it easier for you to track down and fix
the bug.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 6 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 6

Chapter 1 Understanding Global Concepts 7

Because it runs in real mode, MS-DOS contains no mechanism for detecting an
improper memory access. A program that overwrites data not belonging to it may
continue to run and even terminate correctly. The error may not surface until later,
when MS-DOS or another program reads the corrupted memory.

Segmented Addressing
Segmented addressing refers to the internal mechanism that combines a segment
value and an offset value to form a complete memory address. The two parts of an
address are represented as

segment:offset

The segment portion always consists of a 16-bit value. The offset portion is a 16-bit
value in 16-bit mode or a 32-bit value in 32-bit mode.

In real mode, the segment value is a physical address that has an arithmetic
relationship to the offset value. The segment and offset together create a 20-bit
physical address (explained in the next section). Although 20-bit addresses can
access up to 1 megabyte of memory, the BIOS and operating system on
International Standard Architecture (IBM PC/AT and compatible) computers use
part of this memory, leaving the remainder available for programs.

Segment Arithmetic
Manipulating segment and offset addresses directly in real-mode programming is
called “segment arithmetic.” Programs that perform segment arithmetic are not
portable to protected-mode operating systems, in which addresses do not correspond
to a known segment and offset.

To perform segment arithmetic successfully, it helps to understand how the
processor combines a 16-bit segment and a 16-bit offset to form a 20-bit linear
address. In effect, the segment selects a 64K region of memory, and the offset
selects the byte within that region. Here’s how it works:

1. The processor shifts the segment address to the left by four binary places,
producing a 20-bit address ending in four zeros. This operation has the effect of
multiplying the segment address by 16.

2. The processor adds this 20-bit segment address to the 16-bit offset address. The
offset address is not shifted.

3. The processor uses the resulting 20-bit address, called the “physical address,” to
access an actual location in the 1-megabyte address space.

Figure 1.2 illustrates this process.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 7 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 7

8 Programmer’s Guide

...shifted left 4 bits

...plus 16-bit offset

...equals 20-bit physical address

16-bit segment register...

15 0

2C35

15 0

02C35

15 0

A701

019

A9C45

Figure 1.2 Calculating Physical Addresses

A 20-bit physical address may actually be specified by 4,096 equivalent
segment:offset addresses. For example, the addresses 0000:F800, 0F00:0800, and
0F80:0000 all refer to the same physical address 0F800.

Language Components of MASM
Programming with MASM requires that you understand the MASM concepts of
reserved words, identifiers, predefined symbols, constants, expressions, operators,
data types, registers, and statements. This section defines important terms and
provides lists that summarize these topics. For detailed information, see Help or the
Reference.

Reserved Words
A reserved word has a special meaning fixed by the language. You can use it only
under certain conditions. Reserved words in MASM include:

◆ Instructions, which correspond to operations the processor can execute.

◆ Directives, which give commands to the assembler.

◆ Attributes, which provide a value for a field, such as segment alignment.

◆ Operators, which are used in expressions.

◆ Predefined symbols, which return information to your program.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 8 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 8

Chapter 1 Understanding Global Concepts 9

MASM reserved words are not case sensitive except for predefined symbols (see
“Predefined Symbols,” later in this chapter).

The assembler generates an error if you use a reserved word as a variable, code
label, or other identifier within your source code. However, if you need to use a
reserved word for another purpose, the OPTION NOKEYWORD directive can
selectively disable a word’s status as a reserved word.

For example, to remove the STR instruction, the MASK operator, and the NAME
directive from the set of words MASM recognizes as reserved, use this statement in
the code segment of your program before the first reference to STR, MASK, or
NAME:

OPTION NOKEYWORD:<STR MASK NAME>

The section “Using the OPTION Directive,” later in this chapter, discusses the
OPTION directive. Appendix D provides a complete list of MASM reserved
words.

With the /Zm command-line option or OPTION M510 in effect, MASM does not
reserve any operators or instructions that do not apply to the current CPU mode. For
example, you can use the symbol ENTER when assembling under the default CPU
mode but not under .286 mode, since the 80186/486 processors recognize ENTER as
an instruction. The USE32, FLAT, FAR32, and NEAR32 segment types and the
80386/486 register names are not keywords with processors other than the
80386/486.

Identifiers
An identifier is a name that you invent and attach to a definition. Identifiers can be
symbols representing variables, constants, procedure names, code labels, segment
names, and user-defined data types such as structures, unions, records, and types
defined with TYPEDEF. Identifiers longer than 247 characters generate an error.

Certain restrictions limit the names you can use for identifiers. Follow these rules to
define a name for an identifier:

◆ The first character of the identifier can be an alphabetic character (A–Z) or any
of these four characters: @ _ $?

◆ The other characters in the identifier can be any of the characters listed above or
a decimal digit (0–9).

Avoid starting an identifier with the at sign (@), because MASM 6.1 predefines
some special symbols starting with @ (see “Predefined Symbols,” following).
Beginning an identifier with @ may also cause conflicts with future versions of the
Macro Assembler.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 9 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 9

10 Programmer’s Guide

The symbol — and thus the identifier — is visible as long as it remains within scope.
(For more information about visibility and scope, see “Sharing Symbols with
Include Files” in Chapter 8.)

Predefined Symbols
The assembler includes a number of predefined symbols (also called predefined
equates). You can use these symbol names at any point in your code to represent the
equate value. For example, the predefined equate @FileName represents the base
name of the current file. If the current source file is TASK.ASM, the value of
@FileName is TASK. The MASM predefined symbols are listed according to the
kinds of information they provide. Case is important only if the /Cp option is used.
(For additional details, see Help on ML command-line options.)

The predefined symbols for segment information include:

Symbol Description

@code Returns the name of the code segment.

@CodeSize Returns an integer representing the default code distance.

@CurSeg Returns the name of the current segment.

@data Expands to DGROUP.

@DataSize Returns an integer representing the default data distance.

@fardata Returns the name of the segment defined by the .FARDATA directive.

@fardata? Returns the name of the segment defined by the .FARDATA? directive.

@Model Returns the selected memory model.

@stack Expands to DGROUP for near stacks or STACK for far stacks. (See
“Creating a Stack” in Chapter 2.)

@WordSize Provides the size attribute of the current segment.

The predefined symbols for environment information include:

Symbol Description

@Cpu Contains a bit mask specifying the processor mode.

@Environ Returns values of environment variables during assembly.

@Interface Contains information about the language parameters.

@Version Represents the text equivalent of the MASM version number. In MASM
6.1, this expands to 610.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 10 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 10

Chapter 1 Understanding Global Concepts 11

The predefined symbols for date and time information include:

Symbol Description

@Date Supplies the current system date during assembly.

@Time Supplies the current system time during assembly.

The predefined symbols for file information include:

Symbol Description

@FileCur Names the current file (base and suffix).

@FileName Names the base name of the main file being assembled as it appears on
the command line.

@Line Gives the source line number in the current file.

The predefined symbols for macro string manipulation include:

Symbol Description

@CatStr Returns concatenation of two strings.

@InStr Returns the starting position of a string within another string.

@SizeStr Returns the length of a given string.

@SubStr Returns substring from a given string.

Integer Constants and Constant Expressions
An integer constant is a series of one or more numerals followed by an optional
radix specifier. For example, in these statements

 mov ax, 25

 mov bx, 0B3h

the numbers 25 and 0B3h are integer constants. The h appended to 0B3 is a radix
specifier. The specifiers are:

◆ y for binary (or b if the default radix is not hexadecimal)

◆ o or q for octal

◆ t for decimal (or d if the default radix is not hexadecimal)

◆ h for hexadecimal

Radix specifiers can be either uppercase or lowercase letters; sample code in this
book is in lowercase. If you do not specify a radix, the assembler interprets the
integer according to the current radix. The default radix is decimal, but you can
change the default with the .RADIX directive.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 11 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 11

12 Programmer’s Guide

Hexadecimal numbers must always start with a decimal digit (0–9). If necessary,
add a leading zero to distinguish between symbols and hexadecimal numbers that
start with a letter. For example, MASM interprets ABCh as an identifier. The
hexadecimal digits A through F can be either uppercase or lowercase letters.
Sample code in this book is in uppercase letters.

Constant expressions contain integer constants and (optionally) operators such as
shift, logical, and arithmetic operators. The assembler evaluates constant
expressions at assembly time. (In addition to constants, expressions can contain
labels, types, registers, and their attributes.) Constant expressions do not change
value during program execution.

Symbolic Integer Constants
You can define symbolic integer constants with either of the data assignment
directives, EQU or the equal sign (=). These directives assign values to symbols
during assembly, not during program execution. Symbolic constants are used to
assign names to constant values. You can use a symbol with an assigned value in
place of an immediate operand. For example, instead of referring in your code to
keyboard scan codes with numbers such as 30 or 48, you can create more
recognizable symbols:

SCAN_A EQU 30

SCAN_B EQU 48

then use the appropriate symbol in your program rather than the number. Using
symbolic constants instead of undescriptive numbers makes your code more
readable and easier to maintain. The assembler does not allocate data storage when
you use either EQU or =. It simply replaces each occurrence of the symbol with the
value of the expression.

The directives EQU and = have slightly different purposes. Integers defined with
the = directive can be redefined with another value in your source code, but those
defined with EQU cannot. Once you’ve defined a symbolic constant with the EQU
directive, attempting to redefine it generates an error. The syntax is:

symbol EQU expression

The symbol is a unique name of your choice, except for words reserved by MASM.
The expression can be an integer, a constant expression, a one- or two-character
string constant (four-character on the 80386/486), or an expression that evaluates
to an address. Symbolic constants let you change a constant value used throughout
your source code by merely altering expression in the definition. This removes the
potential for error and saves you the inconvenience of having to find and replace
each occurrence of the constant in your program.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 12 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 12

Chapter 1 Understanding Global Concepts 13

The following example shows the correct use of EQU to define symbolic integers.

column EQU 80 ; Constant - 80

row EQU 25 ; Constant - 25

screen EQU column * row ; Constant - 2000

line EQU row ; Constant - 25

 .DATA

 .CODE

 .

 .

 .

 mov cx, column

 mov bx, line

The value of a symbol defined with the = directive can be different at different
places in the source code. However, a constant value is assigned during assembly
for each use, and that value does not change at run time.

The syntax for the = directive is:

symbol = expression

Size of Constants
The default word size for MASM 6.1 expressions is 32 bits. This behavior can be
modified using OPTION EXPR16 or OPTION M510. Both of these options set
the expression word size to 16 bits, but OPTION M510 affects other assembler
behavior as well (see Appendix A).

It is illegal to change the expression word size once it has been set with OPTION
M510, OPTION EXPR16, or OPTION EXPR32. However, you can repeat the
same directive in your source code as often as you wish. You can place the same
directive in every include file, for example.

Operators
Operators are used in expressions. The value of the expression is determined at
assembly time and does not change when the program runs.

Operators should not be confused with processor instructions. The reserved
word ADD is an instruction; the plus sign (+) is an operator. For example,
Amount+2 illustrates a valid use of the plus operator (+). It tells the assembler to
add 2 to the constant value Amount, which might be a value or an address. Contrast
this operation, which occurs at assembly time, with the processor’s ADD
instruction. ADD tells the processor at run time to add two numbers and store the
result.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 13 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 13

14 Programmer’s Guide

The assembler evaluates expressions that contain more than one operator according
to the following rules:

◆ Operations in parentheses are performed before adjacent operations.

◆ Binary operations of highest precedence are performed first.

◆ Operations of equal precedence are performed from left to right.

◆ Unary operations of equal precedence are performed right to left.

Table 1.3 lists the order of precedence for all operators. Operators on the same line
have equal precedence.

Table 1.3 Operator Precedence

Precedence Operators

1 (), []

2 LENGTH, SIZE, WIDTH, MASK, LENGTHOF, SIZEOF

3 . (structure-field-name operator)

4 : (segment-override operator), PTR

5 LROFFSET, OFFSET, SEG, THIS, TYPE

6 HIGH, HIGHWORD, LOW, LOWWORD

7 + ,– (unary)

8 *, /, MOD, SHL, SHR

9 +, – (binary)

10 EQ, NE, LT, LE, GT, GE

11 NOT

12 AND

13 OR, XOR

14 OPATTR, SHORT, .TYPE

Data Types
A “data type” describes a set of values. A variable of a given type can have any of
a set of values within the range specified for that type.

The intrinsic types for MASM 6.1 are BYTE, SBYTE, WORD, SWORD,
DWORD, SDWORD, FWORD, QWORD, and TBYTE. These types define
integers and binary coded decimals (BCDs), as discussed in Chapter 6. The signed
data types SBYTE, SWORD, and SDWORD work in conjunction with directives
such as INVOKE (for calling procedures) and .IF (introduced in Chapter 7). The
REAL4, REAL8, and REAL10 directives define floating-point types. (See
Chapter 6.)

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 14 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 14

Chapter 1 Understanding Global Concepts 15

Versions of MASM prior to 6.0 had separate directives for types and initializers.
For example, BYTE is a type and DB is the corresponding initializer. The
distinction does not apply in MASM 6.1. You can use any type (intrinsic or user-
defined) as an initializer.

MASM does not have specific types for arrays and strings. However, you can treat
a sequence of data units as arrays, and character or byte sequences as strings. (See
“Arrays and Strings” in Chapter 5.)

Types can also have attributes such as langtype and distance (NEAR and FAR).
For information on these attributes, see “Declaring Parameters with the PROC
Directive” in Chapter 7.

You can also define your own types with STRUCT, UNION, and RECORD. The
types have fields that contain string or numeric data, or records that contain bits.
These data types are similar to the user-defined data types in high-level languages
such as C, Pascal, and FORTRAN. (See Chapter 5, “Defining and Using Complex
Data Types.”)

You can define new types, including pointer types, with the TYPEDEF directive.
TYPEDEF assigns a qualifiedtype (explained in the following) to a typename of
your choice. This lets you build new types with descriptive names of your choosing,
making your programs more readable. For example, the following statement makes
the symbol CHAR a synonym for the intrinsic type BYTE:

CHAR TYPEDEF BYTE

The qualifiedtype is any type or pointer to a type of the form:

[[distance]] PTR [[qualifiedtype]]

where distance is NEAR, FAR, or any distance modifier. (For more information
on distance, see “Declaring Parameters with the PROC Directive” in Chapter 7.)

The qualifiedtype can also be any type previously defined with TYPEDEF. For
example, if you use TYPEDEF to create an alias for BYTE — say, CHAR as in the
preceding example — you can use CHAR as a qualifiedtype when defining the
pointer type PCHAR, like this:

CHAR TYPEDEF BYTE

PCHAR TYPEDEF PTR CHAR

The typename CHAR in the first line becomes a qualifiedtype in the second line. Use
of the TYPEDEF directive to define pointers is explained in “Accessing Data with
Pointers and Addresses” in Chapter 3.

Since distance and qualifiedtype are optional syntax elements, you can use
variables of type PTR or FAR PTR. You can also define procedure prototypes

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 15 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 15

16 Programmer’s Guide

with qualifiedtype. For more information about procedure prototypes, see
“Declaring Procedure Prototypes” in Chapter 7.

These rules govern the use of qualifiedtype:

◆ The only component of a qualifiedtype definition that can be forward-
referenced is a structure or union type identifier.

◆ If you do not specify distance, the assembler assumes a distance that
corresponds to the memory model. The assumed distance is NEAR for tiny,
small, and medium models, and FAR for other models.

◆ If you do not specify a memory model with .MODEL, the assembler assumes
SMALL model (and therefore NEAR pointers).

You can use a qualifiedtype in seven places:

Use Example

In procedure arguments proc1 PROC pMsg:PTR BYTE

In prototype arguments proc2 PROTO pMsg:FAR PTR WORD

With local variables declared inside
procedures

LOCAL pMsg:PTR

With the LABEL directive TempMsg LABEL PTR WORD

With the EXTERN and
EXTERNDEF directives

EXTERN pMsg:FAR PTR BYTE
EXTERNDEF MyProc:PROTO

With the COMM directive COMM var1:WORD:3

With the TYPEDEF directive PBYTE TYPEDEF PTR BYTE
PFUNC TYPEDEF PROTO MyProc

“Defining Pointer Types with TYPEDEF” in Chapter 3 shows ways to write a
TYPEDEF type for a qualifiedtype. Attributes such as NEAR and FAR can also
apply to a qualifiedtype.

You can determine an accurate definition for TYPEDEF and qualifiedtype from
the BNF grammar definitions given in Appendix B. The BNF grammar defines each
component of the syntax for any directive, showing the recursive properties of
components such as qualifiedtype.

Registers
The 8086 family of processors have the same base set of 16-bit registers. Each
processor can treat certain registers as two separate 8-bit registers. The 80386/486
processors have extended 32-bit registers. To maintain compatibility with their
predecessors, 80386/486 processors can access their registers as 16-bit or, where
appropriate, as 8-bit values.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 16 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 16

Chapter 1 Understanding Global Concepts 17

Figure 1.3 shows the registers common to all the 8086-based processors. Each
register has its own special uses and limitations.

General-Purpose Registers

Segment Registers Other Registers

Accumulator -

Data -

Count -

Base -

Base Pointer -

Source Index -

Destination Index -

Stack Pointer -

AH

DH

CH

BH

AL

DL

CL

BL

BP

SI

DI

SP

15 7 0

AX

DX

CX

BX

Multiply, divide, I/O, and optimized moves

Multiply, divide, and I/O

Count for loops, repeats, shifts, and rotates

Pointer to base address (data segment)

Pointer to base address (stack segment)

Source string and index pointer

Destination string and index pointer

Pointer to top of stack

Code Segment

Data Segment

Stack Segment

Extra Segment

CS

DS

SS

ES

Flags

Instruction Pointer

Flags

IP

Figure 1.3 Registers for 8088 – 80286 Processors

80386/486 Only
The 80386/486 processors use the same 8-bit and 16-bit registers used by the rest
of the 8086 family. All of these registers can be further extended to 32 bits, except
segment registers, which always occupy 16 bits. The extended register names begin
with the letter “E.” For example, the 32-bit extension of AX is EAX. The
80386/486 processors have two additional segment registers, FS and GS. Figure
1.4 shows the extended registers of the 80386/486.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 17 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 17

18 Programmer’s Guide

General-Purpose Registers

Other Registers

AH

DH

CH

BH

AL

DL

CL

BL

BP

SI

DI

SP

31 23 715 0

AXEAX

DXEDX

CXECX

BXEBX

EBP

ESI

EDI

ESP

Accumulator

Data

Count

Base

Base Pointer

Source Index

Destination Index

Stack Pointer

CS

DS

FS

SS

GS

ES

Segment Registers

Code Segment

Data Segment

Stack Segment

Extra Segment

Extra Segment

Extra Segment

Flags

Instruction
Pointer

Flags

IP

Eflags

EIP

Figure 1.4 Extended Registers for the 80386/486 Processors

Segment Registers
At run time, all addresses are relative to one of four segment registers: CS, DS, SS,
or ES. (The 80386/486 processors add two more: FS and GS.) These registers, their
segments, and their purposes include:

Register and Segment Purpose

CS (Code Segment) Contains processor instructions and their immediate
operands.

DS (Data Segment) Normally contains data allocated by the program.

SS (Stack Segment) Contains the program stack for use by PUSH, POP, CALL,
and RET.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 18 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 18

Chapter 1 Understanding Global Concepts 19

Register and Segment Purpose

ES (Extra Segment) References secondary data segment. Used by string
instructions.

FS, GS Provides extra segments on the 80386/486.

General-Purpose Registers
The AX, DX, CX, BX, BP, DI, and SI registers are 16-bit general-purpose
registers, used for temporary data storage. Since the processor accesses registers
more quickly than it accesses memory, you can make your programs run faster by
keeping the most-frequently used data in registers.

The 8086-based processors do not perform memory-to-memory operations. For
example, the processor cannot directly copy a variable from one location in memory
to another. You must first copy from memory to a register, then from the register to
the new memory location. Similarly, to add two variables in memory, you must first
copy one variable to a register, then add the contents of the register to the other
variable in memory.

The processor can access four of the general registers — AX, DX, CX, and BX —
either as two 8-bit registers or as a single 16-bit register. The AH, DH, CH, and
BH registers represent the high-order 8 bits of the corresponding registers.
Similarly, AL, DL, CL, and BL represent the low-order 8 bits of the registers.

The 80386/486 processors can extend all the general registers to 32 bits, though as
Figure 1.4 shows, you cannot treat the upper 16 bits as a separate register as you
can the lower 16 bits. To use EAX as an example, you can directly reference the
low byte as AL, the next lowest byte as AH, and the low word as AX. To access
the high word of EAX, however, you must first shift the upper 16 bits into the lower
16 bits.

Special-Purpose Registers
The 8086 family of processors has two additional registers, SP and IP, whose
values are changed automatically by the processor.

SP (Stack Pointer)
The SP register points to the current location within the stack segment. Pushing a
value onto the stack decreases the value of SP by two; popping from the stack
increases the value of SP by two. Thirty-two–bit operands on 80386/486 processors
increase or decrease SP by four instead of two. The CALL and INT instructions
store the return address on the stack and reduce SP accordingly. Return instructions
retrieve the stored address from the stack and reset SP to its value before the call.
SP can also be adjusted with instructions such as ADD. The program stack is
described in detail in Chapter 3.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 19 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 19

20 Programmer’s Guide

IP (Instruction Pointer)
The IP register always contains the address of the next instruction to be executed.
You cannot directly access or change the instruction pointer. However, instructions
that control program flow (such as calls, jumps, loops, and interrupts) automatically
change the instruction pointer.

Flags Register
The 16 bits in the flags register control the execution of certain instructions and
reflect the current status of the processor. In 80386/486 processors, the flags
register is extended to 32 bits. Some bits are undefined, so there are actually 9 flags
for real mode, 11 flags (including a 2-bit flag) for 80286 protected mode, 13 for the
80386, and 14 for the 80486. The extended flags register of the 80386/486 is
sometimes called “Eflags.”

Figure 1.5 shows the bits of the 32-bit flags register for the 80386/486. Earlier
8086-family processors use only the lower word. The unmarked bits are reserved
for processor use, and should not be modified.

31 23 15 7 0

80386/486 only 80286-80486 only All processors

Carry
Parity

Auxiliary Carry
Zero

Sign
Trap

Interrupt Enable
Direction

Overflow
I/O Protection Level

Nested Task
Resume

Virtual 8086 Mode
Alignment Check

VA R N O D I T S Z A P CIOP

Figure 1.5 Flags for 8088-80486 Processors

In the following descriptions and throughout this book, “set” means a bit value of 1,
and “cleared” means the bit value is 0. The nine flags common to all 8086-family
processors, starting with the low-order flags, include:

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 20 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 20

Chapter 1 Understanding Global Concepts 21

Flag Description

Carry Set if an operation generates a carry to or a borrow from a destination
operand.

Parity Set if the low-order bits of the result of an operation contain an even
number of set bits.

Auxiliary Carry Set if an operation generates a carry to or a borrow from the low-order
4 bits of an operand. This flag is used for binary coded decimal
(BCD) arithmetic.

Zero Set if the result of an operation is 0.

Sign Equal to the high-order bit of the result of an operation (0 is positive,
1 is negative).

Trap If set, the processor generates a single-step interrupt after each
instruction. A debugging program can use this feature to execute a
program one instruction at a time.

Interrupt Enable If set, interrupts are recognized and acted on as they are received. The
bit can be cleared to turn off interrupt processing temporarily.

Direction If set, string operations process down from high addresses to low
addresses. If cleared, string operations process up from low addresses
to high addresses.

Overflow Set if the result of an operation is too large or small to fit in the
destination operand.

Although all flags serve a purpose, most programs require only the carry, zero,
sign, and direction flags.

Statements
Statements are the line-by-line components of source files. Each MASM statement
specifies an instruction or directive for the assembler. Statements have up to four
fields, as shown here:

[[name:]] [[operation]] [[operands]] [[;comment]]

The following list explains each field:

Field Purpose

 name Labels the statement, so that instructions elsewhere in the program can
refer to the statement by name. The name field can label a variable, type,
segment, or code location.

operation Defines the action of the statement. This field contains either an instruction
or an assembler directive.

operands Lists one or more items on which the instruction or directive operates.

comment Provides a comment for the programmer. Comments are for documentation
only; they are ignored by the assembler.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 21 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 21

22 Programmer’s Guide

The following line contains all four fields:

mainlp: mov ax, 7 ; Load AX with the value 7

Here, mainlp is the label, mov is the operation, and ax and 7 are the operands,
separated by a comma. The comment follows the semicolon.

All fields are optional, although certain directives and instructions require an entry
in the name or operand field. Some instructions and directives place restrictions on
the choice of operands. By default, MASM is not case sensitive.

Each field (except the comment field) must be separated from other fields by white-
space characters (spaces or tabs). MASM also requires code labels to be followed
by a colon, operands to be separated by commas, and comments to be preceded by a
semicolon.

A logical line can contain up to 512 characters and occupy one or more physical
lines. To extend a logical line into two or more physical lines, put the backslash
character (\) as the last non-whitespace character before the comment or end of the
line. You can place a comment after the backslash as shown in this example:

 .IF (x > 0) \ ; X must be positive

 && (ax > x) \ ; Result from function must be > x

 && (cx == 0) ; Check loop counter, too

 mov dx, 20h

 .ENDIF

Multiline comments can also be specified with the COMMENT directive. The
assembler ignores all text and code between the delimiters or on the same line as
the delimiters. This example illustrates the use of COMMENT.

COMMENT ^ The assembler

 ignores this text

^ mov ax, 1 and this code

The Assembly Process
Creating and running an executable file involves four steps:

1. Assembling the source code into an object file

2. Linking the object file with other modules or libraries into an executable
program

3. Loading the program into memory

4. Running the program

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 22 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 22

Chapter 1 Understanding Global Concepts 23

Once you have written your assembly-language program, MASM provides several
options for assembling it. The OPTION directive has several different arguments
that let you control the way MASM assembles your programs.

Conditional assembly allows you to create one source file that can generate a
variety of programs, depending on the status of various conditional-assembly
statements.

Generating and Running Executable Programs
This section briefly lists all the actions that take place during each of the assembly
steps. You can change the behavior of some of these actions in various ways, such
as using macros instead of procedures, or using the OPTION directive or
conditional assembly. The other chapters in this book include specific programming
methods; this section simply gives you an overview.

Assembling
The ML.EXE program does two things to create an executable program. First, it
assembles the source code into an intermediate object file. Second, it calls the
linker, LINK.EXE, which links the object files and libraries into an executable
program.

At assembly time, the assembler:

◆ Evaluates conditional-assembly directives, assembling if the conditions are true.

◆ Expands macros and macro functions.

◆ Evaluates constant expressions such as MYFLAG AND 80H, substituting the
calculated value for the expression.

◆ Encodes instructions and nonaddress operands. For example, mov cx, 13 can
be encoded at assembly time because the instruction does not access memory.

◆ Saves memory offsets as offsets from their segments.

◆ Places segments and segment attributes in the object file.

◆ Saves placeholders for offsets and segments (relocatable addresses).

◆ Outputs a listing if requested.

◆ Passes messages (such as INCLUDELIB and .DOSSEG) directly to the linker.

For information about conditional assembly, see “Conditional Directives” in this
chapter; for macros, see Chapter 9. Further details about segments and offsets are
included in Chapters 2 and 3. Assembly listings are explained in Appendix C.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 23 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 23

24 Programmer’s Guide

Linking
Once your source code is assembled, the resulting object file is passed to the linker.
At this point, the linker may combine several object files into an executable
program. The linker:

◆ Combines segments according to the instructions in the object files, rearranging
the positions of segments that share the same class or group.

◆ Fills in placeholders for offsets (relocatable addresses).

◆ Writes relocations for segments into the header of .EXE files (but not .COM
files).

◆ Writes the result as an executable program file.

Classes and groups are defined in “Defining Segment Groups” in Chapter 2.
Segments and offsets are explained in Chapter 3, “Using Addresses and Pointers.”

Loading
After loading the executable file into memory, the operating system:

◆ Creates the program segment prefix (PSP) header in memory.

◆ Allocates memory for the program, based on the values in the PSP.

◆ Loads the program.

◆ Calculates the correct values for absolute addresses from the relocation table.

◆ Loads the segment registers SS, CS, DS, and ES with values that point to the
proper areas of memory.

For information about segment registers, the instruction pointer (IP), and the stack
pointer (SP), see “Registers” earlier in this chapter. For more information on the
PSP see Help or an MS-DOS reference.

Running
To run your program, MS-DOS jumps to the program’s first instruction. Some
program operations, such as resolving indirect memory operands, cannot be handled
until the program runs. For a description of indirect references, see “Indirect
Operands” in Chapter 7.

Using the OPTION Directive
The OPTION directive lets you modify global aspects of the assembly process.
With OPTION, you can change command-line options and default arguments.
These changes affect only statements that follow the OPTION keyword.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 24 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 24

Chapter 1 Understanding Global Concepts 25

For example, you may have MASM code in which the first character of a variable,
macro, structure, or field name is a dot (.). Since a leading dot causes MASM 6.1 to
generate an error, you can use this statement in your program:

OPTION DOTNAME

This enables the use of the dot for the first character.

Changes made with OPTION override any corresponding command-line option.
For example, suppose you compile a module with this command line (which enables
M510 compatibility):

ML /Zm TEST.ASM

The assembler disables M510 compatibility options for all code following this
statement:

OPTION NOM510

The following lists explain each of the arguments for the OPTION directive.
Where appropriate, an underline identifies the default argument. If you wish to
place more than one OPTION statement on a line, separate them by commas.

Options for M510 compatibility include:

Argument Description

CASEMAP: maptype CASEMAP:NONE (or /Cx) causes internal
symbol recognition to be case sensitive and
causes the case of identifiers in the .OBJ file to
be the same as specified in the EXTERNDEF,
PUBLIC, or COMM statement. The default is
CASEMAP:NOTPUBLIC (or /Cp). It specifies
case insensitivity for internal symbol recognition
and the same behavior as CASEMAP:NONE for
case of identifiers in .OBJ files. CASEMAP:ALL
(/Cu) specifies case insensitivity for identifiers
and converts all identifier names to uppercase.

DOTNAME | NODOTNAME Enables the use of the dot (.) as the leading
character in variable, macro, structure, union,
and member names.

M510 | NOM510 Sets all features to be compatible with MASM
version 5.1, disabling the SCOPED argument
and enabling OLDMACROS, DOTNAME, and,
OLDSTRUCTS. OPTION M510 conditionally
sets other arguments for the OPTION directive.
For more information on using OPTION M510,
see Appendix A.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 25 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 25

26 Programmer’s Guide

Argument Description

OLDMACROS | NOOLDMACROS Enables the version 5.1 treatment of macros.
MASM 6.1 treats macros differently.

OLDSTRUCTS | NOOLDSTRUCTS Enables compatibility with MASM 5.1 for
treatment of structure members. See Chapter 5
for information on structures.

SCOPED | NOSCOPED Guarantees that all labels inside procedures are
local to the procedure when SCOPED (the
default) is enabled.

SETIF2: TRUE | FALSE If TRUE, .ERR2 statements and IF2 and
ELSEIF2 conditional blocks are evaluated on
every pass. If FALSE, they are not evaluated. If
SETIF2 is not specified (or implied), .ERR2,
IF2, and ELSEIF2 expressions cause an error.
Both the /Zm command-line argument and
OPTION M510 imply SETIF2:TRUE.

Options for procedure use include:

Argument Description

LANGUAGE: langtype Specifies the default language type (C, PASCAL,
FORTRAN, BASIC, SYSCALL, or STDCALL)
to be used with PROC, EXTERN, and PUBLIC.
This use of the OPTION directive overrides the
.MODEL directive but is normally used when
.MODEL is not given.

EPILOGUE: macroname Instructs the assembler to call the macroname to
generate a user-defined epilogue instead of the
standard epilogue code when a RET instruction
is encountered. See Chapter 7.

PROLOGUE: macroname Instructs the assembler to call macroname to
generate a user-defined prologue instead of
generating the standard prologue code. See
Chapter 7.

PROC: visibility Lets you explicitly set the default visibility as
PUBLIC, EXPORT, or PRIVATE.

Other options include:

Argument Description

EXPR16 | EXPR32 Sets the expression word size to 16 or 32 bits.
The default is 32 bits. The M510 argument to the
OPTION directive sets the word size to 16 bits.
Once set with the OPTION directive, the
expression word size cannot be changed.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 26 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 26

Chapter 1 Understanding Global Concepts 27

Argument Description

EMULATOR | NOEMULATOR Controls the generation of floating-point
instructions.The NOEMULATOR option
generates the coprocessor instructions directly.
The EMULATOR option generates instructions
with special fixup records for the linker so that
the Microsoft floating-point emulator, supplied
with other Microsoft languages, can be used. It
produces the same result as setting the /Fpi
command-line option. You can set this option
only once per module.

LJMP | NOLJMP Enables automatic conditional-jump lengthening.
For information about conditional-jump
lengthening, see Chapter 7.

NOKEYWORD:<keywordlist> Disables the specified reserved words. For an
example of the syntax for this argument, see
“Reserved Words” in this chapter.

NOSIGNEXTEND Overrides the default sign-extended opcodes for
the AND, OR, and XOR instructions and
generates the larger non-sign-extended forms of
these instructions. Provided for compatibility
with NEC V25 and NEC V35 controllers.

OFFSET: offsettype Determines the result of OFFSET operator
fixups. SEGMENT sets the defaults for fixups to
be segment-relative (compatible with MASM
5.1). GROUP, the default, generates fixups
relative to the group (if the label is in a group).
FLAT causes fixups to be relative to a flat frame.
(The .386 mode must be enabled to use FLAT.)
See Appendix A.

READONLY | NOREADONLY Enables checking for instructions that modify
code segments, thereby guaranteeing that read-
only code segments are not modified. Same as
the /p command-line option of MASM 5.1,
except that it affects only segments with at least
one assembly instruction, not all segments. The
argument is useful for protected mode programs,
where code segments must remain read-only.

SEGMENT: segSize Allows global default segment size to be set.
Also determines the default address size for
external symbols defined outside any segment.
The segSize can be USE16, USE32, or FLAT.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 27 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 27

28 Programmer’s Guide

Conditional Directives
MASM 6.1 provides conditional-assembly directives and conditional-error
directives. Conditional-assembly directives let you test for a specified condition and
assemble a block of statements if the condition is true. Conditional-error directives
allow you to test for a specified condition and generate an assembly error if the
condition is true.

Both kinds of conditional directives test assembly-time conditions, not run-time
conditions. You can test only expressions that evaluate to constants during
assembly. For a list of the predefined symbols often used in conditional assembly,
see “Predefined Symbols,” earlier in this chapter.

Conditional-Assembly Directives
The IF and ENDIF directives enclose the conditional statements. The optional
ELSEIF and ELSE blocks follow the IF directive. There are many forms of the IF
and ELSE directives. Help provides a complete list.

The following statements show the syntax for the IF directives. The syntax for other
condition-assembly directives follow the same form.

IF expression1
ifstatements
[[ELSEIF expression2
elseifstatements]]
[[ELSE
elsestatements]]
ENDIF

The statements within an IF block can be any valid instructions, including other
conditional blocks, which in turn can contain any number of ELSEIF blocks.
ENDIF ends the block.

MASM assembles the statements following the IF directive only if the
corresponding condition is true. If the condition is not true and the block contains an
ELSEIF directive, the assembler checks to see if the corresponding condition is
true. If so, it assembles the statements following the ELSEIF directive. If no IF or
ELSEIF conditions are satisfied, the assembler processes only the statements
following the ELSE directive.

For example, you may want to assemble a line of code only if your program defines
a particular variable. In this example,

IFDEF buffer

buff BYTE buffer DUP(?)

ENDIF

the assembler allocates buff only if buffer has been previously defined.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 28 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 28

Chapter 1 Understanding Global Concepts 29

MASM 6.1 provides the directives IF1, IF2, ELSEIF1, and ELSIF2 to grant
assembly only on pass one or pass two. To use these directives, you must either
enable 5.1 compatibility (with the /Zm command-line switch or OPTION M510)
or set OPTION SETIF2:TRUE, as described in the previous section.

The following list summarizes the conditional-assembly directives:

The Directive Grants Assembly If

IF expression expression is true (nonzero)

IFE expression expression is false (zero)

IFDEF name name has been previously defined

IFNDEF name name has not been previously defined

IFB argument* argument is blank

IFNB argument* argument is not blank

IFIDN[I] arg1, arg2* arg1 equals arg2

IFDIF[I] arg1, arg2* arg1 does not equal arg2

The optional I suffix (IFIDNI and IFDIFI) makes comparisons
insensitive to differences in case.

* Used only in macros.

Conditional-Error Directives
You can use conditional-error directives to debug programs and check for
assembly-time errors. By inserting a conditional-error directive at a key point in
your code, you can test assembly-time conditions at that point. You can also use
conditional-error directives to test for boundary conditions in macros.

Like other severe errors, those generated by conditional-error directives cause the
assembler to return a nonzero exit code. If MASM encounters a severe error during
assembly, it does not generate the object module.

For example, the .ERRNDEF directive produces an error if the program has not
defined a given label. In the following example, .ERRNDEF makes sure a label
called publevel actually exists.

.ERRNDEF publevel

IF publevel LE 2

PUBLIC var1, var2

ELSE

PUBLIC var1, var2, var3

ENDIF

The conditional-error directives use the syntax given in the previous section. The
following list summarizes the conditional-error directives. Note their close
correspondence with the previous list of conditional-assembly directives.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 29 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 29

30 Programmer’s Guide

The Directive Generates an Error

.ERR Unconditionally where it occurs in the source file. Usually
placed within a conditional-assembly block.

.ERRE expression If expression is false (zero).

.ERRNZ expression If expression is true (nonzero).

.ERRDEF name If name has been defined.

.ERRNDEF name If name has not been defined.

.ERRB argument* If argument is blank.

.ERRNB argument* If argument is not blank.

.ERRIDN[I] arg1, arg2* If arg1 equals arg2.

.ERRDIF[I] arg1, arg2* If arg1 does not equal arg2.

The optional I suffix (.ERRIDNI and .ERRDIFI) makes
comparisons insensitive to case.

* Used only in macros

Two special conditional-error directives, .ERR1 and .ERR2, generate an error only
on pass one or pass two. To use these directives, you must either enable 5.1
compatibility (with the /Zm command-line switch or OPTION M510) or set
OPTION SETIF2:TRUE, as described in the previous section.

Filename: LMAPGC01.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 57 Page: 30 of 30 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 30

31

C H A P T E R 2

Organizing Segments

Understanding segments is an essential part of programming in assembly language.
In the family of 8086-based processors, the term segment has two meanings:

◆ A block of memory of discrete size, called a “physical segment.” The number of
bytes in a physical memory segment is 64K for 16-bit processors or 4 gigabytes
for 32-bit processors.

◆ A variable-sized block of memory, called a “logical segment,” occupied by a
program’s code or data.

As you read this chapter, the distinction between the two definitions will become
clear. The adjectives “physical” and “logical” are not often used when speaking of
segments. The beginning programmer is left to infer from context which definition
applies. Fortunately, this is not difficult, and a distinction is often not required.

This chapter begins with a close look at physical memory segments. This lays the
foundation for understanding logical segments, which form the subject of most of
the following sections.

The section “Using Simplified Segment Directives” explains how to begin, end, and
organize segments. It also explains how to access far data and code with simplified
segment directives.

The next section, “Using Full Segment Definitions,” describes how to order,
combine, and divide segments, and how to use the SEGMENT directive to define
full segments. It also explains how to create a segment group so that you can use
one segment address to access all the data.

Most of the information in this chapter also applies to writing modules to be called
from other programs. Exceptions are noted when they apply. For more information
about multiple-module programming, see Chapter 8, “Sharing Data and Procedures
Among Modules and Libraries.”

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 31 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 31

32 Programmer’s Guide

Physical Memory Segments
As explained in Chapter 1, a physical segment can begin only at memory locations
evenly divisible by 16, including address 0. Intel calls such locations “paragraphs.”
You can easily recognize a paragraph location because its hexadecimal address
always ends with 0, as in 10000h or 2EA70h. The 8086/286 processors allow
segments 64K in size, the largest number 16 bits can represent. The 80386/486
processors still adhere to the 64K limit when running in real mode. In protected
mode, however, they use 32-bit registers that can hold addresses up to 4 gigabytes.

Segmented architecture presents certain hurdles for the assembly-language
programmer. For small programs, the limitations lose importance. Code and data
each occupy less than 64K and reside in individual segments. A simple offset
locates each variable or instruction within a segment.

Larger programs, however, must contend with problems of segmented memory
areas. If data occupies two or more segments, the program must specify both
segment and offset to access a variable. When the data forms a continuous stream
across segments — such as the text in a word processor’s workspace — the problems
become more acute. Whenever it adds or deletes text in the first segment, the word
processor must seamlessly move data back and forth over the boundaries of each
following segment.

The problem of segment boundaries disappears in the so-called flat address space of
32-bit protected mode. Although segments still exist, they easily hold all the code
and data of the largest programs. Even a very large program becomes in effect a
small application, able to reach all code and data with a single offset address.

Logical Segments
Logical segments contain the three components of a program: code, data, and stack.
MASM organizes the three parts for you so they occupy physical segments of
memory. The segment registers CS, DS, and SS contain the addresses of the
physical memory segments where the logical segments reside.

You can define segments in two ways: with simplified segment directives and with
full segment definitions. You can also use both kinds of segment definitions in the
same program.

Simplified segment directives hide many of the details of segment definition and
assume the same conventions used by Microsoft high-level languages. (See the
following section, “Using Simplified Segment Directives.”) The simplified segment
directives generate necessary code, specify segment attributes, and arrange segment
order.

Full segment definitions require more complex syntax but provide more complete
control over how the assembler generates segments. (See “Using Full Segment

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 32 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 32

Chapter 2 Organizing Segments 33

Definitions” later in this chapter.) If you use full segment definitions, you must
write code to handle all the tasks performed automatically by the simplified segment
directives.

Using Simplified Segment Directives
Structuring a MASM program using simplified segments requires use of several
directives to assign standard names, alignment, and attributes to the segments in
your program. These directives define the segments in such a way that linking with
Microsoft high-level languages is easy.

The simplified segment directives are .MODEL, .CODE, .CONST, .DATA,
.DATA?, .FARDATA, .FARDATA?, .STACK, .STARTUP, and .EXIT. The
following sections discuss these directives and the arguments they take.

MASM programs consist of modules made up of segments. Every program written
only in MASM has one main module, where program execution begins. This main
module can contain code, data, or stack segments defined with all of the simplified
segment directives. Any additional modules should contain only code and data
segments. Every module that uses simplified segments must, however, begin with
the .MODEL directive.

The following example shows the structure of a main module using simplified
segment directives. It uses the default processor (8086) and the default stack
distance (NEARSTACK). Additional modules linked to this main program would
use only the .MODEL, .CODE, and .DATA directives and the END statement.

; This is the structure of a main module

; using simplified segment directives

 .MODEL small, c ; This statement is required before you

 ; can use other simplified segment directives

 .STACK ; Use default 1-kilobyte stack

 .DATA ; Begin data segment

 ; Place data declarations here

 .CODE ; Begin code segment

 .STARTUP ; Generate start-up code

 ; Place instructions here

 .EXIT ; Generate exit code

 END

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 33 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 33

34 Programmer’s Guide

The .DATA and .CODE statements do not require any separate statements to
define the end of a segment. They close the preceding segment and then open a new
segment. The .STACK directive opens and closes the stack segment but does not
close the current segment. The END statement closes the last segment and marks
the end of the source code. It must be at the end of every module.

Defining Basic Attributes with .MODEL
The .MODEL directive defines the attributes that affect the entire module: memory
model, default calling and naming conventions, operating system, and stack type.
This directive enables use of simplified segments and controls the name of the code
segment and the default distance for procedures.

You must place .MODEL in your source file before any other simplified segment
directive. The syntax is:

.MODEL memorymodel [[, modeloptions]]

The memorymodel field is required and must appear immediately after the
.MODEL directive. The use of modeloptions, which define the other attributes, is
optional. The modeloptions must be separated by commas. You can also use
equates passed from the ML command line to define the modeloptions.

The following list summarizes the memorymodel field and the modeloptions fields,
which specify language and stack distance:

Field Description

Memory model TINY, SMALL, COMPACT, MEDIUM, LARGE, HUGE, or
FLAT. Determines size of code and data pointers. This field is
required.

Language C, BASIC, FORTRAN, PASCAL, SYSCALL, or STDCALL. Sets
calling and naming conventions for procedures and public symbols.

Stack distance NEARSTACK or FARSTACK. Specifying NEARSTACK groups
the stack segment into a single physical segment (DGROUP) along
with data. SS is assumed to equal DS. FARSTACK does not group
the stack with DGROUP; thus SS does not equal DS.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 34 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 34

Chapter 2 Organizing Segments 35

You can use no more than one reserved word from each field. The following
examples show how you can combine various fields:

 .MODEL small ; Small memory model

 .MODEL large, c, farstack ; Large memory model,

 ; C conventions,

 ; separate stack

 .MODEL medium, pascal ; Medium memory model,

 ; Pascal conventions,

 ; near stack (default)

The next four sections give more detail on each field.

Defining the Memory Model
MASM supports the standard memory models used by Microsoft high-level
languages — tiny, small, medium, compact, large, huge, and flat. You specify the
memory model with attributes of the same name placed after the .MODEL
directive. With the exception of the flat model, which requires instructions specific
to the 80386/486, your choice of a memory model does not limit the kind of
instructions you can write. The memory model does, however, control segment
defaults and determine whether data and code are near or far by default, as
indicated in the following table.

Table 2.1 Attributes of Memory Models

Memory
Model

Default
Code

Default
Data

Operating
System

Data and Code
Combined

Tiny Near Near MS-DOS Yes

Small Near Near MS-DOS, Windows No

Medium Far Near MS-DOS, Windows No

Compact Near Far MS-DOS, Windows No

Large Far Far MS-DOS, Windows No

Huge Far Far MS-DOS, Windows No

Flat Near Near Windows NT Yes

When writing assembler modules for a high-level language, you should use the
same memory model as the calling language. Choose the smallest memory model
available that can contain your data and code, since near references operate more
efficiently than far references.

The predefined symbol @Model returns the memory model, encoding memory
models as integers 1 through 7. For more information on predefined symbols, see
“Predefined Symbols” in Chapter 1. For an example of how to use them, see Help.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 35 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 35

36 Programmer’s Guide

The seven memory models supported by MASM 6.1 fall into three groups,
described in the following paragraphs.

Small, Medium, Compact, Large, and Huge Models
The traditional memory models recognized by many languages are small, medium,
compact, large, and huge. Small model supports one data segment and one code
segment. All data and code are near by default. Large model supports multiple code
and multiple data segments. All data and code are far by default. Medium and
compact models are in-between. Medium model supports multiple code and single
data segments; compact model supports multiple data segments and a single code
segment.

Huge model implies individual data items larger than a single segment, but the
implementation of huge data items must be coded by the programmer. Since the
assembler provides no direct support for this feature, huge model is essentially the
same as large model.

In each of these models, you can override the default. For example, you can make
large data items far in small model, or internal procedures near in large model.

Tiny Model
Tiny-model programs run only under MS-DOS. Tiny model places all data and
code in a single segment. Therefore, the total program file size can occupy no more
than 64K. The default is near for code and static data items; you cannot override
this default. However, you can allocate far data dynamically at run time using MS-
DOS memory allocation services.

Tiny model produces MS-DOS .COM files. Specifying .MODEL tiny
automatically sends the /TINY argument to the linker. Therefore, the /AT argument
is not necessary with .MODEL tiny. However, /AT does not insert a .MODEL
directive. It only verifies that there are no base or pointer fixups, and sends /TINY
to the linker.

Flat Model
The flat memory model is a nonsegmented configuration available in 32-bit
operating systems. It is similar to tiny model in that all code and data go in a single
32-bit segment.

To write a flat model program, specify the .386 or .486 directive before .MODEL
FLAT. All data and code (including system resources) are in a single 32-bit
segment. The operating system automatically initializes segment registers at load
time; you need to modify them only when mixing 16-bit and 32-bit segments in a
single application. CS, DS, ES, and SS all occupy the supergroup FLAT.
Addresses and pointers passed to system services are always 32-bit near addresses
and pointers.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 36 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 36

Chapter 2 Organizing Segments 37

Choosing the Language Convention
The language option facilitates compatibility with high-level languages by
determining the internal encoding for external and public symbol names, the code
generated for procedure initialization and cleanup, and the order that arguments are
passed to a procedure with INVOKE. It also facilitates compatibility with high-
level – language modules. The PASCAL, BASIC, and FORTRAN conventions are
identical. C and SYSCALL have the same calling convention but different naming
conventions. Functions in the Windows API use the Pascal calling convention.

Procedure definitions (PROC) and high-level procedure calls (INVOKE)
automatically generate code consistent with the calling convention of the specified
language. The PROC, INVOKE, PUBLIC, and EXTERN directives all use the
naming convention of the language. These directives follow the default language
conventions from the .MODEL directive unless you specifically override the
default. Use of these directives is explained in “Controlling Program Flow,”
Chapter 7. You can also use the OPTION directive to set the language type. (See
“Using the OPTION Directive” in Chapter 1.) Not specifying a language type in
either the .MODEL, OPTION, EXTERN, PROC, INVOKE, or PROTO
statement causes the assembler to generate an error.

The predefined symbol @Interface provides information about the language
parameters. For a description of the bit flags, see Help.

For more information on calling and naming conventions, see Chapter 12, “Mixed-
Language Programming.” For information about writing procedures and prototypes,
see Chapter 7, “Controlling Program Flow.” For information on multiple-module
programming, refer to Chapter 8, “Sharing Data and Procedures Among Modules
and Libraries.”

Setting the Stack Distance
The NEARSTACK keyword places the stack segment in the group DGROUP
along with the data segment. The .STARTUP directive then generates code to
adjust SS:SP so that SS (Stack Segment register) holds the same address as DS
(Data Segment register). If you do not use .STARTUP, you must make this
adjustment or your program may fail to run. (For information about startup code,
see “Starting and Ending Code with .STARTUP and .EXIT,” later in this chapter.)
In this case, you can use DS to access stack items (including parameters and local
variables) and SS to access near data. Furthermore, since stack items share the
same segment address as near data, you can reliably pass near pointers to stack
items.

The FARSTACK setting gives the stack a segment of its own. That is, SS does not
equal DS. The default stack type, NEARSTACK, is a convenient setting for most
programs. Use FARSTACK for special cases such as memory-resident programs

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 37 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 37

38 Programmer’s Guide

and dynamic-link libraries (discussed in Chapters 10 and 11) when you cannot
assume that the caller’s stack is near. You can use the predefined symbol @Stack
to determine if the stack location is DGROUP (for near stacks) or STACK (for far
stacks).

Specifying a Processor and Coprocessor
MASM supports a set of directives for selecting processors and coprocessors. Once
you select a processor, you must use only the instruction set for that processor. The
default is the 8086 processor. If you always want your code to run on this
processor, you do not need to add any processor directives.

To enable a different processor mode and the additional instructions available on
that processor, use the directives .186, .286, .386, and .486. The instruction timings
on a listing (see Appendix C, “Generating and Reading Assembly Listings”)
correspond to whichever processor directive you select.

The .286P, .386P, and .486P directives enable the instructions available only at
higher privilege levels in addition to the normal instruction set for the given
processor. Generally, you don’t need privileged instructions unless you are writing
operating-systems code or device drivers.

In addition to enabling different instruction sets, the processor directives also affect
the behavior of extended language features. For example, the INVOKE directive
pushes arguments onto the stack. If the .286 directive is in effect, INVOKE takes
advantage of operations possible only on 80286 and later processors.

Use the directives .8087 (the default), .287, .387, and .NO87 to select a math
coprocessor instruction set. The .NO87 directive turns off assembly of all
coprocessor instructions. Note that .486 also enables assembly of all coprocessor
instructions because the 80486 processor has a complete set of coprocessor
registers and instructions built into the chip. The processor instructions imply the
corresponding coprocessor directive. The coprocessor directives are provided to
override the defaults.

Creating a Stack
The stack is the section of memory used for pushing or popping registers and storing
the return address when a subroutine is called. The stack often holds temporary and
local variables.

If your main module is written in a high-level language, that language handles the
details of creating a stack. Use the .STACK directive only when you write a main
module in assembly language.

The .STACK directive creates a stack segment. By default, the assembler allocates
1K of memory for the stack. This size is sufficient for most small programs.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 38 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 38

Chapter 2 Organizing Segments 39

To create a stack of a size other than the default size, give .STACK a single
numeric argument indicating stack size in bytes:

.STACK 2048 ; Use 2K stack

For a description of how stack memory is used with procedure calls and local
variables, see Chapter 7, “Controlling Program Flow.”

Creating Data Segments
Programs can contain both near and far data. In general, you should place important
and frequently used data in the near data area, where data access is faster. This area
can get crowded, however, because in 16-bit operating systems the total amount of
all near data in all modules cannot exceed 64K. Therefore, you may want to place
infrequently used or particularly large data items in a far data segment.

The .DATA, .DATA?, .CONST, .FARDATA, and .FARDATA? directives
create data segments. You can access the various segments within DGROUP
without reloading segment registers (see “Defining Segment Groups,” later in this
chapter). These five directives also prevent instructions from appearing in data
segments by assuming CS to ERROR.

Near Data Segments
The .DATA directive creates a near data segment. This segment contains the
frequently used data for your program. It can occupy up to 64K in MS-DOS or 512
megabytes under flat model in Windows NT. It is placed in a special group
identified as DGROUP, which is also limited to 64K.

When you use .MODEL, the assembler automatically defines DGROUP for your
near data segment. The segments in DGROUP form near data, which can normally
be accessed directly through DS or SS.

You can also define the .DATA? and .CONST segments that go into DGROUP
unless you are using flat model. Although all of these segments (along with the
stack) are eventually grouped together and handled as data segments, .DATA? and
.CONST enhance compatibility with Microsoft high-level languages. In
Microsoft languages, .CONST is used to define constant data such as strings and
floating-point numbers that must be stored in memory. The .DATA? segment is
used for storing uninitialized variables. You can follow this convention if you want.
If you use C startup code, .DATA? is initialized to 0.

You can use @data to determine the group of the data segment and @DataSize to
determine the size of the memory model set by the .MODEL directive. The
predefined symbols @WordSize and @CurSeg return the size attribute and name
of the current segment, respectively. See “Predefined Symbols” in Chapter 1.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 39 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 39

40 Programmer’s Guide

Far Data Segments
The compact, large, and huge memory models use far data addresses by default.
With these memory models, however, you can still construct data segments using
.DATA, .DATA?, and .CONST. The effect of these directives does not change
from one memory model to the next. They always contribute segments to the default
data area, DGROUP, which has a total limit of 64K.

When you use .FARDATA or .FARDATA? in the small and medium memory
models, the assembler creates far data segments FAR_DATA and FAR_BSS,
respectively. You can access variables with:

 mov ax, SEG farvar2

 mov ds, ax

For more information on far data, see “Near and Far Addresses” in Chapter 3.

Creating Code Segments
Whether you are writing a main module or a module to be called from another
module, you can have both near and far code segments. This section explains how
to use near and far code segments and how to use the directives and predefined
equates that relate to code segments.

Near Code Segments
The small memory model is often the best choice for assembly programs that are
not linked to modules in other languages, especially if you do not need more than
64K of code. This memory model defaults to near (two-byte) addresses for code
and data, which makes the program run faster and use less memory.

When you use .MODEL and simplified segment directives, the .CODE directive in
your program instructs the assembler to start a code segment. The next segment
directive closes the previous segment; the END directive at the end of your program
closes remaining segments. The example at the beginning of “Using Simplified
Segment Directives,” earlier in this chapter, shows how to do this.

You can use the predefined symbol @CodeSize to determine whether code pointers
default to NEAR or FAR.

Far Code Segments
When you need more than 64K of code, use the medium, large, or huge memory
model to create far segments.

The medium, large, and huge memory models use far code addresses by default. In
the larger memory models, the assembler creates a different code segment for each
module. If you use multiple code segments in the small, compact, or tiny model, the
linker combines the .CODE segments for all modules into one segment.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 40 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 40

Chapter 2 Organizing Segments 41

For far code segments, the assembler names each code segment
MODNAME_TEXT, in which MODNAME is the name of the module. With near
code, the assembler names every code segment _TEXT, causing the linker to
concatenate these segments into one. You can override the default name by
providing an argument after .CODE. (For a complete list of segment names
generated by MASM, see Appendix E, “Default Segment Names.”)

With far code, a single module can contain multiple code segments. The .CODE
directive takes an optional text argument that names the segment. For instance, the
following example creates two distinct code segments, FIRST_TEXT and
SECOND_TEXT.

 .CODE FIRST

 .

 . ; First set of instructions here

 .

 .CODE SECOND

 .

 . ; Second set of instructions here

 .

Whenever the processor executes a far call or jump, it loads CS with the new
segment address. No special action is necessary other than making sure that you use
far calls and jumps. See “Near and Far Addresses” in Chapter 3.

Note The assembler always assumes that the CS register contains the address of
the current code segment or group.

Starting and Ending Code with .STARTUP and .EXIT
The easiest way to begin and end an MS-DOS program is to use the .STARTUP
and .EXIT directives in the main module. The main module contains the starting
point and usually the termination point. You do not need these directives in a
module called by another module.

These directives make MS-DOS programs easy to maintain. They automatically
generate code appropriate to the stack distance specified with .MODEL. However,
they do not apply to flat-model programs written for 32-bit operating systems. Thus,
you should not use .STARTUP or .EXIT in programs written for Windows NT.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 41 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 41

42 Programmer’s Guide

To start a program, place the .STARTUP directive where you want execution to
begin. Usually, this location immediately follows the .CODE directive:

 .CODE

 .STARTUP

 .

 . ; Place executable code here

 .

 .EXIT

 END

Note that .EXIT generates executable code, while END does not. The END
directive informs the assembler that it has reached the end of the module. All
modules must end with the END directive whether you use simplified or full
segments.

If you do not use .STARTUP, you must give the starting address as an argument to
the END directive. For example, the following fragment shows how to identify a
program’s starting instruction with the label start:

 .CODE

start:

 .

 . ; Place executable code here

 .

 END start

Only the END directive for the module with the starting instruction should have an
argument. When .STARTUP is present, the assembler ignores any argument to
END.

For the default NEARSTACK attribute, .STARTUP points DS to DGROUP and
sets SS:SP relative to DGROUP, generating the following code:

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 42 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 42

Chapter 2 Organizing Segments 43

@Startup:

 mov dx, DGROUP

 mov ds, dx

 mov bx, ss

 sub bx, dx

 shl bx, 1 ; If .286 or higher, this is

 shl bx, 1 ; shortened to shl bx, 4

 shl bx, 1

 shl bx, 1

 cli ; Not necessary in .286 or higher

 mov ss, dx

 add sp, bx

 sti ; Not necessary in .286 or higher

 .

 .

 .

 END @Startup

An MS-DOS program with the FARSTACK attribute does not need to adjust
SS:SP, so .STARTUP just initializes DS, like this:

@Startup:

 mov dx, DGROUP

 mov ds, dx

 .

 .

 .

 END @Startup

When the program terminates, you can return an exit code to the operating system.
Applications that check exit codes usually assume that an exit code of 0 means no
problem occurred, and that an exit code of 1 means an error terminated the
program. The .EXIT directive accepts a 1-byte exit code as its optional argument:

 .EXIT 1 ; Return exit code 1

.EXIT generates the following code that returns control to MS-DOS, thus
terminating the program. The return value, which can be a constant, memory
reference, or 1-byte register, goes into AL:

 mov al, value

 mov ah, 04Ch

 int 21h

If your program does not specify a return value, .EXIT returns whatever value
happens to be in AL.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 43 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 43

44 Programmer’s Guide

Using Full Segment Definitions
If you need complete control over segments, you can fully define the segments in
your program. This section explains segment definitions, including how to order
segments and how to define the segment types.

If you write a program under MS-DOS without .MODEL and .STARTUP, you
must initialize registers yourself and use the END directive to indicate the starting
address. The Windows operating system does not require you to initialize registers,
as described in Chapter 3. For a description of typical startup code, see
“Controlling the Segment Order,” later in this chapter.

Defining Segments with the SEGMENT Directive
A defined segment begins with the SEGMENT directive and ends with the ENDS
directive:

name SEGMENT [[align]] [[READONLY]] [[combine]] [[use]] [[’class’]]
statements
name ENDS

The name defines the name of the segment. Within a module, all segment
definitions with the same name are treated as though they reference the same
segment. The linker also combines identically named segments from different
modules unless the combine type is PRIVATE. In addition, segments can be
nested.

The optional types that follow the SEGMENT directive give the linker and the
assembler instructions on how to set up and combine segments. The optional types,
which are explained in detail in the following sections, include:

Type Description

align Defines the memory boundary on which a new segment begins.

READONLY Tells the assembler to report an error if it detects an instruction
modifying any item in a READONLY segment.

combine Determines how the linker combines segments from different
modules when building executable files.

use (80386/486 only) Determines the size of a segment. USE16 indicates that offsets in
the segment are 16 bits wide. USE32 indicates 32-bit offsets.

class Provides a class name for the segment. The linker automatically
groups segments of the same class in memory.

Types can be specified in any order. You can specify only one attribute from each
of these fields; for example, you cannot have two different align types.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 44 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 44

Chapter 2 Organizing Segments 45

You can close a segment and reopen it later with another SEGMENT directive.
When you reopen a segment, you need only give the segment name. You cannot
change the attributes of a segment once you have defined it.

Note The PAGE align type and the PUBLIC combine type are distinct from the
PAGE and PUBLIC directives. The assembler distinguishes them by means of
context.

Aligning Segments
The optional align type in the SEGMENT directive defines the range of memory
addresses from which a starting address for the segment can be selected. The align
type can be any of the following:

Align Type Starting Address

BYTE Next available byte address.

WORD Next available word address.

DWORD Next available doubleword address.

PARA Next available paragraph address (16 bytes per paragraph). Default.

PAGE Next available page address (256 bytes per page).

The linker uses the alignment information to determine the relative starting address
for each segment. The operating system calculates the actual starting address when
the program is loaded.

Making Segments Read-Only
The optional READONLY attribute is helpful when creating read-only code
segments for protected mode, or when writing code to be placed in read-only
memory (ROM). It protects against illegal self-modifying code.

The READONLY attribute causes the assembler to check for instructions that
modify the segment and to generate an error if it finds any. The assembler generates
an error if you attempt to write directly to a read-only segment.

Combining Segments
The optional combine type in the SEGMENT directive defines how the linker
combines segments having the same name but appearing in different modules.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 45 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 45

46 Programmer’s Guide

The combine type controls linker behavior, not assembler behavior. The combine
types, which are described in full detail in Help, include:

Combine Type Linker Action

PRIVATE Does not combine the segment with segments from other
modules, even if they have the same name. Default.

PUBLIC Concatenates all segments having the same name to form a
single, contiguous segment.

STACK Concatenates all segments having the same name and causes
the operating system to set SS:00 to the bottom and SS:SP to
the top of the resulting segment. Data initialization is
unreliable, as discussed following.

COMMON Overlaps segments. The length of the resulting area is the
length of the largest of the combined segments. Data
initialization is unreliable, as discussed following.

MEMORY Used as a synonym for the PUBLIC combine type.

AT address Assumes address as the segment location. An AT segment
cannot contain any code or initialized data, but is useful for
defining structures or variables that correspond to specific far
memory locations, such as a screen buffer or low memory.
You cannot use the AT combine type in protected-mode
programs.

Do not place initialized data in STACK or COMMON segments. With these
combine types, the linker overlays initialized data for each module at the beginning
of the segment. The last module containing initialized data writes over any data
from other modules.

Note Normally, you should provide at least one stack segment (having STACK
combine type) in a program. If no stack segment is declared, LINK displays a
warning message. You can ignore this message if you have a specific reason for not
declaring a stack segment. For example, you would not have a separate stack
segment in a MS-DOS tiny model (.COM) program, nor would you need a separate
stack in a DLL that uses the caller’s stack.

Setting Segment Word Sizes (80386/486 Only)
The use type in the SEGMENT directive specifies the segment word size on the
80386/486 processors. Segment word size determines the default operand and
address size of all items in a segment.

The size attribute can be USE16, USE32, or FLAT. If you specify the .386 or .486
directive before the .MODEL directive, USE32 is the default. This attribute
specifies that items in the segment are addressed with a 32-bit offset rather than a

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 46 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 46

Chapter 2 Organizing Segments 47

16-bit offset. If .MODEL precedes the .386 or .486 directive, USE16 is the
default. To make USE32 the default, put .386 or .486 before .MODEL. You can
override the USE32 default with the USE16 attribute, or vice versa.

Note Programs written for MS-DOS must not specify USE32. Mixing 16-bit and
32-bit segments in the same program is possible but usually applies only to systems
programming.

Setting Segment Order with Class Type
The optional class type in the SEGMENT directive helps control segment ordering.
Two segments with the same name are not combined if their class is different. The
linker arranges segments so that all segments identified with a given class type are
next to each other in the executable file. However, within a particular class, the
linker arranges segments in the order encountered. The .ALPHA, .SEQ, or
.DOSSEG directive determines this order in each .OBJ file. The most common
method for specifying a class type is to place all code segments first in the
executable file.

Controlling the Segment Order
The assembler normally positions segments in the object file in the order in which
they appear in source code. The linker, in turn, processes object files in the order in
which they appear on the command line. Within each object file, the linker outputs
segments in the order they appear, subject to any group, class, and .DOSSEG
requirements.

You can usually ignore segment ordering. However, it is important whenever you
want certain segments to appear at the beginning or end of a program or when you
make assumptions about which segments are next to each other in memory. For tiny
model (.COM) programs, code segments must appear first in the executable file,
because execution must start at the address 100h.

Segment Order Directives
You can control the order in which segments appear in the executable program with
three directives. The default, .SEQ, arranges segments in the order in which you
declare them.

The .ALPHA directive specifies alphabetical segment ordering within a module.
.ALPHA is provided for compatibility with early versions of the IBM assembler. If
you have trouble running code from older books on assembly language, try using
.ALPHA.

The .DOSSEG directive specifies the MS-DOS segment-ordering convention. It
places segments in the standard order required by Microsoft languages. Do not use
.DOSSEG in a module to be called from another module.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 47 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 47

48 Programmer’s Guide

The .DOSSEG directive orders segments as follows:

1. Code segments

2. Data segments, in this order:

a. Segments not in class BSS or STACK

b. Class BSS segments

c. Class STACK segments

When you declare two or more segments to be in the same class, the linker
automatically makes them contiguous. This rule overrides the segment-ordering
directives. (For more about segment classes, see “Setting Segment Order with Class
Type” in the previous section.)

Linker Control
Most of the segment-ordering techniques (class names, .ALPHA, and .SEQ)
control the order in which the assembler outputs segments. Usually, you are more
interested in the order in which segments appear in the executable file. The linker
controls this order.

The linker processes object files in the order in which they appear on the command
line. Within each module, it then outputs segments in the order given in the object
file. If the first module defines segments DSEG and STACK and the second module
defines CSEG, then CSEG is output last. If you want to place CSEG first, there are
two ways to do so.

The simpler method is to use .DOSSEG. This directive is output as a special record
to the object file linker, and it tells the linker to use the Microsoft segment-ordering
convention. This convention overrides command-line order of object files, and it
places all segments of class 'CODE' first. (See “Defining Segments with the
SEGMENT Directive,” previous.)

The other method is to define all the segments as early as possible (in an include
file, for example, or in the first module). These definitions can be “dummy
segments” — that is, segments with no content. The linker observes the segment
ordering given, then later combines the empty segments with segments in other
modules that have the same name.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 48 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 48

Chapter 2 Organizing Segments 49

For example, you might include the following at the start of the first module of your
program or in an include file:

_TEXT SEGMENT WORD PUBLIC 'CODE'

_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'

_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'

CONST ENDS

STACK SEGMENT PARA STACK 'STACK'

STACK ENDS

Later in the program, the order in which you write _TEXT, _DATA, or other
segments does not matter because the ultimate order is controlled by the segment
order defined in the include file.

Setting the ASSUME Directive for Segment Registers
Many of the assembler instructions assume a default segment. For example, JMP
assumes the segment associated with the CS register, PUSH and POP assume the
segment associated with the SS register, and MOV instructions assume the segment
associated with the DS register.

When the assembler needs to reference an address, it must know what segment
contains the address. It finds this by using the default segment or group addresses
assigned with the ASSUME directive. The syntax is:

ASSUME segregister : seglocation [, segregister : seglocation]]
ASSUME dataregister : qualifiedtype [, dataregister : qualifiedtype]
ASSUME register : ERROR [, register : ERROR]
ASSUME [register :] NOTHING [, register : NOTHING]
ASSUME register : FLAT [, register : FLAT]

The seglocation must be the name of the segment or group that is to be associated
with segregister. Subsequent instructions that assume a default register for
referencing labels or variables automatically assume that if the default segment is
segregister, the label or variable is in the seglocation. MASM 6.1 automatically
gives CS the address of the current code segment. Therefore, you do not need to
include

ASSUME CS : MY_CODE

at the beginning of your program if you want the current segment associated
with CS.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 49 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 49

50 Programmer’s Guide

Note Using the ASSUME directive to tell the assembler which segment to
associate with a segment register is not the same as telling the processor. The
ASSUME directive affects only assembly-time assumptions. You may need to use
instructions to change run-time conditions. Initializing segment registers at run time
is discussed in “Informing the Assembler About Segment Values,” Chapter 3.

The ASSUME directive can define a segment for each of the segment registers. The
segregister can be CS, DS, ES, or SS (and FS and GS on the 80386/486). The
seglocation must be one of the following:

◆ The name of a segment defined in the source file with the SEGMENT
directive.

◆ The name of a group defined in the source file with the GROUP directive.

◆ The keyword NOTHING, ERROR, or FLAT.

◆ A SEG expression (see “Immediate Operands” in Chapter 3).

◆ A string equate (text macro) that evaluates to a segment or group name (but not
a string equate that evaluates to a SEG expression).

It is legal to combine assumes to FLAT with assumes to specific segments.
Combinations might be necessary in operating-system code that handles both 16-
and 32-bit segments.

The keyword NOTHING cancels the current segment assumptions. For example,
the statement ASSUME NOTHING cancels all register assumptions made by
previous ASSUME statements.

Usually, a single ASSUME statement defines all four segment registers at the start
of the source file. However, you can use the ASSUME directive at any point to
change segment assumptions.

Using the ASSUME directive to change segment assumptions is often equivalent to
changing assumptions with the segment-override operator (:). See “Direct Memory
Operands” in Chapter 3. The segment-override operator is more convenient for one-
time overrides. The ASSUME directive may be more convenient if previous
assumptions must be overridden for a sequence of instructions.

However, in either case, your program must explicitly load a segment register with
a segment address before accessing data within the segment. ASSUME only tells
the assembler to assume that the register is correctly initialized; it does not by itself
generate any code to load the register.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 50 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 50

Chapter 2 Organizing Segments 51

You can also prevent the use of a register with:

ASSUME SegRegister : ERROR

The assembler generates an ASSUME CS:ERROR when you use simplified
directives to create data segments, effectively preventing instructions or code labels
from appearing in a data segment.

For more information about ASSUME, refer to “Defining Register Types with
ASSUME” in Chapter 3.

Defining Segment Groups
A group is a collection of segments totalling not more than 64K in 16-bit mode. A
program addresses a code or data item in the group relative to the beginning of the
group.

A group lets you develop separate logical segments for different kinds of data and
then combine these into one segment (a group) for all the data. Using a group can
save you from having to continually reload segment registers to access different
segments. As a result, the program uses fewer instructions and runs faster.

The most common example of a group is the specially named group for near data,
DGROUP. In the Microsoft segment model, several segments (_DATA, _BSS,
CONST, and STACK) are combined into a single group called DGROUP.
Microsoft high-level languages place all near data segments in this group. (By
default, the stack is placed here, too.) The .MODEL directive automatically defines
DGROUP. The DS register normally points to the beginning of the group, giving
you relatively fast access to all data in DGROUP.

The syntax of the group directive is:

name GROUP segment [[, segment]]...

The name labels the group. It can refer to a group that was previously defined. This
feature lets you add segments to a group one at a time. For example, if
MYGROUP was previously defined to include ASEG and BSEG, then the
statement

MYGROUP GROUP CSEG

is perfectly legal. It simply adds CSEG to the group MYGROUP; ASEG and BSEG are
not removed.

Each segment can be any valid segment name (including a segment defined later in
source code), with one restriction: a segment cannot belong to more than one group.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 51 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 51

52 Programmer’s Guide

The GROUP directive does not affect the order in which segments of a group are
loaded. You can place any number of 16-bit segments in a group as long as the total
size does not exceed 65,536 bytes. If the processor is in 32-bit mode, the maximum
size is 4 gigabytes. You need to make sure that non-grouped segments do not get
placed between grouped segments in such a way that the size of the group exceeds
64K or 4 gigabytes. Neither can you place a 16-bit and a 32-bit segment in the
same group.

Filename: LMAPGC02.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 38 Page: 52 of 22 Printed: 03/06/94 05:53 PM
Printed On: Distiller Colorlayer: ? Document Page: 52

53

C H A P T E R 3

Using Addresses and Pointers

MASM applications running in real mode require segmented addresses to access
code and data. The address of the code or data in a segment is relative to a segment
address in a segment register. You can also use pointers to access data in assembly
language programs. (A pointer is a variable that contains an address as its value.)

The first section of this chapter describes how to initialize default segment registers
to access near and far addresses. The next section describes how to access code and
data. It also describes related operators, syntax, and displacements. The discussion
of memory operands lays the foundation for the third section, which describes the
stack.

The fourth section of this chapter explains how to use the TYPEDEF directive to
declare pointers and the ASSUME directive to give the assembler information
about registers containing pointers. This section also shows you how to do typical
pointer operations and how to write code that works for pointer variables in any
memory model.

Programming Segmented Addresses
Before you use segmented addresses in your programs, you need to initialize the
segment registers. The initialization process depends on the registers used and on
your choice of simplified segment directives or full segment definitions. The
simplified segment directives (introduced in Chapter 2) handle most of the
initialization process for you. This section explains how to inform the assembler
and the processor of segment addresses, and how to access the near and far code
and data in those segments.

Initializing Default Segment Registers
The segmented architecture of the 8086-family of processors does not require that
you specify two addresses every time you access memory. As explained in Chapter
2, “Organizing Segments,” the 8086 family of processors uses a system of default
segment registers to simplify access to the most commonly used data and code.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 53 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 53

54 Programmer’s Guide

The segment registers DS, SS, and CS are normally initialized to default segments
at the beginning of a program. If you write the main module in a high-level
language, the compiler initializes the segment registers. If you write the main
module in assembly language, you must initialize the segment registers yourself.
Follow these steps to initialize segments:

1. Tell the assembler which segment is associated with a register. The assembler
must know the default segments at assembly time.

2. Tell the processor which segment is associated with a register by writing the
necessary code to load the correct segment value into the segment register on the
processor.

These steps are discussed separately in the following sections.

Informing the Assembler About Segment Values
The first step in initializing segments is to tell the assembler which segment to
associate with a register. You do this with the ASSUME directive. If you use
simplified segment directives, the assembler automatically generates the appropriate
ASSUME statements. If you use full segment definitions, you must code the
ASSUME statements for registers other than CS yourself. (ASSUME can also be
used on general-purpose registers, as explained in “Defining Register Types with
ASSUME” later in this chapter.)

The .STARTUP directive generates startup code that sets DS equal to SS (unless
you specify FARSTACK), allowing default data to be accessed through either SS
or DS. This can improve efficiency in the code generated by compilers. The “DS
equals SS” convention may not work with certain applications, such as memory-
resident programs in MS-DOS and Windows dynamic-link libraries (see Chapter
10). The code generated for .STARTUP is shown in “Starting and Ending Code
with .STARTUP and .EXIT” in Chapter 2. You can use similar code to set DS
equal to SS in programs using full segment definitions.

Here is an example of ASSUME using full segment definitions:

ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP

This example is equivalent to the ASSUME statement generated with simplified
segment directives in small model with NEARSTACK. Note that DS and SS are
part of the same segment group. It is also possible to have different segments for
data and code, and to use ASSUME to set ES, as shown here:

ASSUME cs:MYCODE, ds:MYDATA, ss:MYSTACK, es:OTHER

Correct use of the ASSUME statement can help find addressing errors. With
.CODE, the assembler assumes CS is the current segment. When you use the
simplified segment directives .DATA, .DATA?, .CONST, .FARDATA, or

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 54 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 54

Chapter 3 Using Addresses and Pointers 55

.FARDATA?, the assembler automatically assumes CS is the ERROR segment.
This prevents instructions from appearing in these segments. If you use full segment
definitions, you can accomplish the same by placing ASSUME CS:ERROR in a data
segment.

With simple or full segments, you can cancel the control of an ASSUME statement
by assuming NOTHING. You can cancel the previous assumption for ES with the
following statement:

ASSUME es:NOTHING

Prior to the .MODEL statement (or in its absence), the assembler sets the
ASSUME statement for DS, ES, and SS to the current segment.

Informing the Processor About Segment Values
The second and final step in initializing segments is to inform the processor of
segment values at run time. How segment values are initialized at run time differs
for each segment register and depends on the operating system and on your use of
simplified segment directives or full segment definitions.

Specifying a Starting Address
A program’s starting address determines where execution begins. After the
operating system loads a program, it simply jumps to the starting address, giving
processor control to the program. The true starting address is known only to the
loader; the linker determines only the offset of the address within an undetermined
code segment. That’s why a normal application is often referred to as “relocatable
code,” because it runs regardless of where the loader places it in memory.

The offset of the starting address depends on the program type. Programs with an
.EXE extension contain a header from which the loader reads the offset and
combines it with a segment to form the starting address. Programs with a .COM
extension (tiny model) have no such header, so by convention the loader jumps to
the first byte of the program.

In either case, the .STARTUP directive identifies where execution begins, provided
you use simplified segment directives. For an .EXE program, place .STARTUP
immediately before the instruction where you want execution to start. In a .COM
program, place .STARTUP before the first assembly instruction in your source
code.

If you use full segment directives or prefer not to use .STARTUP, you must
identify the starting instruction in two steps:

1. Label the starting instruction.

2. Provide the same label in the END directive.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 55 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 55

56 Programmer’s Guide

These steps tell the linker where execution begins in the program. The following
example illustrates the two steps for a tiny model program:

_TEXT SEGMENT WORD PUBLIC 'CODE'

 ORG 100h ; Use this declaration for .COM files only

start: . ; First instruction here

 .

 .

_TEXT ENDS

 END start ; Name of starting label

Notice the ORG statement in this example. This statement is mandatory in a tiny
model program without the .STARTUP directive. It places the first instruction at
offset 100h in the code segment to create space for a 256-byte (100h) data area
called the Program Segment Prefix (PSP). The operating system takes care of
initializing the PSP, so you need only make sure the area exists. (For a description
of what data resides in the PSP, refer to the “Tables” chapter in the Reference.)

Initializing DS
The DS register is automatically initialized to the correct value (DGROUP) if you
use .STARTUP or if you are writing a program for Windows. If you do not use
.STARTUP with MS-DOS, you must initialize DS using the following
instructions:

 mov ax, DGROUP

 mov ds, ax

The initialization requires two instructions because the segment name is a constant
and the assembler does not allow a constant to be loaded directly to a segment
register. The previous example loads DGROUP, but you can load any valid
segment or group.

Initializing SS and SP
The SS and SP registers are initialized automatically if you use the .STACK
directive with simplified segments or if you define a segment that has the STACK
combine type with full segment definitions. Using the STACK directive initializes
SS to the stack segment. If you want SS to be equal to DS, use .STARTUP or its
equivalent. (See “Combining Segments,” page 45.) For an .EXE file, the stack
address is encoded into the executable header and resolved at load time. For a
.COM file, the loader sets SS equal to CS and initializes SP to 0FFFEh.

If your program does not access far data, you do not need to initialize the ES
register. If you choose to initialize, use the same technique as for the DS register.
You can initialize SS to a far stack in the same way.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 56 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 56

Chapter 3 Using Addresses and Pointers 57

Near and Far Addresses
Addresses that have an implied segment name or segment registers associated with
them are called “near addresses.” Addresses that have an explicit segment
associated with them are called “far addresses.” The assembler handles near and far
code automatically, as described in the following sections. You must specify how to
handle far data.

The Microsoft segment model puts all near data and the stack in a group called
DGROUP. Near code is put in a segment called _TEXT. Each module’s far code or
far data is placed in a separate segment. This convention is described in
“Controlling the Segment Order” in Chapter 2.

The assembler cannot determine the address for some program components; these
are said to be relocatable. The assembler generates a fixup record and the linker
provides the address once it has determined the location of all segments. Usually a
relocatable operand references a label, but there are exceptions. Examples in the
next two sections include information about relocating near and far data.

Near Code
Control transfers within near code do not require changes to segment registers. The
processor automatically handles changes to the offset in the IP register when
control-flow instructions such as JMP, CALL, and RET are used. The statement

 call nearproc ; Change code offset

changes the IP register to the new address but leaves the segment unchanged. When
the procedure returns, the processor resets IP to the offset of the next instruction
after the CALL instruction.

Far Code
The processor automatically handles segment register changes when dealing with
far code. The statement

 call farproc ; Change code segment and offset

automatically moves the segment and offset of the farproc procedure to the CS
and IP registers. When the procedure returns, the processor sets CS to the original
code segment and sets IP to the offset of the next instruction after the call.

Near Data
A program can access near data directly, because a segment register already holds
the correct segment for the data item. The term “near data” is often used to refer to
the data in the DGROUP group.

After the first initialization of the DS and SS registers, these registers normally
point into DGROUP. If you modify the contents of either of these registers during

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 57 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 57

58 Programmer’s Guide

the execution of the program, you must reload the register with DGROUP’s address
before referencing any DGROUP data.

The processor assumes all memory references are relative to the segment in the DS
register, with the exception of references using BP or SP. The processor associates
these registers with the SS register. (You can override these assumptions with the
segment override operator, described in “Direct Memory Operands,” on page 62.)

The following lines illustrate how the processor accesses either the DS or SS
segments, depending on whether the pointer operand contains BP or SP. Note the
distinction loses significance when DS and SS are equal.

nearvar WORD 0

 .

 .

 .

 mov ax, nearvar ; Reads from DS:[nearvar]

 mov di, [bx] ; Reads from DS:[bx]

 mov [di], cx ; Writes to DS:[di]

 mov [bp+6], ax ; Writes to SS:[bp+6]

 mov bx, [bp] ; Reads from SS:[bp]

Far Data
To read or modify a far address, a segment register must point to the segment of the
data. This requires two steps. First load the segment (normally either ES or DS)
with the correct value, and then (optionally) set an assume of the segment register to
the segment of the address.

Note Flat model does not require far addresses. By default, all addressing is
relative to the initial values of the segment registers. Therefore, this section on far
addressing does not apply to flat model programs.

One method commonly used to access far data is to initialize the ES segment
register. This example shows two ways to do this:

; First method

 mov ax, SEG farvar ; Load segment of the

 mov es, ax , far address into ES

 mov ax, es:farvar ; Provide an explicit segment

 ; override on the addressing

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 58 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 58

Chapter 3 Using Addresses and Pointers 59

; Second method

 mov ax, SEG farvar2 ; Load the segment of the

 mov es, ax ; far address into ES

 ASSUME ES:SEG farvar2 ; Tell the assembler that ES points

 ; to the segment containing farvar2

 mov ax, farvar2 ; The assembler provides the ES

 ; override since it knows that

 ; the label is addressable

After loading the segment of the address into the ES segment register, you can
explicitly override the segment register so that the addressing is correct (method 1)
or allow the assembler to insert the override for you (method 2). The assembler uses
ASSUME statements to determine which segment register can be used to address a
segment of memory. To use the segment override operator, the left operand must be
a segment register, not a segment name. (For more information on segment
overrides, see “Direct Memory Operands” on page 62.)

If an instruction needs a segment override, the resulting code is slightly larger and
slower, since the override must be encoded into the instruction. However, the
resulting code may still be smaller than the code for multiple loads of the default
segment register for the instruction.

The DS, SS, FS, and GS segment registers (FS and GS are available only on the
80386/486 processors) may also be used for addressing through other segments.

If a program uses ES to access far data, it need not restore ES when finished (unless
the program uses flat model). However, some compilers require that you restore ES
before returning to a module written in a high-level language.

To access far data, first set DS to the far segment and then restore the original DS
when finished. Use the ASSUME directive to let the assembler know that DS no
longer points to the default data segment, as shown here:

 push ds ; Save original segment

 mov ax, SEG fararray ; Move segment into data register

 mov ds, ax ; Initialize segment register

 ASSUME ds:SEG fararray ; Tell assembler where data is

 mov ax, fararray[0] ; Set DX:AX = dword variable

 mov dx, fararray[2] ; fararray

 .

 .

 .

 pop ds ; Restore segment

 ASSUME ds:@DATA ; and default assumption

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 59 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 59

60 Programmer’s Guide

“Direct Memory Operands,”on page 62, describes an alternative method for
accessing far data. The technique of resetting DS as shown in the previous example
is best for a lengthy series of far data references. The segment override method
described in “Direct Memory Operands” serves best when accessing only one or
two far variables.

If your program changes DS to access far data, it should restore DS when finished.
This allows procedures to assume that DS is the segment for near data. Many
compilers, including Microsoft compilers, use this convention.

Operands
With few exceptions, assembly language instructions work on sources of data
called operands. In a listing of assembly code (such as the examples in this book),
operands appear in the operand field immediately to the right of the instructions.

This section describes the four kinds of instruction operands: register, immediate,
direct memory, and indirect memory. Some instructions, such as POPF and STI,
have implied operands which do not appear in the operand field. Otherwise, an
implied operand is just as real as one stated explicitly.

Certain other instructions such as NOP and WAIT deserve special mention. These
instructions affect only processor control and do not require an operand.

The following four types of operands are described in the rest of this section:

Operand Type Addressing Mode

Register An 8-bit or 16-bit register on the 8086–80486; can also be 32-bit on
the 80386/486.

Immediate A constant value contained in the instruction itself.

Direct memory A fixed location in memory.

Indirect memory A memory location determined at run time by using the address stored
in one or two registers.

Instructions that take two or more operands always work right to left. The right
operand is the source operand. It specifies data that will be read, but not changed, in
the operation. The left operand is the destination operand. It specifies the data that
will be acted on and possibly changed by the instruction.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 60 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 60

Chapter 3 Using Addresses and Pointers 61

Register Operands
Register operands refer to data stored in registers. The following examples show
typical register operands:

 mov bx, 10 ; Load constant to BX

 add ax, bx ; Add BX to AX

 jmp di ; Jump to the address in DI

An offset stored in a base or index register often serves as a pointer into memory.
You can store an offset in one of the base or index registers, then use the register as
an indirect memory operand. (See “Indirect Memory Operands,” following.) For
example:

 mov [bx], dl ; Store DL in indirect memory operand

 inc bx ; Increment register operand

 mov [bx], dl ; Store DL in new indirect memory operand

This example moves the value in DL to 2 consecutive bytes of a memory location
pointed to by BX. Any instruction that changes the register value also changes the
data item pointed to by the register.

Immediate Operands
An immediate operand is a constant or the result of a constant expression. The
assembler encodes immediate values into the instruction at assembly time. Here are
some typical examples showing immediate operands:

 mov cx, 20 ; Load constant to register

 add var, 1Fh ; Add hex constant to variable

 sub bx, 25 * 80 ; Subtract constant expression

Immediate data is never permitted in the destination operand. If the source operand
is immediate, the destination operand must be either a register or direct memory to
provide a place to store the result of the operation.

Immediate expressions often involve the useful OFFSET and SEG operators,
described in the following paragraphs.

The OFFSET Operator
An address constant is a special type of immediate operand that consists of an offset
or segment value. The OFFSET operator returns the offset of a memory location,
as shown here:

 mov bx, OFFSET var ; Load offset address

For information on differences between MASM 5.1 behavior and MASM 6.1
behavior related to OFFSET, see Appendix A.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 61 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 61

62 Programmer’s Guide

Since data in different modules may belong to a single segment, the assembler
cannot know for each module the true offsets within a segment. Thus, the offset for
var, although an immediate value, is not determined until link time.

The SEG Operator
The SEG operator returns the segment of a memory location:

 mov ax, SEG farvar ; Load segment address

 mov es, ax

The actual value of a particular segment is not known until the program is loaded
into memory. For .EXE programs, the linker makes a list in the program’s header of
all locations in which the SEG operator appears. The loader reads this list and fills
in the required segment address at each location. Since .COM programs have no
header, the assembler does not allow relocatable segment expressions in tiny model
programs.

The SEG operator returns a variable’s “frame” if it appears in the instruction. The
frame is the value of the segment, group, or segment override of a nonexternal
variable. For example, the instruction

 mov ax, SEG DGROUP:var

places in AX the value of DGROUP, where var is located. If you do not include a
frame, SEG returns the value of the variable’s group if one exists. If the variable is
not defined in a group, SEG returns the variable’s segment address.

This behavior can be changed with the /Zm command-line option or with the
OPTION OFFSET:SEGMENT statement. (See Appendix A, “Differences
between MASM 6.1 and 5.1.”) “Using the OPTION Directive” in Chapter 1
introduces the OPTION directive.

Direct Memory Operands
A direct memory operand specifies the data at a given address. The instruction acts
on the contents of the address, not the address itself. Except when size is implied by
another operand, you must specify the size of a direct memory operand so the
instruction accesses the correct amount of memory. The following example shows
how to explicitly specify data size with the BYTE directive:

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 62 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 62

Chapter 3 Using Addresses and Pointers 63

 .DATA? ; Segment for uninitialized data

var BYTE ? ; Reserve one byte, labeled "var"

 .CODE

 .

 .

 .

 mov var, al ; Copy AL to byte at var

Any location in memory can be a direct memory operand as long as a size is
specified (or implied) and the location is fixed. The data at the address can change,
but the address cannot. By default, instructions that use direct memory addressing
use the DS register. You can create an expression that points to a memory location
using any of the following operators:

Operator Name Symbol

Plus +

Minus –

Index []

Structure member .

Segment override :

These operators are discussed in more detail in the following section.

Plus, Minus, and Index
The plus and index operators perform in exactly the same way when applied to
direct memory operands. For example, both the following statements move the
second word value from an array into the AX register:

 mov ax, array[2]

 mov ax, array+2

The index operator can contain any direct memory operand. The following
statements are equivalent:

 mov ax, var

 mov ax, [var]

Some programmers prefer to enclose the operand in brackets to show that the
contents, not the address, are used.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 63 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 63

64 Programmer’s Guide

The minus operator behaves as you would expect. Both the following instructions
retrieve the value located at the word preceding array:

 mov ax, array[-2]

 mov ax, array-2

Structure Field
The structure operator (.) references a particular element of a structure or “field,” to
use C terminology:

 mov bx, structvar.field1

The address of the structure operand is the sum of the offsets of structvar and
field1. For more information about structures, see “Structures and Unions” in
Chapter 5.

Segment Override
The segment override operator (:) specifies a segment portion of the address that is
different from the default segment. When used with instructions, this operator can
apply to segment registers or segment names:

 mov ax, es:farvar ; Use segment override

The assembler will not generate a segment override if the default segment is
explicitly provided. Thus, the following two statements assemble in exactly the
same way:

 mov [bx], ax

 mov ds:[bx], ax

A segment name override or the segment override operator identifies the operand as
an address expression.

 mov WORD PTR FARSEG:0, ax ; Segment name override

 mov WORD PTR es:100h, ax ; Legal and equivalent

 mov WORD PTR es:[100h], ax ; expressions

; mov WORD PTR [100h], ax ; Illegal, not an address

As the example shows, a constant expression cannot be an address expression
unless it has a segment override.

Indirect Memory Operands
Like direct memory operands, indirect memory operands specify the contents of a
given address. However, the processor calculates the address at run time by
referring to the contents of registers. Since values in the registers can change at run
time, indirect memory operands provide dynamic access to memory.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 64 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 64

Chapter 3 Using Addresses and Pointers 65

Indirect memory operands make possible run-time operations such as pointer
indirection and dynamic indexing of array elements, including indexing of
multidimensional arrays.

Strict rules govern which registers you can use for indirect memory operands under
16-bit versions of the 8086-based processors. The rules change significantly for 32-
bit processors starting with the 80386. However, the new rules apply only to code
that does not need to be compatible with earlier processors.

This section covers features of indirect operands in either mode. The specific 16-bit
rules and 32-bit rules are then explained separately.

Indirect Operands with 16- and 32-Bit Registers
Some rules and options for indirect memory operands always apply, regardless of
the size of the register. For example, you must always specify the register and
operand size for indirect memory operands. But you can use various syntaxes to
indicate an indirect memory operand. This section describes the rules that apply to
both 16-bit and 32-bit register modes.

Specifying Indirect Memory Operands
The index operator specifies the register or registers for indirect operands. The
processor uses the data pointed to by the register. For example, the following
instruction moves into AX the word value at the address in DS:BX.

 mov ax, WORD PTR [bx]

When you specify more than one register, the processor adds the contents of the two
addresses together to determine the effective address (the address of the data to
operate on):

 mov ax, [bx+si]

Specifying Displacements
You can specify an address displacement, which is a constant value added to the
effective address. A direct memory specifier is the most common displacement:

 mov ax, table[si]

In this relocatable expression, the displacement table is the base address of an
array; SI holds an index to an array element. The SI value is calculated at run time,
often in a loop. The element loaded into AX depends on the value of SI at the time
the instruction executes.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 65 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 65

66 Programmer’s Guide

Each displacement can be an address or numeric constant. If there is more than one
displacement, the assembler totals them at assembly time and encodes the total
displacement. For example, in the statement

table WORD 100 DUP (0)

 .

 .

 .

 mov ax, table[bx][di]+6

both table and 6 are displacements. The assembler adds the value of 6 to table
to get the total displacement. However, the statement

 mov ax, mem1[si] + mem2

is not legal, because it attempts to use a single command to join the contents of two
different addresses.

Specifying Operand Size
You must give the size of an indirect memory operand in one of three ways:

◆ By the variable’s declared size

◆ With the PTR operator

◆ Implied by the size of the other operand

The following lines illustrate all three methods. Assume the size of the table array
is WORD, as declared earlier.

 mov table[bx], 0 ; 2 bytes - from size of table

 mov BYTE PTR table, 0 ; 1 byte - specified by BYTE

 mov ax, [bx] ; 2 bytes - implied by AX

Syntax Options
The assembler allows a variety of syntaxes for indirect memory operands.
However, all registers must be inside brackets. You can enclose each register in its
own pair of brackets, or you can place the registers in the same pair of brackets
separated by a plus operator (+). All the following variations are legal and
assemble the same way:

 mov ax, table[bx][di]

 mov ax, table[di][bx]

 mov ax, table[bx+di]

 mov ax, [table+bx+di]

 mov ax, [bx][di]+table

All of these statements move the value in table indexed by BX+DI into AX.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 66 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 66

Chapter 3 Using Addresses and Pointers 67

Scaling Indexes
The value of index registers pointing into arrays must often be adjusted for zero-
based arrays and scaled according to the size of the array items. For a word array,
the item number must be multiplied by two (shifted left by one place). When using
16-bit registers, you must scale with separate instructions, as shown here:

 mov bx, 5 ; Get sixth element (adjust for 0)

 shl bx, 1 ; Scale by two (word size)

 inc wtable[bx] ; Increment sixth element in table

When using 32-bit registers on the 80386/486 processor, you can include scaling in
the operand, as described in “Indirect Memory Operands with 32-Bit Registers,”
following.

Accessing Structure Elements
The structure member operator can be used in indirect memory operands to access
structure elements. In this example, the structure member operator loads the year
field of the fourth element of the students array into AL:

STUDENT STRUCT

 grade WORD ?

 name BYTE 20 DUP (?)

 year BYTE ?

STUDENT ENDS

students STUDENT < >

 .

 . ; Assume array is initialized

 mov bx, OFFSET students ; Point to array of students

 mov ax, 4 ; Get fourth element

 mov di, SIZE STUDENT ; Get size of STUDENT

 mul di ; Multiply size times

 mov di, ax ; elements to point DI

 ; to current element

 mov al, (STUDENT PTR[bx+di]).year

For more information on MASM structures, see “Structures and Unions” in
Chapter 5.

Indirect Memory Operands with 16-Bit Registers
For 8086-based computers and MS-DOS, you must follow the strict indexing rules
established for the 8086 processor. Only four registers are allowed — BP, BX, SI,
and DI — those only in certain combinations.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 67 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 67

68 Programmer’s Guide

BP and BX are base registers. SI and DI are index registers. You can use either a
base or an index register by itself. But if you combine two registers, one must be a
base and one an index. Here are legal and illegal forms:

 mov ax, [bx+di] ; Legal

 mov ax, [bx+si] ; Legal

 mov ax, [bp+di] ; Legal

 mov ax, [bp+si] ; Legal

; mov ax, [bx+bp] ; Illegal - two base registers

; mov ax, [di+si] ; Illegal - two index registers

Table 3.1 shows the register modes in which you can specify indirect memory
operands.

Table 3.1 Indirect Addressing with 16-Bit Registers

Mode Syntax Effective Address

Register indirect [BX]
[BP]
[DI]
[SI]

Contents of register

Base or index displacement[BX]
displacement[BP]
displacement[DI]
displacement[SI]

Contents of register plus
displacement

Base plus index [BX][DI]
[BP][DI]
[BX][SI]
[BP][SI]

Contents of base register plus
contents of index register

Base plus index with
displacement

displacement[BX][DI]
displacement[BP][DI]
displacement[BX][SI]
displacement[BP][SI]

Sum of base register, index
register, and displacement

Different combinations of registers and displacements have different timings, as
shown in Reference.

Indirect Memory Operands with 32-Bit Registers
You can write instructions for the 80386/486 processor using either 16-bit or 32-bit
segments. Indirect memory operands are different in each case.

In 16-bit real mode, the 80386/486 operates the same way as earlier 8086-based
processors, with one difference: you can use 32-bit registers. If the 80386/486
processor is enabled (with the .386 or .486 directive), 32-bit general-purpose
registers are available with either 16-bit or 32-bit segments. Thirty-two–bit

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 68 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 68

Chapter 3 Using Addresses and Pointers 69

registers eliminate many of the limitations of 16-bit indirect memory operands. You
can use 80386/486 features to make your MS-DOS programs run faster and more
efficiently if you are willing to sacrifice compatibility with earlier processors.

In 32-bit mode, an offset address can be up to 4 gigabytes. (Segments are still
represented in 16 bits.) This effectively eliminates size restrictions on each
segment, since few programs need 4 gigabytes of memory. Windows NT uses 32-
bit mode and flat model, which spans all segments. XENIX 386 uses 32-bit mode
with multiple segments.

80386/486 Enhancements
On the 80386/486, the processor allows you to use any general-purpose 32-bit
register as a base or index register, except ESP, which can be a base but not an
index. However, you cannot combine 16-bit and 32-bit registers. Several examples
are shown here:

 add edx, [eax] ; Add double

 mov dl, [esp+10] ; Copy byte from stack

 dec WORD PTR [edx][eax] ; Decrement word

 cmp ax, array[ebx][ecx] ; Compare word from array

 jmp FWORD PTR table[ecx] ; Jump into pointer table

Scaling Factors
With 80386/486 registers, the index register can have a scaling factor of 1, 2, 4, or
8. Any register except ESP can be the index register and can have a scaling factor.
To specify the scaling factor, use the multiplication operator (*) adjacent to the
register.

You can use scaling to index into arrays with different sizes of elements. For
example, the scaling factor is 1 for byte arrays (no scaling needed), 2 for word
arrays, 4 for doubleword arrays, and 8 for quadword arrays. There is no
performance penalty for using a scaling factor. Scaling is illustrated in the
following examples:

 mov eax, darray[edx*4] ; Load double of double array

 mov eax, [esi*8][edi] ; Load double of quad array

 mov ax, wtbl[ecx+2][edx*2] ; Load word of word array

Scaling is also necessary on earlier processors, but it must be done with separate
instructions before the indirect memory operand is used, as described in “Indirect
Memory Operands with 16-Bit Registers,” previous.

The default segment register is SS if the base register is EBP or ESP. However, if
EBP is scaled, the processor treats it as an index register with a value relative to
DS, not SS.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 69 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 69

70 Programmer’s Guide

All other base registers are relative to DS. If two registers are used, only one can
have a scaling factor. The register with the scaling factor is defined as the index
register. The other register is defined as the base. If scaling is not used, the first
register is the base. If only one register is used, it is considered the base for
deciding the default segment unless it is scaled. The following examples illustrate
how to determine the base register:

 mov eax, [edx][ebp*4] ; EDX base (not scaled - seg DS)

 mov eax, [edx*1][ebp] ; EBP base (not scaled - seg SS)

 mov eax, [edx][ebp] ; EDX base (first - seg DS)

 mov eax, [ebp][edx] ; EBP base (first - seg SS)

 mov eax, [ebp] ; EBP base (only - seg SS)

 mov eax, [ebp*2] ; EBP*2 index (seg DS)

Mixing 16-Bit and 32-Bit Registers
Assembly statements can mix 16-bit and 32-bit registers. For example, the
following statement is legal for 16-bit and 32-bit segments:

 mov eax, [bx]

This statement moves the 32-bit value pointed to by BX into the EAX register.
Although BX is a 16-bit pointer, it can still point into a 32-bit segment.

However, the following statement is never legal, since you cannot use the CX
register as a 16-bit pointer:

; mov eax, [cx] ; illegal

Operands that mix 16-bit and 32-bit registers are also illegal:

; mov eax, [ebx+si] ; illegal

The following statement is legal in either 16-bit or 32-bit mode:

 mov bx, [eax]

This statement moves the 16-bit value pointed to by EAX into the BX register. This
works in 32-bit mode. However, in 16-bit mode, moving a 32-bit pointer into a 16-
bit segment is illegal. If EAX contains a 16-bit value (the top half of the 32-bit
register is 0), the statement works. However, if the top half of the EAX register is
not 0, the operand points into a part of the segment that doesn’t exist, generating an
error. If you use 32-bit registers as indexes in 16-bit mode, you must make sure that
the index registers contain valid 16-bit addresses.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 70 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 70

Chapter 3 Using Addresses and Pointers 71

The Program Stack
The preceding discussion on memory operands lays the groundwork for
understanding the important data area known as the “stack.”

A stack is an area of memory for storing data temporarily. Unlike other segments
that store data starting from low memory, the stack stores data starting from high
memory. Data is always pushed onto, or “popped” from the top of the stack.

The stack gets its name from its similarity to the spring-loaded plate holders in
cafeterias. You add and remove plates from only the top of the stack. To retrieve the
third plate, you must remove — that is, “pop” — the first two plates. Stacks are often
referred to as LIFO buffers, from their last-in-first-out operation.

A stack is an essential part of any nontrivial program. A program continually uses
its stack to temporarily store return addresses, procedure arguments, memory data,
flags, or registers.

The SP register serves as an indirect memory operand to the top of the stack. At
first, the stack is an uninitialized segment of a finite size. As your program adds
data to the stack, the stack grows downward from high memory to low memory.
When you remove items from the stack, it shrinks upward from low to high
memory.

Saving Operands on the Stack
The PUSH instruction stores a 2-byte operand on the stack. The POP instruction
retrieves the most recent pushed value. When a value is pushed onto the stack, the
assembler decreases the SP (Stack Pointer) register by 2. On 8086-based
processors, the SP register always points to the top of the stack. The PUSH and
POP instructions use the SP register to keep track of the current position.

When a value is popped off the stack, the assembler increases the SP register by 2.
Since the stack always contains word values, the SP register changes in multiples of
two. When a PUSH or POP instruction executes in a 32-bit code segment (one
with USE32 use type), the assembler transfers a 4-byte value, and ESP changes in
multiples of four.

Note The 8086 and 8088 processors differ from later Intel processors in how they
push and pop the SP register. If you give the statement push sp with the 8086 or
8088, the word pushed is the word in SP after the push operation.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 71 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 71

72 Programmer’s Guide

Figure 3.1 illustrates how pushes and pops change the SP register.

Before
push ax

Before
pop ax

Pushing Words onto the Stack

Popping Words from the Stack

After
push ax

After
pop ax

word
from AX

word
from AX

SP

SP

SP

SP

Low memory

Low memory

High memory

High memory

Figure 3.1 Stack Status Before and After Pushes and Pops

On the 8086, PUSH and POP take only registers or memory expressions as their
operands. The other processors allow an immediate value to be an operand for
PUSH. For example, the following statement is legal on the 80186–80486
processors:

 push 7 ; 3 clocks on 80286

That statement is faster than these equivalent statements, which are required on the
8088 or 8086:

 mov ax, 7 ; 2 clocks plus

 push ax ; 3 clocks on 80286

Words are popped off the stack in reverse order: the last item pushed is the first
popped. To return the stack to its original status, you do the same number of pops as

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 72 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 72

Chapter 3 Using Addresses and Pointers 73

pushes. You can subtract the correct number of words from the SP register if you
want to restore the stack without using the values on it.

To reference operands on the stack, remember that the values pointed to by the BP
(Base Pointer) and SP registers are relative to the SS (Stack Segment) register. The
BP register is often used to point to the base of a frame of reference (a stack frame)
within the stack. This example shows how you can access values on the stack using
indirect memory operands with BP as the base register.

 push bp ; Save current value of BP

 mov bp, sp ; Set stack frame

 push ax ; Push first; SP = BP - 2

 push bx ; Push second; SP = BP - 4

 push cx ; Push third; SP = BP - 6

 .

 .

 .

 mov ax, [bp-6] ; Put third word in AX

 mov bx, [bp-4] ; Put second word in BX

 mov cx, [bp-2] ; Put first word in CX

 .

 .

 .

 add sp, 6 ; Restore stack pointer

 ; (two bytes per push)

 pop bp ; Restore BP

If you often use these stack values in your program, you may want to give them
labels. For example, you can use TEXTEQU to create a label such as count
TEXTEQU <[bp-6]>. Now you can replace the mov ax, [bp - 6] statement in
the previous example with mov ax, count. For more information about the
TEXTEQU directive, see “Text Macros” in Chapter 9.

Saving Flags on the Stack
Your program can push and pop flags onto the stack with the PUSHF and POPF
instructions. These instructions save and then restore the status of the flags. You
can also use them within a procedure to save and restore the flag status of the caller.
The 32-bit versions of these instructions are PUSHFD and POPFD.

This example saves the flags register before calling the systask procedure:

 pushf

 call systask

 popf

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 73 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 73

74 Programmer’s Guide

If you do not need to store the entire flags register, you can use the LAHF
instruction to manually load and store the status of the lower byte of the flag
register in the AH register. SAHF restores the value.

Saving Registers on the Stack (80186–80486 Only)
Starting with the 80186 processor, the PUSHA and POPA instructions push or pop
all the general-purpose registers with only one instruction. These instructions save
the status of all registers before a procedure call and restore them after the return.
Using PUSHA and POPA is significantly faster and takes fewer bytes of code than
pushing and popping each register individually.

The processor pushes the registers in the following order: AX, CX, DX, BX, SP,
BP, SI, and DI. The SP word pushed is the value before the first register is pushed.

The processor pops the registers in the opposite order. The 32-bit versions of these
instructions are PUSHAD and POPAD.

Accessing Data with Pointers and Addresses
A pointer is simply a variable that contains an address of some other variable. The
address in the pointer “points” to the other object. Pointers are useful when
transferring a large data object (such as an array) to a procedure. The caller places
only the pointer on the stack, which the called procedure uses to locate the array.
This eliminates the impractical step of having to pass the entire array back and forth
through the stack.

There is a difference between a far address and a far pointer. A “far address” is the
address of a variable located in a far data segment. A “far pointer” is a variable that
contains the segment address and offset of some other data. Like any other variable,
a pointer can be located in either the default (near) data segment or in a far
segment.

Previous versions of MASM allow pointer variables but provide little support for
them. In previous versions, any address loaded into a variable can be considered a
pointer, as in the following statements:

Var BYTE 0 ; Variable

npVar WORD Var ; Near pointer to variable

fpVar DWORD Var ; Far pointer to variable

If a variable is initialized with the name of another variable, the initialized variable
is a pointer, as shown in this example. However, in previous versions of MASM,
the CodeView debugger recognizes npVar and fpVar as word and doubleword
variables. CodeView does not treat them as pointers, nor does it recognize the type
of data they point to (bytes, in the example).

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 74 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 74

Chapter 3 Using Addresses and Pointers 75

The TYPEDEF directive and enhanced capabilities of ASSUME (introduced in
MASM 6.0) make it easier to manage pointers in registers and variables. The rest
of this chapter describes these directives and how they apply to basic pointer
operations.

Defining Pointer Types with TYPEDEF
The TYPEDEF directive can define types for pointer variables. A type so defined
is considered the same as the intrinsic types provided by the assembler and can be
used in the same contexts. When used to define pointers, the syntax for TYPEDEF
is:

typename TYPEDEF [[distance]] PTR qualifiedtype

The typename is the name assigned to the new type. The distance can be NEAR,
FAR, or any distance modifier. The qualifiedtype can be any previously intrinsic or
defined MASM type, or a type previously defined with TYPEDEF. (For a full
definition of qualifiedtype, see “Data Types” in Chapter 1.)

Here are some examples of user-defined types:

PBYTE TYPEDEF PTR BYTE ; Pointer to bytes

NPBYTE TYPEDEF NEAR PTR BYTE ; Near pointer to bytes

FPBYTE TYPEDEF FAR PTR BYTE ; Far pointer to bytes

PWORD TYPEDEF PTR WORD ; Pointer to words

NPWORD TYPEDEF NEAR PTR WORD ; Near pointer to words

FPWORD TYPEDEF FAR PTR WORD ; Far pointer to words

PPBYTE TYPEDEF PTR PBYTE ; Pointer to pointer to bytes

 ; (in C, an array of strings)

PVOID TYPEDEF PTR ; Pointer to any type of data

PERSON STRUCT ; Structure type

 name BYTE 20 DUP (?)

 num WORD ?

PERSON ENDS

PPERSON TYPEDEF PTR PERSON ; Pointer to structure type

The distance of a pointer can be set specifically or determined automatically by the
memory model (set by .MODEL) and the segment size (16 or 32 bits). If you don’t
use .MODEL, near pointers are the default.

In 16-bit mode, a near pointer is 2 bytes that contain the offset of the object pointed
to. A far pointer requires 4 bytes, and contains both the segment and offset. In 32-
bit mode, a near pointer is 4 bytes and a far pointer is 6 bytes, since segments are

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 75 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 75

76 Programmer’s Guide

still word values in 32-bit mode. If you specify the distance with NEAR or FAR,
the processor uses the default distance of the current segment size. You can use
NEAR16, NEAR32, FAR16, and FAR32 to override the defaults set by the
current segment size. In flat model, NEAR is the default.

You can declare pointer variables with a pointer type created with TYPEDEF.
Here are some examples using these pointer types.

; Type declarations

Array WORD 25 DUP (0)

Msg BYTE "This is a string", 0

pMsg PBYTE Msg ; Pointer to string

pArray PWORD Array ; Pointer to word array

npMsg NPBYTE Msg ; Near pointer to string

npArray NPWORD Array ; Near pointer to word array

fpArray FPWORD Array ; Far pointer to word array

fpMsg FPBYTE Msg ; Far pointer to string

S1 BYTE "first", 0 ; Some strings

S2 BYTE "second", 0

S3 BYTE "third", 0

pS123 PBYTE S1, S2, S3, 0 ; Array of pointers to strings

ppS123 PPBYTE pS123 ; A pointer to pointers to strings

Andy PERSON <> ; Structure variable

pAndy PPERSON Andy ; Pointer to structure variable

 ; Procedure prototype

EXTERN ptrArray:PBYTE ; External variable

Sort PROTO pArray:PBYTE ; Parameter for prototype

; Parameter for procedure

Sort PROC pArray:PBYTE

 LOCAL pTmp:PBYTE ; Local variable

 .

 .

 .

 ret

Sort ENDP

Once defined, pointer types can be used in any context where intrinsic types are
allowed.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 76 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 76

Chapter 3 Using Addresses and Pointers 77

Defining Register Types with ASSUME
You can use the ASSUME directive with general-purpose registers to specify that a
register is a pointer to a certain size of object. For example:

 ASSUME bx:PTR WORD ; Assume BX is now a word pointer

 inc [bx] ; Increment word pointed to by BX

 add bx, 2 ; Point to next word

 mov [bx], 0 ; Word pointed to by BX = 0

 .

 . ; Other pointer operations with BX

 .

 ASSUME bx:NOTHING ; Cancel assumption

In this example, BX is specified as a pointer to a word. After a sequence of using
BX as a pointer, the assumption is canceled by assuming NOTHING.

Without the assumption to PTR WORD, many instructions need a size specifier.
The INC and MOV statements from the previous examples would have to be
written like this to specify the sizes of the memory operands:

 inc WORD PTR [bx]

 mov WORD PTR [bx], 0

When you have used ASSUME, attempts to use the register for other purposes
generate assembly errors. In this example, while the PTR WORD assumption is in
effect, any use of BX inconsistent with its ASSUME declaration generates an
error. For example,

; mov al, [bx] ; Can't move word to byte register

You can also use the PTR operator to override defaults:

 mov al, BYTE PTR [bx] ; Legal

Similarly, you can use ASSUME to prevent the use of a register as a pointer, or
even to disable a register:

 ASSUME bx:WORD, dx:ERROR

; mov al, [bx] ; Error - BX is an integer, not a pointer

; mov ax, dx ; Error - DX disabled

For information on using ASSUME with segment registers, refer to “Setting the
ASSUME Directive for Segment Registers” in Chapter 2.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 77 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 77

78 Programmer’s Guide

Basic Pointer and Address Operations
A program can perform the following basic operations with pointers and addresses:

◆ Initialize a pointer variable by storing an address in it.

◆ Load an address into registers, directly or from a pointer.

The sections in the rest of this chapter describe variations of these tasks with
pointers and addresses. The examples are used with the assumption that you have
previously defined the following pointer types with the TYPEDEF directive:

PBYTE TYPEDEF PTR BYTE ; Pointer to bytes

NPBYTE TYPEDEF NEAR PTR BYTE ; Near pointer to bytes

FPBYTE TYPEDEF FAR PTR BYTE ; Far pointer to bytes

Initializing Pointer Variables
If the value of a pointer is known at assembly time, the assembler can initialize it
automatically so that no processing time is wasted on the task at run time. The
following example shows how to do this, placing the address of msg in the pointer
pmsg.

Msg BYTE "String", 0

pMsg PBYTE Msg

If a pointer variable can be conditionally defined to one of several constant
addresses, initialization must be delayed until run time. The technique is different
for near pointers than for far pointers, as shown here:

Msg1 BYTE "String1"

Msg2 BYTE "String2"

npMsg NPBYTE ?

fpMsg FPBYTE ?

 .

 .

 .

 mov npMsg, OFFSET Msg1 ; Load near pointer

 mov WORD PTR fpMsg[0], OFFSET Msg2 ; Load far offset

 mov WORD PTR fpMsg[2], SEG Msg2 ; Load far segment

If you know that the segment for a far pointer is in a register, you can load it
directly:

 mov WORD PTR fpMsg[2], ds ; Load segment of

 ; far pointer

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 78 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 78

Chapter 3 Using Addresses and Pointers 79

Dynamic Addresses
Often a pointer must point to a dynamic address, meaning the address depends on a
run-time condition. Typical situations include memory allocated by MS-DOS (see
“Interrupt 21h Function 48h” in Help) and addresses found by the SCAS or CMPS
instructions (see “Processing Strings” in Chapter 5). The following illustrates the
technique for saving dynamic addresses:

; Dynamically allocated buffer

fpBuf FPBYTE 0 ; Initialize so offset will be zero

 .

 .

 .

 mov ah, 48h ; Allocate memory

 mov bx, 10h ; Request 16 paragraphs

 int 21h ; Call DOS

 jc error ; Return segment in AX

 mov WORD PTR fpBuf[2], ax ; Load segment

 . ; (offset is already 0)

 .

 .

error: ; Handle error

Copying Pointers
Sometimes one pointer variable must be initialized by copying from another. Here
are two ways to copy a far pointer:

fpBuf1 FPBYTE ?

fpBuf2 FPBYTE ?

 .

 .

 .

; Copy through registers is faster, but requires a spare register

 mov ax, WORD PTR fpBuf1[0]

 mov WORD PTR fpBuf2[0], ax

 mov ax, WORD PTR fpBuf1[2]

 mov WORD PTR fpBuf2[2], ax

; Copy through stack is slower, but does not use a register

 push WORD PTR fpBuf1[0]

 push WORD PTR fpBuf1[2]

 pop WORD PTR fpBuf2[2]

 pop WORD PTR fpBuf2[0]

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 79 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 79

80 Programmer’s Guide

Pointers as Arguments
Most high-level-language procedures and library functions accept arguments passed
on the stack. “Passing Arguments on the Stack” in Chapter 7 covers this subject in
detail. A pointer is passed in the same way as any other variable, as this fragment
shows:

; Push a far pointer (segment always pushed first)

 push WORD PTR fpMsg[2] ; Push segment

 push WORD PTR fpMsg[0] ; Push offset

Pushing an address has the same result as pushing a pointer to the address:

; Push a far address as a far pointer

 mov ax, SEG fVar ; Load and push segment

 push ax

 mov ax, OFFSET fVar ; Load and push offset

 push ax

On the 80186 and later processors, you can push a constant in one step:

 push SEG fVar ; Push segment

 push OFFSET fVar ; Push offset

Loading Addresses into Registers
Loading a near address into a register (or a far address into a pair of registers) is a
common task in assembly-language programming. To reference data pointed to by a
pointer, your program must first place the pointer into a register or pair of registers.

Load far addresses as segment:offset pairs. The following pairs have specific uses:

Segment:Offset Pair Standard Use

DS:SI Source for string operations

ES:DI Destination for string operations

DS:DX Input for certain DOS functions

ES:BX Output from certain DOS functions

Addresses from Data Segments
For near addresses, you need only load the offset; the segment is assumed as SS for
stack-based data and as DS for other data. You must load both segment and offset
for far pointers.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 80 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 80

Chapter 3 Using Addresses and Pointers 81

Here is an example of loading an address into DS:BX from a near data segment:

 .DATA

Msg BYTE "String"

 .

 .

 .

 mov bx, OFFSET Msg ; Load address to BX

 ; (DS already loaded)

Far data can be loaded like this:

.FARDATA

Msg BYTE "String"

 .

 .

 .

 mov ax, SEG Msg ; Load address to ES:BX

 mov es, ax

 mov bx, OFFSET Msg

You can also read a far address from a pointer in one step, using the LES and LDS
instructions described next.

Far Pointers
The LES and LDS instructions load a far pointer into a segment pair. The
instructions copy the pointer’s low word into either ES or DS, and the high word
into a given register. The following example shows how to load a far pointer into
ES:DI:

OutBuf BYTE 20 DUP (0)

fpOut FPBYTE OutBuf

 .

 .

 .

 les di, fpOut ; Load far pointer into ES:DI

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 81 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 81

82 Programmer’s Guide

Stack Variables
The technique for loading the address of a stack variable is significantly different
from the technique for loading near addresses. You may need to put the correct
segment value into ES for string operations. The following example illustrates how
to load the address of a local (stack) variable to ES:DI:

Task PROC

 LOCAL Arg[4]:BYTE

 push ss ; Since it's stack-based, segment is SS

 pop es ; Copy SS to ES

 lea di, Arg ; Load offset to DI

The local variable in this case actually evaluates to SS:[BP-4]. This is an offset
from the stack frame (described in “Passing Arguments on the Stack,” Chapter 7).
Since you cannot use the OFFSET operator to get the offset of an indirect memory
operand, you must use the LEA (Load Effective Address) instruction.

Direct Memory Operands
To get the address of a direct memory operand, use either the LEA instruction or
the MOV instruction with OFFSET. Though both methods have the same effect,
the MOV instruction produces smaller and faster code, as shown in this example:

 lea si, Msg ; Four byte instruction

 mov si, OFFSET Msg ; Three byte equivalent

Copying Between Segment Pairs
Copying from one register pair to another is complicated by the fact that you cannot
copy one segment register directly to another. Two copying methods are shown
here. Timings are for the 8088 processor.

; Copy DS:SI to ES:DI, generating smaller code

 push ds ; 1 byte, 14 clocks

 pop es ; 1 byte, 12 clocks

 mov di, si ; 2 bytes, 2 clocks

; Copy DS:SI to ES:DI, generating faster code

 mov di, ds ; 2 bytes, 2 clocks

 mov es, di ; 2 bytes, 2 clocks

 mov di, si ; 2 bytes, 2 clocks

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 82 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 82

Chapter 3 Using Addresses and Pointers 83

Model-Independent Techniques
Often you may want to write code that is memory-model independent. If you are
writing libraries that must be available for different memory models, you can use
conditional assembly to handle different sizes of pointers. You can use the
predefined symbols @DataSize and @Model to test the current assumptions.

You can use conditional assembly to write code that works with pointer variables
that have no specified distance. The predefined symbol @DataSize tests the pointer
size for the current memory model:

Msg1 BYTE "String1"

pMsg PBYTE ?

 .

 .

 .

 IF @DataSize ; @DataSize > 0 for far

 mov WORD PTR pMsg[0], OFFSET Msg1 ; Load far offset

 mov WORD PTR pMsg[2], SEG Msg1 ; Load far segment

 ELSE ; @DataSize = 0 for near

 mov pMsg, OFFSET Msg1 ; Load near pointer

 ENDIF

In the following example, a procedure receives as an argument a pointer to a word
variable. The code inside the procedure uses @DataSize to determine whether the
current memory model supports far or near data. It loads and processes the data
accordingly:

; Procedure that receives an argument by reference

mul8 PROC arg:PTR WORD

 IF @DataSize

 les bx, arg ; Load far pointer to ES:BX

 mov ax, es:[bx] ; Load the data pointed to

 ELSE

 mov bx, arg ; Load near pointer to BX (assume DS)

 mov ax, [bx] ; Load the data pointed to

 ENDIF

 shl ax, 1 ; Multiply by 8

 shl ax, 1

 shl ax, 1

 ret

mul8 ENDP

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 83 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 83

84 Programmer’s Guide

If you have many routines, writing the conditionals for each case can be tedious.
The following conditional statements automatically generate the proper instructions
and segment overrides.

; Equates for conditional handling of pointers

 IF @DataSize

lesIF TEXTEQU <les>

ldsIF TEXTEQU <lds>

esIF TEXTEQU <es:>

 ELSE

lesIF TEXTEQU <mov>

ldsIF TEXTEQU <mov>

esIF TEXTEQU <>

 ENDIF

Once you define these conditionals, you can use them to simplify code that must
handle several types of pointers. This next example rewrites the above mul8
procedure to use conditional code.

mul8 PROC arg:PTR WORD

 lesIF bx, arg ; Load pointer to BX or ES:BX

 mov ax, esIF [bx] ; Load the data from [BX] or ES:[BX]

 shl ax, 1 ; Multiply by 8

 shl ax, 1

 shl ax, 1

 ret

mul8 ENDP

The conditional statements from these examples can be defined once in an include
file and used whenever you need to handle pointers.

Filename: LMAPGC03.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 49 Page: 84 of 32 Printed: 03/06/94 05:54 PM
Printed On: Distiller Colorlayer: ? Document Page: 84

85

C H A P T E R 4

Defining and Using Simple
Data Types

This chapter covers the concepts essential for working with simple data types in
assembly-language programs. The first section shows how to declare integer
variables. The second section describes basic operations including moving, loading,
and sign-extending numbers, as well as calculating. The last section describes how
to do various operations with numbers at the bit level, such as using bitwise logical
instructions and shifting and rotating bits.

The complex data types introduced in the next chapter — arrays, strings, structures,
unions, and records — use many of the operations illustrated in this chapter.
Floating-point operations require a different set of instructions and techniques.
These are covered in Chapter 6, “Using Floating-Point and Binary Coded Decimal
Numbers.”

Declaring Integer Variables
An integer is a whole number, such as 4 or 4,444. Integers have no fractional part,
as do the real numbers discussed in Chapter 6. You can initialize integer variables
in several ways with the data allocation directives. This section explains how to use
the SIZEOF and TYPE operators to provide information to the assembler about
the types in your program. For information on symbolic integer constants, see
“Integer Constants and Constant Expressions” in Chapter 1.

Allocating Memory for Integer Variables
When you declare an integer variable by assigning a label to a data allocation
directive, the assembler allocates memory space for the integer. The variable’s
name becomes a label for the memory space. The syntax is:

[[name]] directive initializer

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 85 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 85

86 Programmer’s Guide

The following directives indicate the integer’s size and value range:

Directive Description of Initializers

BYTE, DB (byte) Allocates unsigned numbers from 0 to 255.

SBYTE (signed byte) Allocates signed numbers from –128 to +127.

WORD, DW (word = 2 bytes) Allocates unsigned numbers from
0 to 65,535 (64K).

SWORD (signed word) Allocates signed numbers from
–32,768 to +32,767.

DWORD, DD (doubleword = 4
bytes),

Allocates unsigned numbers from
0 to 4,294,967,295 (4 megabytes).

SDWORD (signed doubleword) Allocates signed numbers from
–2,147,483,648 to +2,147,483,647.

FWORD, DF (farword = 6 bytes) Allocates 6-byte (48-bit) integers. These values are
normally used only as pointer variables on the
80386/486 processors.

QWORD, DQ (quadword = 8
bytes)

Allocates 8-byte integers used with 8087-family
coprocessor instructions.

TBYTE, DT (10 bytes), Allocates 10-byte (80-bit) integers if the initializer
has a radix specifying the base of the number.

See Chapter 6 for information on the REAL4, REAL8, and REAL10 directives
that allocate real numbers.

The SIZEOF and TYPE operators, when applied to a type, return the size of an
integer of that type. The size attribute associated with each data type is:

Data Type Bytes

BYTE, SBYTE 1

WORD, SWORD 2

DWORD, SDWORD 4

FWORD 6

QWORD 8

TBYTE 10

The data types SBYTE, SWORD, and SDWORD tell the assembler to treat the
initializers as signed data. It is important to use these signed types with high-level
constructs such as .IF, .WHILE, and .REPEAT, and with PROTO and INVOKE
directives. For descriptions of these directives, see the sections “Loop-Generating
Directives,” “Declaring Procedure Prototypes,” and “Calling Procedures with
INVOKE” in Chapter 7.

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 86 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 86

Chapter 4 Defining and Using Simple Data Types 87

The assembler stores integers with the least significant bytes lowest in memory.
Note that assembler listings and most debuggers show the bytes of a word in the
opposite order — high byte first.

Figure 4.1 illustrates the integer formats.

Word

Doubleword

Quadword

0

0

0 4

2

2 6

1

1

1 5

3

3 7

Low byte

Low word

Low doubleword High doubleword

High word

High byte

Figure 4.1 Integer Formats

Although the TYPEDEF directive’s primary purpose is to define pointer variables
(see “Defining Pointer Types with TYPEDEF” in Chapter 3), you can also use
TYPEDEF to create an alias for any integer type. For example, these declarations

char TYPEDEF SBYTE

long TYPEDEF DWORD

float TYPEDEF REAL4

double TYPEDEF REAL8

allow you to use char, long, float, or double in your programs if you prefer
the C data labels.

Data Initialization
You can initialize variables when you declare them with constants or expressions
that evaluate to constants. The assembler generates an error if you specify an initial
value too large for the variable type.

A ? in place of an initializer indicates you do not require the assembler to initialize
the variable. The assembler allocates the space but does not write in it. Use ? for
buffer areas or variables your program will initialize at run time.

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 87 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 87

88 Programmer’s Guide

You can declare and initialize variables in one step with the data directives, as
these examples show.

integer BYTE 16 ; Initialize byte to 16

negint SBYTE -16 ; Initialize signed byte to -16

expression WORD 4*3 ; Initialize word to 12

signedexp SWORD 4*3 ; Initialize signed word to 12

empty QWORD ? ; Allocate uninitialized long int

 BYTE 1,2,3,4,5,6 ; Initialize six unnamed bytes

long DWORD 4294967295 ; Initialize doubleword to

 ; 4,294,967,295

longnum SDWORD -2147433648 ; Initialize signed doubleword

 ; to -2,147,433,648

tb TBYTE 2345t ; Initialize 10-byte binary number

For information on arrays and on using the DUP operator to allocate initializer
lists, see “Arrays and Strings” in Chapter 5.

Working with Simple Variables
Once you have declared integer variables in your program, you can use them to
copy, move, and sign-extend integer variables in your MASM code. This section
shows how to do these operations as well as how to add, subtract, multiply, and
divide numbers and do bit-level manipulations with logical, shift, and rotate
instructions.

Since MASM instructions require operands to be the same size, you may need to
operate on data in a size other than that originally declared. You can do this with
the PTR operator. For example, you can use the PTR operator to access the high-
order word of a DWORD-size variable. The syntax for the PTR operator is

type PTR expression

where the PTR operator forces expression to be treated as having the type
specified. An example of this use is

 .DATA

num DWORD 0

 .CODE

 mov ax, WORD PTR num[0] ; Loads a word-size value from

 mov dx, WORD PTR num[2] ; a doubleword variable

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 88 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 88

Chapter 4 Defining and Using Simple Data Types 89

Copying Data
The primary instructions for moving data from operand to operand and loading them
into registers are MOV (Move), XCHG (Exchange), CWD (Convert Word to
Double), and CBW (Convert Byte to Word).

Moving Data
The most common method of moving data, the MOV instruction, is essentially a
copy instruction, since it always copies the source operand to the destination
operand without affecting the source. After a MOV instruction, the source and
destination operands contain the same value.

The following example illustrates the MOV instruction. As explained in “General-
Purpose Registers,” Chapter 1, you cannot move a value from one location in
memory to another in a single operation.

; Immediate value moves

 mov ax, 7 ; Immediate to register

 mov mem, 7 ; Immediate to memory direct

 mov mem[bx], 7 ; Immediate to memory indirect

; Register moves

 mov mem, ax ; Register to memory direct

 mov mem[bx], ax ; Register to memory indirect

 mov ax, bx ; Register to register

 mov ds, ax ; General register to segment register

; Direct memory moves

 mov ax, mem ; Memory direct to register

 mov ds, mem ; Memory to segment register

; Indirect memory moves

 mov ax, mem[bx] ; Memory indirect to register

 mov ds, mem[bx] ; Memory indirect to segment register

; Segment register moves

 mov mem, ds ; Segment register to memory

 mov mem[bx], ds ; Segment register to memory indirect

 mov ax, ds ; Segment register to general register

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 89 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 89

90 Programmer’s Guide

The following example shows several common types of moves that require two
instructions.

; Move immediate to segment register

 mov ax, DGROUP ; Load AX with immediate value

 mov ds, ax ; Copy AX to segment register

; Move memory to memory

 mov ax, mem1 ; Load AX with memory value

 mov mem2, ax ; Copy AX to other memory

; Move segment register to segment register

 mov ax, ds ; Load AX with segment register

 mov es, ax ; Copy AX to segment register

The MOVSX and MOVZX instructions for the 80386/486 processors extend and
copy values in one step. See “Extending Signed and Unsigned Integers,” following.

Exchanging Integers
The XCHG (Exchange) instruction exchanges the data in the source and
destination operands. You can exchange data between registers or between registers
and memory, but not from memory to memory:

 xchg ax, bx ; Put AX in BX and BX in AX

 xchg memory, ax ; Put "memory" in AX and AX in "memory"

; xchg mem1, mem2 ; Illegal- can't exchange memory locations

Extending Signed and Unsigned Integers
Since moving data between registers of different sizes is illegal, you must “sign-
extend” integers to convert signed data to a larger size. Sign-extending means
copying the sign bit of the unextended operand to all bits of the operand’s next
larger size. This widens the operand while maintaining its sign and value.

8086-based processors provide four instructions specifically for sign-extending.
The four instructions act only on the accumulator register (AL, AX, or EAX), as
shown in the following list.

Instruction Sign-extend

CBW (convert byte to word) AL to AX

CWD (convert word to doubleword) AX to DX:AX

CWDE (convert word to doubleword extended)* AX to EAX

CDQ (convert doubleword to quadword)* EAX to EDX:EAX

*Requires an extended register and applies only to 80386/486 processors.

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 90 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 90

Chapter 4 Defining and Using Simple Data Types 91

On the 80386/486 processors, the CWDE instruction converts a signed 16-bit
value in AX to a signed 32-bit value in EAX. The CDQ instruction converts a
signed 32-bit value in EAX to a signed 64-bit value in the EDX:EAX register pair.

This example converts signed integers using CBW, CWD, CWDE, and CDQ.

 .DATA

mem8 SBYTE -5

mem16 SWORD +5

mem32 SDWORD -5

 .CODE

 .

 .

 .

 mov al, mem8 ; Load 8-bit -5 (FBh)

 cbw ; Convert to 16-bit -5 (FFFBh) in AX

 mov ax, mem16 ; Load 16-bit +5

 cwd ; Convert to 32-bit +5 (0000:0005h) in DX:AX

 mov ax, mem16 ; Load 16-bit +5

 cwde ; Convert to 32-bit +5 (00000005h) in EAX

 mov eax, mem32 ; Load 32-bit -5 (FFFFFFFBh)

 cdq ; Convert to 64-bit -5

 ; (FFFFFFFF:FFFFFFFBh) in EDX:EAX

These four instructions efficiently convert unsigned values as well, provided the
sign bit is zero. This example, for instance, correctly widens mem16 whether you
treat the variable as signed or unsigned.

The processor does not differentiate between signed and unsigned values. For
instance, the value of mem8 in the previous example is literally 251 (0FBh) to the
processor. It ignores the human convention of treating the highest bit as an indicator
of sign. The processor can ignore the distinction between signed and unsigned
numbers because binary arithmetic works the same in either case.

If you add 7 to mem8, for example, the result is 258 (102h), a value too large to fit
into a single byte. The byte-sized mem8 can accommodate only the least-significant
digits of the result (02h), and so receives the value of 2. The result is the same
whether we treat mem8 as a signed value (-5) or unsigned value (251).

This overview illustrates how the programmer, not the processor, must keep track of
which values are signed or unsigned, and treat them accordingly. If AL=127
(01111111y), the instruction CBW sets AX=127 because the sign bit is zero. If
AL=128 (10000000y), however, the sign bit is 1. CBW thus sets AX=65,280

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 91 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 91

92 Programmer’s Guide

(FF00h), which may not be what you had in mind if you assumed AL originally
held an unsigned value.To widen unsigned values, explicitly set the higher register
to zero, as shown in the following example:

 .DATA

mem8 BYTE 251

mem16 WORD 251

 .CODE

 .

 .

 .

 mov al, mem8 ; Load 251 (FBh) from 8-bit memory

 sub ah, ah ; Zero upper half (AH)

 mov ax, mem16 ; Load 251 (FBh) from 16-bit memory

 sub dx, dx ; Zero upper half (DX)

 sub eax, eax ; Zero entire extended register (EAX)

 mov ax, mem16 ; Load 251 (FBh) from 16-bit memory

The 80386/486 processors provide instructions that move and extend a value to a
larger data size in a single step. MOVSX moves a signed value into a register and
sign-extends it. MOVZX moves an unsigned value into a register and zero-
extends it.

; 80386/486 instructions

 movzx dx, bl ; Load unsigned 8-bit value into

 ; 16-bit register and zero-extend

These special 80386/486 instructions usually execute much faster than the
equivalent 8086/286 instructions.

Adding and Subtracting Integers
You can use the ADD, ADC, INC, SUB, SBB, and DEC instructions for adding,
incrementing, subtracting, and decrementing values in single registers. You can also
combine them to handle larger values that require two registers for storage.

Adding and Subtracting Integers Directly
The ADD, INC (Increment), SUB, and DEC (Decrement) instructions operate on
8- and 16-bit values on the 8086–80286 processors, and on 8-, 16-, and 32-bit
values on the 80386/486 processors. They can be combined with the ADC and
SBB instructions to work on 32-bit values on the 8086 and 64-bit values on the
80386/486 processors. (See “Adding and Subtracting in Multiple Registers,”
following.)

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 92 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 92

Chapter 4 Defining and Using Simple Data Types 93

These instructions have two requirements:

1. If there are two operands, only one operand can be a memory operand.

2. If there are two operands, both must be the same size.

To meet the second requirement, you can use the PTR operator to force an operand
to the size required. (See “Working with Simple Variables,” previous.) For
example, if Buffer is an array of bytes and BX points to an element of the array,
you can add a word from Buffer with

 add ax, WORD PTR Buffer[bx] ; Add word from byte array

The next example shows 8-bit signed and unsigned addition and subtraction.

 .DATA

mem8 BYTE 39

 .CODE

; Addition

 ; signed unsigned

 mov al, 26 ; Start with register 26 26

 inc al ; Increment 1 1

 add al, 76 ; Add immediate 76 + 76

 ; ---- ----

 ; 103 103

 add al, mem8 ; Add memory 39 + 39

 ; ---- ----

 mov ah, al ; Copy to AH -114 142

 +overflow

 add al, ah ; Add register 142

 ; ----

 ; 28+carry

; Subtraction

 ; signed unsigned

 mov al, 95 ; Load register 95 95

 dec al ; Decrement -1 -1

 sub al, 23 ; Subtract immediate -23 -23

 ; ---- ----

 ; 71 71

 sub al, mem8 ; Subtract memory -122 -122

 ; ---- ----

 ; -51 205+sign

 mov ah, 119 ; Load register 119

 sub al, ah ; and subtract -51

 ; ----

 ; 86+overflow

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 93 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 93

94 Programmer’s Guide

The INC and DEC instructions treat integers as unsigned values and do not update
the carry flag for signed carries and borrows.

When the sum of 8-bit signed operands exceeds 127, the processor sets the
overflow flag. (The overflow flag is also set if both operands are negative and the
sum is less than or equal to -128.) Placing a JO (Jump on Overflow) or INTO
(Interrupt on Overflow) instruction in your program at this point can transfer
control to error-recovery statements. When the sum exceeds 255, the processor sets
the carry flag. A JC (Jump on Carry) instruction at this point can transfer control to
error-recovery statements.

In the previous subtraction example, the processor sets the sign flag if the result
goes below 0. At this point, you can use a JS (Jump on Sign) instruction to transfer
control to error-recovery statements. Jump instructions are described in the
“Jumps” section in Chapter 7.

Adding and Subtracting in Multiple Registers
You can add and subtract numbers larger than the register size on your processor
with the ADC (Add with Carry) and SBB (Subtract with Borrow) instructions. If
the operations prior to an ADC or SBB instruction do not set the carry flag, these
instructions are identical to ADD and SUB. When you operate on large values in
more than one register, use ADD and SUB for the least significant part of the
number and ADC or SBB for the most significant part.

The following example illustrates multiple-register addition and subtraction. You
can also use this technique with 64-bit operands on the 80386/486 processors.

 .DATA

mem32 DWORD 316423

mem32a DWORD 316423

mem32b DWORD 156739

 .CODE

 .

 .

 .

; Addition

 mov ax, 43981 ; Load immediate 43981

 sub dx, dx ; into DX:AX

 add ax, WORD PTR mem32[0] ; Add to both + 316423

 adc dx, WORD PTR mem32[2] ; memory words ------

 ; Result in DX:AX 360404

; Subtraction

 mov ax, WORD PTR mem32a[0] ; Load mem32 316423

 mov dx, WORD PTR mem32a[2] ; into DX:AX

 sub ax, WORD PTR mem32b[0] ; Subtract low - 156739

 sbb dx, WORD PTR mem32b[2] ; then high ------

 ; Result in DX:AX 159684

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 94 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 94

Chapter 4 Defining and Using Simple Data Types 95

For 32-bit registers on the 80386/486 processors, only two steps are necessary. If
your program needs to be assembled for more than one processor, you can assemble
the statements conditionally, as shown in this example:

 .DATA

mem32 DWORD 316423

mem32a DWORD 316423

mem32b DWORD 156739

p386 TEXTEQU (@Cpu AND 08h)

 .CODE

 .

 .

 .

; Addition

 IF p386

 mov eax, 43981 ; Load immediate

 add eax, mem32 ; Result in EAX

 ELSE

 .

 . ; do steps in previous example

 .

 ENDIF

; Subtraction

 IF p386

 mov eax, mem32a ; Load memory

 sub eax, mem32b ; Result in EAX

 ELSE

 .

 . ; do steps in previous example

 .

 ENDIF

Since the status of the carry flag affects the results of calculations with ADC and
SBB, be sure to turn off the carry flag with the CLC (Clear Carry Flag) instruction
or use ADD or SUB for the first calculation, when appropriate.

Multiplying and Dividing Integers
The 8086 family of processors uses different multiplication and division
instructions for signed and unsigned integers. Multiplication and division
instructions also have special requirements depending on the size of the operands
and the processor the code runs on.

Using Multiplication Instructions
The MUL instruction multiplies unsigned numbers. IMUL multiplies signed
numbers. For both instructions, one factor must be in the accumulator register (AL

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 95 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 95

96 Programmer’s Guide

for 8-bit numbers, AX for 16-bit numbers, EAX for 32-bit numbers). The other
factor can be in any single register or memory operand. The result overwrites the
contents of the accumulator register.

Multiplying two 8-bit numbers produces a 16-bit result returned in AX. Multiplying
two 16-bit operands yields a 32-bit result in DX:AX. The 80386/486 processor
handles 64-bit products in the same way in the EDX:EAX pair.

This example illustrates multiplication of signed 16- and 32-bit integers.

 .DATA

mem16 SWORD -30000

 .CODE

 .

 .

 .

; 8-bit unsigned multiply

 mov al, 23 ; Load AL 23

 mov bl, 24 ; Load BL * 24

 mul bl ; Multiply BL -----

 ; Product in AX 552

 ; overflow and carry set

; 16-bit signed multiply

 mov ax, 50 ; Load AX 50

 ; -30000

 imul mem16 ; Multiply memory -----

 ; Product in DX:AX -1500000

 ; overflow and carry set

A nonzero number in the upper half of the result (AH for byte, DX or EDX for
word) sets the overflow and carry flags.

On the 80186–80486 processors, the IMUL instruction supports three additional
operand combinations. The first syntax option allows for 16-bit multipliers
producing a 16-bit product or 32-bit multipliers for 32-bit products on the
80386/486. The result overwrites the destination. The syntax for this operation is:

IMUL register16, immediate

The second syntax option specifies three operands for IMUL. The first operand
must be a 16-bit register operand, the second a 16-bit memory (or register)
operand, and the third a 16-bit immediate operand. IMUL multiplies the memory
(or register) and immediate operands and stores the product in the register operand
with this syntax:

IMUL register16,{ memory16 | register16}, immediate

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 96 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 96

Chapter 4 Defining and Using Simple Data Types 97

For the 80386/486 only, a third option for IMUL allows an additional operand for
multiplication of a register value by a register or memory value. The syntax is:

IMUL register,{register | memory}

The destination can be any 16-bit or 32-bit register. The source must be the same
size as the destination.

In all of these options, products too large to fit in 16 or 32 bits set the overflow and
carry flags. The following examples show these three options for IMUL.

 imul dx, 456 ; Multiply DX times 456 on 80186-80486

 imul ax, [bx],6 ; Multiply the value pointed to by BX

 ; by 6 and put the result in AX

 imul dx, ax ; Multiply DX times AX on 80386

 imul ax, [bx] ; Multiply AX by the value pointed to

 ; by BX on 80386

The IMUL instruction with multiple operands can be used for either signed or
unsigned multiplication, since the 16-bit product is the same in either case. To get a
32-bit result, you must use the single-operand version of MUL or IMUL.

Using Division Instructions
The DIV instruction divides unsigned numbers, and IDIV divides signed numbers.
Both return a quotient and a remainder.

Table 4.1 summarizes the division operations. The dividend is the number to be
divided, and the divisor is the number to divide by. The quotient is the result. The
divisor can be in any register or memory location except the registers where the
quotient and remainder are returned.

Table 4.1 Division Operations

Size of
Operand

Dividend
Register

Size of
Divisor Quotient Remainder

16 bits AX 8 bits AL AH

32 bits DX:AX 16 bits AX DX

64 bits (80386
and 80486)

EDX:EAX 32 bits EAX EDX

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 97 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 97

98 Programmer’s Guide

Unsigned division does not require careful attention to flags. The following
examples illustrate signed division, which can be more complex.

 .DATA

mem16 SWORD -2000

mem32 SDWORD 500000

 .CODE

 .

 .

 .

; Divide 16-bit unsigned by 8-bit

 mov ax, 700 ; Load dividend 700

 mov bl, 36 ; Load divisor DIV 36

 div bl ; Divide BL ------

 ; Quotient in AL 19

 ; Remainder in AH 16

; Divide 32-bit signed by 16-bit

 mov ax, WORD PTR mem32[0] ; Load into DX:AX

 mov dx, WORD PTR mem32[2] ; 500000

 idiv mem16 ; DIV -2000

 ; Divide memory ------

 ; Quotient in AX -250

 ; Remainder in DX 0

; Divide 16-bit signed by 16-bit

 mov ax, WORD PTR mem16 ; Load into AX -2000

 cwd ; Extend to DX:AX

 mov bx,-421 ; DIV -421

 idiv bx ; Divide by BX -----

 ; Quotient in AX 4

 ; Remainder in DX -316

If the dividend and divisor are the same size, sign-extend or zero-extend the
dividend so that it is the length expected by the division instruction. See “Extending
Signed and Unsigned Integers,” earlier in this chapter.

Manipulating Numbers at the Bit Level
The instructions introduced so far in this chapter access numbers at the byte or
word level. The logical, shift, and rotate instructions described in this section access
individual bits in a number. You can use logical instructions to evaluate characters
and do other text and screen operations. The shift and rotate instructions do similar
tasks by shifting and rotating bits through registers. This section reviews some
applications of these bit-level operations.

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 98 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 98

Chapter 4 Defining and Using Simple Data Types 99

Logical Instructions
The logical instructions AND, OR, and XOR compare bits in two operands. Based
on the results of the comparisons, the instructions alter bits in the first (destination)
operand. The logical instruction NOT also changes bits, but operates on a single
operand.

The following list summarizes these four logical instructions. The list makes
reference to the “destination bit,” meaning the bit in the destination operand. The
terms “both bits” and “either bit” refer to the corresponding bits in the source and
destination operands. These instructions include:

Instruction Sets Destination Bit If Clears Destination Bit If

AND Both bits set Either or both bits clear

OR Either or both bits set Both bits clear

XOR Either bit (but not both) set Both bits set or both clear

NOT Destination bit clear Destination bit set

Note Do not confuse logical instructions with the logical operators, which perform
these operations at assembly time, not run time. Although the names are the same,
the assembler recognizes the difference.

The following example shows the result of the AND, OR, XOR, and NOT
instructions operating on a value in the AX register and in a mask. A mask is any
number with a pattern of bits set for an intended operation.

 mov ax, 035h ; Load value 00110101

 and ax, 0FBh ; Clear bit 2 AND 11111011

 ; --------

 ; Value is now 31h 00110001

 or ax, 016h ; Set bits 4,2,1 OR 00010110

 ; --------

 ; Value is now 37h 00110111

 xor ax, 0ADh ; Toggle bits 7,5,3,2,0 XOR 10101101

 ; --------

 ; Value is now 9Ah 10011010

 not ax ; Value is now 65h 01100101

The AND instruction clears unmasked bits — that is, bits not protected by 1 in the
mask. To mask off certain bits in an operand and clear the others, use an
appropriate masking value in the source operand. The bits of the mask should be 0
for any bit positions you want to clear and 1 for any bit positions you want to
remain unchanged.

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 99 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 99

100 Programmer’s Guide

The OR instruction forces specific bits to 1 regardless of their current settings. The
bits of the mask should be 1 for any bit positions you want to set and 0 for any bit
positions you want to remain unchanged.

The XOR instruction toggles the value of specific bits on and off — that is, reverses
them from their current settings. This instruction sets a bit to 1 if the corresponding
bits are different or to 0 if they are the same. The bits of the mask should be 1 for
any bit positions you want to toggle and 0 for any bit positions you want to remain
unchanged.

The following examples show an application for each of these instructions. The
code illustrating the AND instruction converts a “y” or “n” read from the keyboard
to uppercase, since bit 5 is always clear in uppercase letters. In the example for
OR, the first statement is faster and uses fewer bytes than cmp bx, 0. When the
operands for XOR are identical, each bit cancels itself, producing 0.

;AND example - converts characters to uppercase

 mov ah, 7 ; Get character without echo

 int 21h

 and al, 11011111y ; Convert to uppercase by clearing bit 5

 cmp al, 'Y' ; Is it Y?

 je yes ; If so, do Yes actions

 . ; Else do No actions

 .

yes: .

;OR example - compares operand to 0

 or bx, bx ; Compare to 0

 jg positive ; BX is positive

 jl negative ; BX is negative

 ; else BX is zero

;XOR example - sets a register to 0

 xor cx, cx ; 2 bytes, 3 clocks on 8088

 sub cx, cx ; 2 bytes, 3 clocks on 8088

 mov cx, 0 ; 3 bytes, 4 clocks on 8088

On the 80386/486 processors, the BSF (Bit Scan Forward) and the BSR (Bit Scan
Reverse) instructions perform operations like those of the logical instructions. They
scan the contents of a register to find the first-set or last-set bit. You can use BSF
or BSR to find the position of a set bit in a mask or to check if a register value is 0.

Shifting and Rotating Bits
The 8086-based processors provide a complete set of instructions for shifting and
rotating bits. Shift instructions move bits a specified number of places to the right or
left. The last bit in the direction of the shift goes into the carry flag, and the first bit
is filled with 0 or with the previous value of the first bit.

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 100 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 100

Chapter 4 Defining and Using Simple Data Types 101

Rotate instructions also move bits a specified number of places to the right or left.
For each bit rotated, the last bit in the direction of the rotate operation moves into
the first bit position at the other end of the operand. With some variations, the carry
bit is used as an additional bit of the operand. Figure 4.2 illustrates the eight
variations of shift and rotate instructions for 8-bit operands. Notice that SHL and
SAL are identical.

SHL (Shift Left)

SAL (Shift Arithmetic Left)

ROL (Rotate Left)

RCL (Rotate through
 Carry Left)

SHR (Shift Right)

SAR (Shift Arithmetic Right)

ROR (Rotate Right)

RCR (Rotate through
 Carry Right)

CF

CF

CF

CF

CF

CF

CF

CF

7

7

7

7

7

7

7

7

0

0

0

0

0

0

0

0

0

0

0

Figure 4.2 Shifts and Rotates

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 101 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 101

102 Programmer’s Guide

All shift instructions use the same format. Before the instruction executes, the
destination operand contains the value to be shifted; after the instruction executes, it
contains the shifted operand. The source operand contains the number of bits to
shift or rotate. It can be the immediate value 1 or the CL register. The 8088 and
8086 processors do not accept any other values or registers with these instructions.

Starting with the 80186 processor, you can use 8-bit immediate values larger than 1
as the source operand for shift or rotate instructions, as shown here:

 shr bx, 4 ; 9 clocks, 3 bytes on 80286

The following statements are equivalent if the program must run on the 8088 or
8086 processor:

 mov cl, 4 ; 2 clocks, 3 bytes on 80286

 shr bx, cl ; 9 clocks, 2 bytes on 80286

 ; 11 clocks, 5 bytes total

Masks for logical instructions can be shifted to new bit positions. For example, an
operand that masks off a bit or group of bits can be shifted to move the mask to a
different position, allowing you to mask off a different bit each time the mask is
used. This technique, illustrated in the following example, is useful only if the mask
value is unknown until run time.

 .DATA

masker BYTE 00000010y ; Mask that may change at run time

 .CODE

 .

 .

 .

 mov cl, 2 ; Rotate two at a time

 mov bl, 57h ; Load value to be changed 01010111y

 rol masker, cl ; Rotate two to left 00001000y

 or bl, masker ; Turn on masked values ---------

 ; New value is 05Fh 01011111y

 rol masker, cl ; Rotate two more 00100000y

 or bl, masker ; Turn on masked values ---------

 ; New value is 07Fh 01111111y

Multiplying and Dividing with Shift Instructions
You can use the shift and rotate instructions (SHR, SHL, SAR, and SAL) for
multiplication and division. Shifting a value right by one bit has the effect of
dividing by two; shifting left by 1 bit has the effect of multiplying by two. You can
take advantage of shifts to do fast multiplication and division by powers of two. For
example, shifting left twice multiplies by four, shifting left three times multiplies by
eight, and so on.

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 102 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 102

Chapter 4 Defining and Using Simple Data Types 103

Use SHR (Shift Right) to divide unsigned numbers. You can use SAR (Shift
Arithmetic Right) to divide signed numbers, but SAR rounds negative numbers
down — IDIV always rounds negative numbers up (toward 0). Division using SAR
must adjust for this difference. Multiplication by shifting is the same for signed and
unsigned numbers, so you can use either SAL or SHL.

Multiply and divide instructions are relatively slow, particularly on the 8088 and
8086 processors. When multiplying or dividing by a power of two, use shifts to
speed operations by a factor of 10 or more. For example, these statements take only
four clocks on an 8088 or 8086 processor:

 sub ah, ah ; Clear AH

 shl ax, 1 ; Multiply byte in AL by 2

The following statements produce the same results, but take between 74 and 81
clocks on the 8088 or 8086 processors. The same statements take 15 clocks on the
80286 and between 11 and 16 clocks on the 80386. (For a discussion about
instruction timings, see “A Word on Instruction Timings” in the Introduction.)

 mov bl, 2 ; Multiply byte in AL by 2

 mul bl

As the following macro shows, it’s possible to multiply by any number — in this
case, 10 — without resorting to the MUL instruction. However, such a procedure is
no more than an interesting arithmetic exercise, since the additional code almost
certainly takes more time to execute than a single MUL. You should consider using
shifts in your program only when multiplying or dividing by a power of two.

mul_10 MACRO factor ; Factor must be unsigned

 mov ax, factor ; Load into AX

 shl ax, 1 ; AX = factor * 2

 mov bx, ax ; Save copy in BX

 shl ax, 1 ; AX = factor * 4

 shl ax, 1 ; AX = factor * 8

 add ax, bx ; AX = (factor * 8) + (factor * 2)

 ENDM ; AX = factor * 10

Here’s another macro that divides by 512. In contrast to the previous example, this
macro uses little code and operates faster than an equivalent DIV instruction.

div_512 MACRO dividend ; Dividend must be unsigned

 mov ax, dividend ; Load into AX

 shr ax, 1 ; AX = dividend / 2 (unsigned)

 xchg al, ah ; XCHG is like rotate right 8

 ; AL = (dividend / 2) / 256

 cbw ; Clear upper byte

 ENDM ; AX = (dividend / 512)

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 103 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 103

104 Programmer’s Guide

If you need to shift a value that is too large to fit in one register, you can shift each
part separately. The RCR (Register Carry Right) and RCL (Register Carry Left)
instructions carry values from the first register to the second by passing the leftmost
or rightmost bit through the carry flag.

This example shifts a multiword value.

 .DATA

mem32 DWORD 500000

 .CODE

; Divide 32-bit unsigned by 16

 mov cx, 4 ; Shift right 4 500000

again: shr WORD PTR mem32[2], 1 ; Shift into carry DIV 16

 rcr WORD PTR mem32[0], 1 ; Rotate carry in ------

 loop again ; 31250

Since the carry flag is treated as part of the operand (it’s like using a 9-bit or 17-bit
operand), the flag value before the operation is crucial. The carry flag can be
adjusted by a previous instruction, but you can also set or clear the flag directly
with the CLC (Clear Carry Flag), CMC (Complement Carry Flag), and STC (Set
Carry Flag) instructions.

On the 80386 and 80486 processors, an alternate method for multiplying quickly by
constants takes advantage of the LEA (Load Effective Address) instruction and the
scaling of indirect memory operands. By using a 32-bit value as both the index and
the base register in an indirect memory operand, you can multiply by the constants
2, 3, 4, 5, 8, and 9 more quickly than you can by using the MUL instruction. LEA
calculates the offset of the source operand and stores it into the destination register,
EBX, as this example shows:

 lea ebx, [eax*2] ; EBX = 2 * EAX

 lea ebx, [eax*2+eax] ; EBX = 3 * EAX

 lea ebx, [eax*4] ; EBX = 4 * EAX

 lea ebx, [eax*4+eax] ; EBX = 5 * EAX

 lea ebx, [eax*8] ; EBX = 8 * EAX

 lea ebx, [eax*8+eax] ; EBX = 9 * EAX

Scaling of 80386 indirect memory operands is reviewed in “Indirect Memory
Operands with 32-Bit Registers” in Chapter 3. LEA is introduced in “Loading
Addresses into Registers” in Chapter 3.

The next chapter deals with more complex data types — arrays, strings, structures,
unions, and records. Many of the operations presented in this chapter can also be
applied to the data structures covered in Chapter 5, “Defining and Using Complex
Data Types.”

Filename: LMAPGC04.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 104 of 20 Printed: 03/06/94 05:55 PM
Printed On: Distiller Colorlayer: ? Document Page: 104

105

C H A P T E R 5

Defining and Using Complex
Data Types

With the complex data types available in MASM 6.1 — arrays, strings, records,
structures, and unions — you can access data as a unit or as individual elements that
make up a unit. The individual elements of complex data types are often the integer
types discussed in Chapter 4, “Defining and Using Simple Data Types.”

“Arrays and Strings” reviews how to declare, reference, and initialize arrays and
strings. This section summarizes the general steps needed to process arrays and
strings and describes the MASM instructions for moving, comparing, searching,
loading, and storing.

“Structures and Unions” covers similar information for structures and unions: how
to declare structure and union types, how to define structure and union variables,
and how to reference structures and unions and their fields.

“Records” explains how to declare record types, define record variables, and use
record operators.

Arrays and Strings
An array is a sequential collection of variables, all of the same size and type, called
“elements.” A string is an array of characters. For example, in the string “ABC,”
each letter is an element. You can access the elements in an array or string relative
to the first element. This section explains how to handle arrays and strings in your
programs.

Declaring and Referencing Arrays
Array elements occupy memory contiguously, so a program references each element
relative to the start of the array. To declare an array, supply a label name, the
element type, and a series of initializing values or ? placeholders. The following
examples declare the arrays warray and xarray:

warray WORD 1, 2, 3, 4

xarray DWORD 0FFFFFFFFh, 789ABCDEh

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 105 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 105

106 Programmer’s Guide

Initializer lists of array declarations can span multiple lines. The first initializer
must appear on the same line as the data type, all entries must be initialized, and, if
you want the array to continue to the new line, the line must end with a comma.
These examples show legal multiple-line array declarations:

big BYTE 21, 22, 23, 24, 25,

 26, 27, 28

somelist WORD 10,

 20,

 30

If you do not use the LENGTHOF and SIZEOF operators discussed later in this
section, an array may span more than one logical line, although a separate type
declaration is needed on each logical line:

var1 BYTE 10, 20, 30

 BYTE 40, 50, 60

 BYTE 70, 80, 90

The DUP Operator
You can also declare an array with the DUP operator. This operator works with
any of the data allocation directives described in “Allocating Memory for Integer
Variables” in Chapter 4. In the syntax

count DUP (initialvalue [[, initialvalue]]...)

the count value sets the number of times to repeat all values within the parentheses.
The initialvalue can be an integer, character constant, or another DUP operator,
and must always appear within parentheses. For example, the statement

barray BYTE 5 DUP (1)

allocates the integer 1 five times for a total of 5 bytes.

The following examples show various ways to allocate data elements with the DUP
operator:

array DWORD 10 DUP (1) ; 10 doublewords

 ; initialized to 1

buffer BYTE 256 DUP (?) ; 256-byte buffer

masks BYTE 20 DUP (040h, 020h, 04h, 02h) ; 80-byte buffer

 ; with bit masks

three_d DWORD 5 DUP (5 DUP (5 DUP (0))) ; 125 doublewords

 ; initialized to 0

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 106 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 106

Chapter 5 Defining and Using Complex Data Types 107

Referencing Arrays
Each element in an array is referenced with an index number, beginning with zero.
The array index appears in brackets after the array name, as in

array[9]

Assembly-language indexes differ from indexes in high-level languages, where the
index number always corresponds to the element’s position. In C, for example,
array[9] references the array’s tenth element, regardless of whether each element
is 1 byte or 8 bytes in size.

In assembly language, an element’s index refers to the number of bytes between the
element and the start of the array. This distinction can be ignored for arrays of byte-
sized elements, since an element’s position number matches its index. For example,
defining the array

prime BYTE 1, 3, 5, 7, 11, 13, 17

gives a value of 1 to prime[0], a value of 3 to prime[1], and so forth.

However, in arrays with elements larger than 1 byte, index numbers (except zero)
do not correspond to an element’s position. You must multiply an element’s position
by its size to determine the element’s index. Thus, for the array

wprime WORD 1, 3, 5, 7, 11, 13, 17

wprime[4] represents the third element (5), which is 4 bytes from the beginning of
the array. Similarly, the expression wprime[6] represents the fourth element (7)
and wprime[10] represents the sixth element (13).

The following example determines an index at run time. It multiplies the position by
two (the size of a word element) by shifting it left:

 mov si, cx ; CX holds position number

 shl si, 1 ; Scale for word referencing

 mov ax, wprime[si] ; Move element into AX

The offset required to access an array element can be calculated with the following
formula:

nth element of array = array[(n-1) * size of element]

Referencing an array element by distance rather than position is not difficult to
master, and is actually very consistent with how assembly language works. Recall
that a variable name is a symbol that represents the contents of a particular address
in memory. Thus, if the array wprime begins at address DS:2400h, the reference
wprime[6] means to the processor “the word value contained in the DS segment
at offset 2400h-plus-6-bytes.”

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 107 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 107

108 Programmer’s Guide

As described in “Direct Memory Operands,” Chapter 3, you can substitute the plus
operator (+) for brackets, as in:

wprime[9]

wprime+9

Since brackets simply add a number to an address, you don’t need them when
referencing the first element. Thus, wprime and wprime[0] both refer to the first
element of the array wprime.

If your program runs only on an 80186 processor or higher, you can use the
BOUND instruction to verify that an index value is within the bounds of an array.
For a description of BOUND, see the Reference.

LENGTHOF, SIZEOF, and TYPE for Arrays
When applied to arrays, the LENGTHOF, SIZEOF, and TYPE operators return
information about the length and size of the array and about the type of the
initializers.

The LENGTHOF operator returns the number of elements in the array. The
SIZEOF operator returns the number of bytes used by the initializers in the array
definition. TYPE returns the size of the elements of the array. The following
examples illustrate these operators:

array WORD 40 DUP (5)

larray EQU LENGTHOF array ; 40 elements

sarray EQU SIZEOF array ; 80 bytes

tarray EQU TYPE array ; 2 bytes per element

num DWORD 4, 5, 6, 7, 8, 9, 10, 11

lnum EQU LENGTHOF num ; 8 elements

snum EQU SIZEOF num ; 32 bytes

tnum EQU TYPE num ; 4 bytes per element

warray WORD 40 DUP (40 DUP (5))

len EQU LENGTHOF warray ; 1600 elements

siz EQU SIZEOF warray ; 3200 bytes

typ EQU TYPE warray ; 2 bytes per element

Declaring and Initializing Strings
A string is an array of characters. Initializing a string like "Hello, there"
allocates and initializes 1 byte for each character in the string. An initialized string
can be no longer than 255 characters.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 108 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 108

Chapter 5 Defining and Using Complex Data Types 109

For data directives other than BYTE, a string may initialize only the first element.
The initializer value must fit into the specified size and conform to the expression
word size in effect (see “Integer Constants and Constant Expressions” in Chapter
1), as shown in these examples:

wstr WORD "OK"

dstr DWORD "DATA" ; Legal under EXPR32 only

As with arrays, string initializers can span multiple lines. The line must end with a
comma if you want the string to continue to the next line.

str1 BYTE "This is a long string that does not ",

 "fit on one line."

You can also have an array of pointers to strings.

PBYTE TYPEDEF PTR BYTE

 .DATA

msg1 BYTE "Operation completed successfully."

msg2 BYTE "Unknown command"

msg3 BYTE "File not found"

pmsg PBYTE msg1 ; pmsg is an array

 PBBYTE msg2 ; of pointers to

 PBYTE msg3 ; above messages

Strings must be enclosed in single (') or double (") quotation marks. To put a single
quotation mark inside a string enclosed by single quotation marks, use two single
quotation marks. Likewise, if you need quotation marks inside a string enclosed by
double quotation marks, use two sets. These examples show the various uses of
quotation marks:

char BYTE 'a'

message BYTE "That's the message." ; That's the message.

warn BYTE 'Can''t find file.' ; Can't find file.

string BYTE "This ""value"" not found." ; This "value" not found.

You can always use single quotation marks inside a string enclosed by double
quotation marks, as the initialization for message shows, and vice versa.

The ? Initializer
You do not have to initialize an array. The ? operator lets you allocate space for the
array without placing specific values in it. Object files contain records for
initialized data. Unspecified space left in the object file means that no records
contain initialized data for that address. The actual values stored in arrays allocated
with ? depend on certain conditions. The ? initializer is treated as a zero in a DUP
statement that contains initializers in addition to the ? initializer. If the ? initializer
does not appear in a DUP statement, or if the DUP statement contains only ?
initializers, the assembler leaves the allocated space unspecified.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 109 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 109

110 Programmer’s Guide

LENGTHOF, SIZEOF, and TYPE for Strings
Because strings are simply arrays of byte elements, the LENGTHOF, SIZEOF,
and TYPE operators behave as you would expect, as illustrated in this example:

msg BYTE "This string extends ",

 "over three ",

 "lines."

lmsg EQU LENGTHOF msg ; 37 elements

smsg EQU SIZEOF msg ; 37 bytes

tmsg EQU TYPE msg ; 1 byte per element

Processing Strings
The 8086-family instruction set has seven string instructions for fast and efficient
processing of entire strings and arrays. The term “string” in “string instructions”
refers to a sequence of elements, not just character strings. These instructions work
directly only on arrays of bytes and words on the 8086–80486 processors, and on
arrays of bytes, words, and doublewords on the 80386/486 processors. Processing
larger elements must be done indirectly with loops.

The following list gives capsule descriptions of the five instructions discussed in
this section.

Instruction Description

MOVS Copies a string from one location to another

STOS Stores contents of the accumulator register to a string

CMPS Compares one string with another

LODS Loads values from a string to the accumulator register

SCAS Scans a string for a specified value

All of these instructions use registers in a similar way and have a similar syntax.
Most are used with the repeat instruction prefixes REP, REPE (or REPZ), and
REPNE (or REPNZ). REPZ is a synonym for REPE (Repeat While Equal) and
REPNZ is a synonym for REPNE (Repeat While Not Equal).

This section first explains the general procedures for using all string instructions. It
then illustrates each instruction with an example.

Overview of String Instructions
The string instructions have specific requirements for the location of strings and the
use of registers. To operate on any string, follow these three steps:

1. Set the direction flag to indicate the direction in which you want to process the
string. The STD instruction sets the flag, while CLD clears it.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 110 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 110

Chapter 5 Defining and Using Complex Data Types 111

If the direction flag is clear, the string is processed upward (from low addresses
to high addresses, which is from left to right through the string). If the direction
flag is set, the string is processed downward (from high addresses to low
addresses, or from right to left). Under MS-DOS, the direction flag is normally
clear if your program has not changed it.

2. Load the number of iterations for the string instruction into the CX register.

If you want to process 100 elements in a string, move 100 into CX. If you wish
the string instruction to terminate conditionally (for example, during a search
when a match is found), load the maximum number of iterations that can be
performed without an error.

3. Load the starting offset address of the source string into DS:SI and the starting
address of the destination string into ES:DI. Some string instructions take only a
destination or source, not both (see Table 5.1).

Normally, the segment address of the source string should be DS, but you can
use a segment override to specify a different segment for the source operand.
You cannot override the segment address for the destination string. Therefore,
you may need to change the value of ES. For information on changing segment
registers, see “Programming Segmented Addresses” in Chapter 3.

Note Although you can use a segment override on the source operand, a segment
override combined with a repeat prefix can cause problems in certain situations on
all processors except the 80386/486. If an interrupt occurs during the string
operation, the segment override is lost and the rest of the string operation processes
incorrectly. Segment overrides can be used safely when interrupts are turned off or
with the 80386/486 processors.

You can adapt these steps to the requirements of any particular string operation.
The syntax for the string instructions is:

[[prefix]] CMPS [[segmentregister:]] source, [[ES:]] destination
LODS [[segmentregister:]] source

[[prefix]] MOVS [[ES:]] destination, [[segmentregister:]] source
[[prefix]] SCAS [[ES:]] destination
[[prefix]] STOS [[ES:]] destination

Some instructions have special forms for byte, word, or doubleword operands. If
you use the form of the instruction that ends in B (BYTE), W (WORD), or D
(DWORD) with LODS, SCAS, and STOS, the assembler knows whether the
element is in the AL, AX, or EAX register. Therefore, these instruction forms do
not require operands.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 111 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 111

112 Programmer’s Guide

Table 5.1 lists each string instruction with the type of repeat prefix it uses and
indicates whether the instruction works on a source, a destination, or both.

Table 5.1 Requirements for String Instructions

Instruction Repeat Prefix Source/Destination Register Pair

MOVS REP Both DS:SI, ES:DI

SCAS REPE/REPNE Destination ES:DI

CMPS REPE/REPNE Both DS:SI, ES:DI

LODS None Source DS:SI

STOS REP Destination ES:DI

INS REP Destination ES:DI

OUTS REP Source DS:SI

The repeat prefix causes the instruction that follows it to repeat for the number of
times specified in the count register or until a condition becomes true. After each
iteration, the instruction increments or decrements SI and DI so that it points to the
next array element. The direction flag determines whether SI and DI are
incremented (flag clear) or decremented (flag set). The size of the instruction
determines whether SI and DI are altered by 1, 2, or 4 bytes each time.

Each prefix governs the number of repetitions as follows:

Prefix Description

REP Repeats instruction CX times

REPE, REPZ Repeats instruction maximum CX times while values are equal

REPNE, REPNZ Repeats instruction maximum CX times while values are not equal

The prefixes apply to only one string instruction at a time. To repeat a block of
instructions, use a loop construction. (See “Loops” in Chapter 7.)

At run time, if a string instruction is preceded by a repeat sequence, the processor:

1. Checks the CX register and exits if CX is 0.

2. Performs the string operation once.

3. Increases SI and/or DI if the direction flag is clear. Decreases SI and/or DI if the
direction flag is set. The amount of increase or decrease is 1 for byte operations,
2 for word operations, and 4 for doubleword operations.

4. Decrements CX without modifying the flags.

5. Checks the zero flag (for SCAS or CMPS) if the REPE or REPNE prefix is
used. If the repeat condition holds, loops back to step 1. Otherwise, the loop
ends and execution proceeds to the next instruction.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 112 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 112

Chapter 5 Defining and Using Complex Data Types 113

When the repeat loop ends, SI (or DI) points to the position following a match
(when using SCAS or CMPS), so you need to decrement or increment DI or SI to
point to the element where the last match occurred.

Although string instructions (except LODS) are used most often with repeat
prefixes, they can also be used by themselves. In these cases, the SI and/or DI
registers are adjusted as specified by the direction flag and the size of operands.

Using String Instructions
To use the 8086-family string instructions, follow the steps outlined in the previous
section. Examples in this section illustrate each instruction.

You can also use the techniques in this section with structures and unions, since
arrays and strings can be fields in structures and unions. (See the section
“Structures and Unions,” following.)

Moving Array Data
The MOVS instruction copies data from one area of memory to another. To move
data, first load the count, source and destination addresses into the appropriate
registers. Then use REP with the MOVS instruction.

 .MODEL small

 .DATA

source BYTE 10 DUP ('0123456789')

destin BYTE 100 DUP (?)

 .CODE

 mov ax, @data ; Load same segment

 mov ds, ax ; to both DS

 mov es, ax ; and ES

 .

 .

 .

 cld ; Work upward

 mov cx, LENGTHOF source ; Set iteration count to 100

 mov si, OFFSET source ; Load address of source

 mov di, OFFSET destin ; Load address of destination

 rep movsb ; Move 100 bytes

Filling Arrays
The STOS instruction stores a specified value in each position of a string. The
string is the destination, so it must be pointed to by ES:DI. The value to store must
be in the accumulator.

The next example stores the character 'a' in each byte of a 100-byte string, filling
the entire string with “aaaa....” Notice how the code stores 50 words rather than

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 113 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 113

114 Programmer’s Guide

100 bytes. This makes the fill operation faster by reducing the number of iterations.
To fill an odd number of bytes, you need to adjust for the last byte.

 .MODEL small, C

 .DATA

destin BYTE 100 DUP (?)

ldestin EQU (LENGTHOF destin) / 2

 .CODE

 . ; Assume ES = DS

 .

 .

 cld ; Work upward

 mov ax, 'aa' ; Load character to fill

 mov cx, ldestin ; Load length of string

 mov di, OFFSET destin ; Load address of destination

 rep stosw ; Store 'aa' into array

Comparing Arrays
The CMPS instruction compares two strings and points to the address after which a
match or nonmatch occurs. If the values are the same, the zero flag is set. Either
string can be considered the destination or the source unless a segment override is
used. This example using CMPSB assumes that the strings are in different
segments. Both segments must be initialized to the appropriate segment register.

 .MODEL large, C

 .DATA

string1 BYTE "The quick brown fox jumps over the lazy dog"

 .FARDATA

string2 BYTE "The quick brown dog jumps over the lazy fox"

lstring EQU LENGTHOF string2

 .CODE

 mov ax, @data ; Load data segment

 mov ds, ax ; into DS

 mov ax, @fardata ; Load far data segment

 mov es, ax ; into ES

 .

 .

 .

 cld ; Work upward

 mov cx, lstring ; Load length of string

 mov si, OFFSET string1 ; Load offset of string1

 mov di, OFFSET string2 ; Load offset of string2

 repe cmpsb ; Compare

 je allmatch ; Jump if all match

 .

 .

 .

allmatch: ; Special case for all match

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 114 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 114

Chapter 5 Defining and Using Complex Data Types 115

Loading Data from Arrays
The LODS instruction loads a value from a string into the accumulator register.
This instruction is not used with a repeat instruction prefix, since continually
reloading the accumulator serves no purpose.

The code in this example loads, processes, and displays each byte in a string.

 .DATA

info BYTE 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

linfo WORD LENGTHOF info

 .CODE

 .

 .

 .

 cld ; Work upward

 mov cx, linfo ; Load length

 mov si, OFFSET info ; Load offset of source

 mov ah, 2 ; Display character function

get:

 lodsb ; Get a character

 add al, '0' ; Convert to ASCII

 mov dl, al ; Move to DL

 int 21h ; Call DOS to display character

 loop get ; Repeat

Searching Arrays
The SCAS instruction compares the value pointed to by ES:DI with the value in the
accumulator. If both values are the same, it sets the zero flag.

A repeat prefix lets SCAS work on an entire string, scanning (from which SCAS
gets its name) for a particular value called the target. REPNE SCAS sets the zero
flag if it finds the target value in the array. REPE SCAS sets the zero flag if the
scanned array contains nothing but the target value.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 115 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 115

116 Programmer’s Guide

This example assumes that ES is not the same as DS and that the address of the
string is stored in a pointer variable. The LES instruction loads the far address of
the string into ES:DI.

 .DATA

string BYTE "The quick brown fox jumps over the lazy dog"

pstring PBYTE string ; Far pointer to string

lstring EQU LENGTHOF string ; Length of string

 .CODE

 .

 .

 .

 cld ; Work upward

 mov cx, lstring ; Load length of string

 les di, pstring ; Load address of string

 mov al, 'z' ; Load character to find

 repne scasb ; Search

 jne notfound ; Jump if not found

 . ; ES:DI points to character

 . ; after first 'z'

 .

notfound: ; Special case for not found

Translating Data in Byte Arrays
The XLAT (Translate) instruction copies a byte from an array of bytes into the AL
register. The instruction takes its name from its ability to translate an element’s
number into the element itself. For example, given the number 7, XLAT returns
byte #7 from the array. The array may hold byte-sized integers or, very often, a
table or list of characters. The syntax for XLAT is:

XLAT[[B]] [[[[segment:]]memory]]

The optional B suffix (for “byte”) reflects the size of data the instruction handles.
Both XLAT and XLATB assemble to exactly the same machine code.

To use XLAT, place the offset of the start of the array in the BX register and the
desired index value in AL. Array indexes always begin with 0 in assembly
language. To retrieve the first byte of the array, set AL to 0; to retrieve the second
byte, set AL to 1, and so forth. XLAT returns the byte element in AL, overwriting
the index number.

By default, the DS register contains the segment of the table, but you can use a
segment override to specify a different segment. You need not give an operand
except when specifying a segment override. (For information about the segment
override operator, see “Direct Memory Operands” in Chapter 3.)

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 116 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 116

Chapter 5 Defining and Using Complex Data Types 117

This example illustrates XLAT by looking up hexadecimal characters in a list. The
code converts an eight-bit binary number to a string representing a hexadecimal
number.

; Table of hexadecimal digits

hex BYTE "0123456789ABCDEF"

convert BYTE "You pressed the key with ASCII code "

key BYTE ?,?,"h",13,10,"$"

 .CODE

 .

 .

 .

 mov ah, 8 ; Get a key in AL

 int 21h ; Call DOS

 mov bx, OFFSET hex ; Load table address

 mov ah, al ; Save a copy in high byte

 and al, 00001111y ; Mask out top character

 xlat ; Translate

 mov key[1], al ; Store the character

 mov cl, 12 ; Load shift count

 shr ax, cl ; Shift high char into position

 xlat ; Translate

 mov key, al ; Store the character

 mov dx, OFFSET convert ; Load message

 mov ah, 9 ; Display character

 int 21h ; Call DOS

Although AL cannot contain an index value greater than 255, you can use XLAT
with arrays containing more than 256 elements. Simply treat each 256-byte block of
the array as a smaller sub-array. For example, to retrieve the 260th element of an
array, add 256 to BX and set AL=3 (260-256-1).

Structures and Unions
A structure is a group of possibly dissimilar data types and variables that can be
accessed as a unit or by any of its components. The fields within the structure can
have different sizes and data types.

Unions are identical to structures, except that the fields of a union overlap in
memory, which allows you to define different data formats for the same memory
space. Unions can store different types of data depending on the situation. They also
can store data as one data type and retrieve it as another data type.

Whereas each field in a structure has an offset relative to the first byte of the
structure, all the fields in a union start at the same offset. The size of a structure is
the sum of its components; the size of a union is the length of the longest field.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 117 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 117

118 Programmer’s Guide

A MASM structure is similar to a struct in the C language, a STRUCTURE in
FORTRAN, and a RECORD in Pascal. Unions in MASM are similar to unions in
C and FORTRAN, and to variant records in Pascal.

Follow these steps when using structures and unions:

1. Declare a structure (or union) type.

2. Define one or more variables having that type.

3. Reference the fields directly or indirectly with the field (dot) operator.

You can use the entire structure or union variable or just the individual fields as
operands in assembler statements. This section explains the allocating, initializing,
and nesting of structures and unions.

MASM 6.1 extends the functionality of structures and also makes some changes to
MASM 5.1 behavior. If you prefer, you can retain MASM 5.1 behavior by
specifying OPTION OLDSTRUCTS in your program.

Declaring Structure and Union Types
When you declare a structure or union type, you create a template for data. The
template states the sizes and, optionally, the initial values in the structure or union,
but allocates no memory.

The STRUCT keyword marks the beginning of a type declaration for a structure.
(STRUCT and STRUC are synonyms.) The format for STRUCT and UNION
type declarations is:

name {STRUCT | UNION} [[alignment]] [[,NONUNIQUE]]
fielddeclarations
name ENDS

The fielddeclarations is a series of one or more variable declarations. You can
declare default initial values individually or with the DUP operator. (See “Defining
Structure and Union Variables,” following.) “Referencing Structures, Unions, and
Fields,” later in this chapter, explains the NONUNIQUE keyword. You can nest
structures and unions, as explained in “Nested Structures and Unions,” also later in
this chapter.

Initializing Fields
If you provide initializers for the fields of a structure or union when you declare the
type, these initializers become the default value for the fields when you define a
variable of that type. “Defining Structure and Union Variables,” following,
explains default initializers.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 118 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 118

Chapter 5 Defining and Using Complex Data Types 119

When you initialize the fields of a union type, the type and value of the first field
become the default value and type for the union. In this example of an initialized
union declaration, the default type for the union is DWORD:

DWB UNION

 d DWORD 00FFh

 w WORD ?

 b BYTE ?

DWB ENDS

If the size of the first member is less than the size of the union, the assembler
initializes the rest of the union to zeros. When initializing strings in a type, make
sure the initial values are long enough to accommodate the largest possible string.

Field Names
Structure and union field names must be unique within a nesting level because they
represent the offset from the beginning of the structure to the corresponding field.

A label elsewhere in the code may have the same name as a structure field, but a
text macro cannot. Also, field names between structures need not be unique. Field
names must be unique if you place OPTION M510 or OPTION OLDSTRUCTS
in your code or use the /Zm option from the command line, since versions of
MASM prior to 6.0 require unique field names. (See Appendix A.)

Alignment Value and Offsets for Structures
Data access to structures is faster on aligned fields than on unaligned fields.
Therefore, alignment gains speed at the cost of space. Alignment improves access
on 16-bit and 32-bit processors but makes no difference in programs executing on
an 8-bit 8088 processor.

The way the assembler aligns structure fields determines the amount of space
required to store a variable of that type. Each field in a structure has an offset
relative to 0. If you specify an alignment in the structure declaration (or with the
/Zpn command-line option), the offset for each field may be modified by the
alignment (or n).

The only values accepted for alignment are 1, 2, and 4. The default is 1. If the type
declaration includes an alignment, each field is aligned to either the field’s size or
the alignment value, whichever is less. If the field size in bytes is greater than the
alignment value, the field is padded so that its offset is evenly divisible by the
alignment value. Otherwise, the field is padded so that its offset is evenly divisible
by the field size.

Any padding required to reach the correct offset for the field is added prior to
allocating the field. The padding consists of zeros and always precedes the aligned
field. The size of the structure must also be evenly divisible by the structure
alignment value, so zeros may be added at the end of the structure.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 119 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 119

120 Programmer’s Guide

If neither the alignment nor the /Zp command-line option is used, the offset is
incremented by the size of each data directive. This is the same as a default
alignment equal to 1. The alignment specified in the type declaration overrides the
/Zp command-line option.

These examples show how the assembler determines offsets:

STUDENT2 STRUCT 2 ; Alignment value is 2

 score WORD 1 ; Offset = 0

 id BYTE 2 ; Offset = 2 (1 byte padding added)

 year DWORD 3 ; Offset = 4

 sname BYTE 4 ; Offset = 8 (1 byte padding added)

STUDENT2 ENDS

One byte of padding is added at the end of the first byte-sized field. Otherwise, the
offset of the year field would be 3, which is not divisible by the alignment value of
2. The size of this structure is now 9 bytes. Since 9 is not evenly divisible by 2, 1
byte of padding is added at the end of student2.

STUDENT4 STRUCT 4 ; Alignment value is 4

 sname BYTE 1 ; Offset = 0 (1 byte padding added)

 score WORD 10 DUP (100) ; Offset = 2

 year BYTE 2 ; Offset = 22 (1 byte padding

 ; added so offset of next field

 ; is divisible by 4)

 id DWORD 3 ; Offset = 24

STUDENT4 ENDS

The alignment value affects the alignment of structure variables, so adding an
alignment value affects memory usage. This feature provides compatibility with
structures in Microsoft C. MASM 6.1 provides an improved H2INC utility, which
C programmers can use to translate C structures to assembly. (See Environment
and Tools, Chapter 20.)

The ALIGN, EVEN, and ORG directives can modify how field offsets are placed
during structure definition. The EVEN and ALIGN directives insert padding bytes
to round the field offset up to the specified alignment boundary. The ORG directive
changes the offset of the next field to a given value, either positive or negative. If
you use ORG when declaring a structure, you cannot define a structure of that type.
ORG is useful when accessing existing data structures, such as a stack frame
created by a high-level language.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 120 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 120

Chapter 5 Defining and Using Complex Data Types 121

Defining Structure and Union Variables
Once you have declared a structure or union type, you can define variables of that
type. For each variable defined, memory is allocated in the current segment in the
format declared by the type. The syntax for defining a structure or union variable is:

[[name]] typename < [[initializer [[,initializer]]...]] >

[[name]] typename { [[initializer [[,initializer]]...]] }

[[name]] typename constant DUP ({ [[initializer [[,initializer]]...]] })

The name is the label assigned to the variable. If you do not provide a name, the
assembler allocates space for the variable but does not give it a symbolic name. The
typename is the name of a previously declared structure or union type.

You can give an initializer for each field. Each initializer must correspond in type
with the field defined in the type declaration. For unions, the type of the initializer
must be the same as the type for the first field. An initialization list can also use the
DUP operator.

The list of initializers can be broken only after a comma unless you end the line
with a continuation character (\). The last curly brace or angle bracket must appear
on the same line as the last initializer. You can also use the line continuation
character to extend a line as shown in the Item4 declaration that follows. Angle
brackets and curly braces can be intermixed in an initialization as long as they
match. This example illustrates the options for initializing lists in structures of type
ITEMS:

ITEMS STRUCT

 Iname BYTE 'Item Name'

 Inum WORD ?

 UNION ITYPE ; UNION keyword appears first

 oldtype BYTE 0 ; when nested in structure.

 newtype WORD ? ; (See "Nested Structures

 ENDS ; and Unions," following).

ITEMS ENDS

 .

 .

 .

 .DATA

Item1 ITEMS < > ; Accepts default initializers

Item2 ITEMS { } ; Accepts default initializers

Item3 ITEMS <'Bolts', 126> ; Overrides default value of first

 ; 2 fields; use default of

 ; the third field

Item4 ITEMS { \

 'Bolts', ; Item name

 126 \ ; Part number

 }

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 121 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 121

122 Programmer’s Guide

The example defines — that is, allocates space for — four structures of the ITEMS
type. The structures are named Item1 through Item4. Each definition requires the
angle brackets or curly braces even when not initialized. If you initialize more than
one field, separate the values with commas, as shown in Item3 and Item4.

You need not initialize all fields in a structure. If a field is blank, the assembler
uses the structure’s initial value given for that field in the declaration. If there is no
default value, the field value is left unspecified.

For nested structures or unions, however, these are equivalent:

Item5 ITEMS {'Bolts', , }

Item6 ITEMS {'Bolts', , { } }

A variable and an array of union type WB look like this:

WB UNION

 w WORD ?

 b BYTE ?

WB ENDS

num WB {0Fh} ; Store 0Fh

array WB (40 / SIZEOF WB) DUP ({2}) ; Allocates and

 ; initializes 20 unions

02 02 02 02. . .

array[0] array[2] array[4] array[18]

Arrays as Field Initializers
The size of the initializer determines the length of the array that can override the
contents of a field in a variable definition. The override cannot contain more
elements than the default. Specifying fewer override array elements changes the
first n values of the default where n is the number of values in the override. The rest
of the array elements take their default values from the initializer.

Strings as Field Initializers
If the override is shorter, the assembler pads the override with spaces to equal the
length of the initializer. If the initializer is a string and the override value is not a
string, the override value must be enclosed in angle brackets or curly braces.

A string can override any member of type BYTE (or SBYTE). You need not
enclose the string in angle brackets or curly braces unless mixed with other override
methods.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 122 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 122

Chapter 5 Defining and Using Complex Data Types 123

If a structure has an initialized string field or an array of bytes, any new string
assigned to a variable of the field that is smaller than the default is padded with
spaces. The assembler adds four spaces at the end of 'Bolts' in the variables of
type ITEMS previously shown. The Iname field in the ITEMS structure cannot
contain a field initializer longer than 'Item Name'.

Structures as Field Initializers
Initializers for structure variables must be enclosed in curly braces or angle
brackets, but you can specify overrides with fewer elements than the defaults.

This example illustrates the use of default values with structures as field
initializers:

DISKDRIVES STRUCT

 a1 BYTE ?

 b1 BYTE ?

 c1 BYTE ?

DISKDRIVES ENDS

INFO STRUCT

 buffer BYTE 100 DUP (?)

 crlf BYTE 13, 10

 query BYTE 'Filename: ' ; String <= can override

 endmark BYTE 36

 drives DISKDRIVES <0, 1, 1>

INFO ENDS

info1 INFO { , , 'Dir' }

; Next line illegal since name in query field is too long:

; info2 INFO {"TESTFILE", , "DirectoryName"}

lotsof INFO { , , 'file1', , {0,0,0} },

 { , , 'file2', , {0,0,1} },

 { , , 'file3', , {0,0,2} }

The following diagram shows how the assembler stores info1.

0 1 2 99

? ? ? ? 13 10 D i r 36 0 1 1 . . .

buffer crlf query

endmark

drives.a1

drives.b1

drives.c1

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 123 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 123

124 Programmer’s Guide

The initialization for drives gives default values for all three fields of the
structure. The fields left blank in info1 use the default values for those fields. The
info2 declaration is illegal because “DirectoryName” is longer than the initial
string for that field.

Arrays of Structures and Unions
You can define an array of structures using the DUP operator (see “Declaring and
Referencing Arrays,” earlier in this chapter) or by creating a list of structures. For
example, you can define an array of structure variables like this:

Item7 ITEMS 30 DUP ({,,{10}})

The Item7 array defined here has 30 elements of type ITEMS, with the third field
of each element (the union) initialized to 10.

You can also list array elements as shown in the following example.

Item8 ITEMS {'Bolts', 126, 10},

 {'Pliers',139, 10},

 {'Saws', 414, 10}

Redeclaring a Structure
The assembler generates an error when you declare a structure more than once
unless the following are the same:

◆ Field names

◆ Offsets of named fields

◆ Initialization lists

◆ Field alignment value

LENGTHOF, SIZEOF, and TYPE for Structures
The size of a structure determined by SIZEOF is the offset of the last field, plus the
size of the last field, plus any padding required for proper alignment. (For
information about alignment, see “Declaring Structure and Union Types,” earlier in
this chapter.)

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 124 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 124

Chapter 5 Defining and Using Complex Data Types 125

This example, using the preceding data declarations, shows how to use the
LENGTHOF, SIZEOF, and TYPE operators with structures.

INFO STRUCT

 buffer BYTE 100 DUP (?)

 crlf BYTE 13, 10

 query BYTE 'Filename: '

 endmark BYTE 36

 drives DISKDRIVES <0, 1, 1>

INFO ENDS

info1 INFO { , , 'Dir' }

lotsof INFO { , , 'file1', , {0,0,0} },

 { , , 'file2', , {0,0,1} },

 { , , 'file3', , {0,0,2} }

sinfo1 EQU SIZEOF info1 ; 116 = number of bytes in

 ; initializers

linfo1 EQU LENGTHOF info1 ; 1 = number of items

tinfo1 EQU TYPE info1 ; 116 = same as size

slotsof EQU SIZEOF lotsof ; 116 * 3 = number of bytes in

 ; initializers

llotsof EQU LENGTHOF lotsof ; 3 = number of items

tlotsof EQU TYPE lotsof ; 116 = same as size for structure

 ; of type INFO

LENGTHOF, SIZEOF, and TYPE for Unions
The size of a union determined by SIZEOF is the size of the longest field plus any
padding required. The length of a union variable determined by LENGTHOF
equals the number of initializers defined inside angle brackets or curly braces.
TYPE returns a value indicating the type of the longest field.

DWB UNION

 d DWORD ?

 w WORD ?

 b BYTE ?

DWB ENDS

num DWB {0FFFFh}

array DWB (100 / SIZEOF DWB) DUP ({0})

snum EQU SIZEOF num ; = 4

lnum EQU LENGTHOF num ; = 1

tnum EQU TYPE num ; = 4

sarray EQU SIZEOF array ; = 100 (4*25)

larray EQU LENGTHOF array ; = 25

tarray EQU TYPE array ; = 4

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 125 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 125

126 Programmer’s Guide

Referencing Structures, Unions, and Fields
Like other variables, structure variables can be accessed by name. You can access
fields within structure variables with this syntax:

variable. field

References to fields must always be fully qualified, with the structure or union
names and the dot operator preceding the field name. The assembler requires that
you use the dot operator only with structure fields, not as an alternative to the plus
operator; nor can you use the plus operator as an alternative to the dot operator.

The following example shows several ways to reference the fields of a structure of
type DATE.

DATE STRUCT ; Defines structure type

 month BYTE ?

 day BYTE ?

 year WORD ?

DATE ENDS

yesterday DATE {1, 20, 1993} ; Declare structure

 ; variable

 .

 .

 .

 mov al, yesterday.day ; Use structure variables

 mov bx, OFFSET yesterday ; Load structure address

 mov al, (DATE PTR [bx]).month ; Use as indirect operand

 mov al, [bx].date.month ; This is necessary only if

 ; month is already a

 ; field in a different

 ; structure

Under OPTION M510 or OPTION OLDSTRUCTS, unique structure names do
not need to be qualified. However, if the NONUNIQUE keyword appears in a
structure definition, all fields of the structure must be fully qualified when
referenced, even if the OPTION OLDSTRUCTS directive appears in the code.
Also, you must qualify all references to a field. (For information on the OPTION
directive, see Chapter 1.)

Even if the initialized union is the size of a WORD or DWORD, members of
structures or unions are accessible only through the field’s names.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 126 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 126

Chapter 5 Defining and Using Complex Data Types 127

In the following example, the two MOV statements show how you can access the
elements of an array of unions.

WB UNION

 w WORD ?

 b BYTE ?

WB ENDS

array WB (100 / SIZEOF WB) DUP ({0})

 mov array[12].w, 40h

 mov array[32].b, 2

4 00 20 0 0.

array.w[12] array.b[32]

. . .

As the preceding code illustrates, you can use unions to access the same data in
more than one form. One application of structures and unions is to simplify the task
of reinitializing a far pointer. For a far pointer declared as

FPWORD TYPEDEF FAR PTR WORD

 .DATA

WordPtr FPWORD ?

you must follow these steps to point WordPtr to a word value named ThisWord in
the current data segment.

 mov WORD PTR WordPtr[2], ds

 mov WORD PTR WordPtr, OFFSET ThisWord

The preceding method requires that you remember whether the segment or the offset
is stored first. However, if your program declares a union like this:

uptr UNION

 dwptr FPWORD 0

 STRUCT

 offs WORD 0

 segm WORD 0

 ENDS

uptr ENDS

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 127 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 127

128 Programmer’s Guide

You can initialize a far pointer with these steps:

 .DATA

WrdPtr2 uptr <>

 .

 .

 .

 mov WrdPtr2.segm, ds

 mov WrdPtr2.offs, OFFSET ThisWord

This code moves the segment and the offset into the pointer and then moves the
pointer into a register with the other field of the union. Although this technique does
not reduce the code size, it avoids confusion about the order for loading the segment
and offset.

Nested Structures and Unions
You can nest structures and unions in several ways. This section explains how to
refer to the fields in a nested structure or union. The following example illustrates
the four techniques for nesting, and how to reference the fields. Note the syntax for
nested structures. The techniques are reviewed following the example.

ITEMS STRUCT

 Inum WORD ?

 Iname BYTE 'Item Name'

ITEMS ENDS

INVENTORY STRUCT

 UpDate WORD ?

 oldItem ITEMS { \

 100,

 'AF8' \ ; Named variable of

 } ; existing structure

 ITEMS { ?, '94C' } ; Unnamed variable of

 ; existing type

 STRUCT ups ; Named nested structure

 source WORD ?

 shipmode BYTE ?

 ENDS

 STRUCT ; Unnamed nested structure

 f1 WORD ?

 f2 WORD ?

 ENDS

INVENTORY ENDS

 .DATA

yearly INVENTORY { }

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 128 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 128

Chapter 5 Defining and Using Complex Data Types 129

; Referencing each type of data in the yearly structure:

 mov ax, yearly.oldItem.Inum

 mov yearly.ups.shipmode, 'A'

 mov yearly.Inum, 'C'

 mov ax, yearly.f1

To nest structures and unions, you can use any of these techniques:

◆ The field of a structure or union can be a named variable of an existing structure
or union type, as in the oldItem field. Because INVENTORY contains two
structures of type ITEMS , the field names in oldItem are not unique.
Therefore, you must use the full field names when referencing those fields, as in
the statement

 mov ax, yearly.oldItem.Inum

◆ To declare a named structure or union inside another structure or union, give the
STRUCT or UNION keyword first and then define a label for it. Fields of the
nested structure or union must always be qualified:

 mov yearly.ups.shipmode, 'A'

◆ As shown in the Items field of Inventory, you also can use unnamed
variables of existing structures or unions inside another structure or union. In
these cases, you can reference fields directly:

 mov yearly.Inum, 'C'

 mov ax, yearly.f1

Records
Records are similar to structures, except that fields in records are bit strings. Each
bit field in a record variable can be used separately in constant operands or
expressions. The processor cannot access bits individually at run time, but it can
access bit fields with instructions that manipulate bits.

Records are bytes, words, or doublewords in which the individual bits or groups of
bits are considered fields. In general, the three steps for using record variables are
the same as those for using other complex data types:

1. Declare a record type.

2. Define one or more variables having the record type.

3. Reference record variables using shifts and masks.

Once it is defined, you can use the record variable as an operand in assembler
statements.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 129 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 129

130 Programmer’s Guide

This section explains the record declaration syntax and the use of the MASK and
WIDTH operators. It also shows some applications of record variables and
constants.

Declaring Record Types
A record type creates a template for data with the sizes and, optionally, the initial
values for bit fields in the record. It does not allocate memory space for the
record.

The RECORD directive declares a record type for an 8-bit, 16-bit, or 32-bit record
that contains one or more bit fields. The maximum size is based on the expression
word size. See OPTION EXPR16 and OPTION EXPR32 in Chapter 1. The
syntax is:

recordname RECORD field [[, field]]...

The field declares the name, width, and initial value for the field. The syntax for
each field is:

fieldname:width[[=expression]]

Global labels, macro names, and record field names must all be unique, but record
field names can have the same names as structure field names. Width is the number
of bits in the field, and expression is a constant giving the initial (or default) value
for the field. Record definitions can span more than one line if the continued lines
end with commas.

If expression is given, it declares the initial value for the field. The assembler
generates an error message if an initial value is too large for the width of its field.

The first field in the declaration always goes into the most significant bits of the
record. Subsequent fields are placed to the right in the succeeding bits. If the fields
do not total exactly 8, 16, or 32 bits as appropriate, the entire record is shifted right,
so the last bit of the last field is the lowest bit of the record. Unused bits in the high
end of the record are initialized to 0.

The following example creates a byte record type COLOR having four fields:
blink, back, intense, and fore. The contents of the record type are shown
after the example. Since no initial values are given, all bits are set to 0. Note that
this is only a template maintained by the assembler. It allocates no space in the data
segment.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 130 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 130

Chapter 5 Defining and Using Complex Data Types 131

COLOR RECORD blink:1, back:3, intense:1, fore:3

7 0

0 0 0 0 0 0 0 0

intenseblink

foreback

The next example creates a record type CW that has six fields. Each record declared
with this type occupies 16 bits of memory. Initial (default) values are given for each
field. You can use them when declaring data for the record. The bit diagram after
the example shows the contents of the record type.

CW RECORD r1:3=0, ic:1=0, rc:2=0, pc:2=3, r2:2=1, masks:6=63

15 7 0

037Fh0 00 10 10 10 10 11 11 1

rc:2=0 r2:2=1 masks:6=63

ic:1=0

r1:3=0

pc:2=3

Defining Record Variables
Once you have declared a record type, you can define record variables of that type.
For each variable, the assembler allocates memory in the format declared by the
type. The syntax is:

[[name]] recordname <[[initializer [[,initializer]]...]] >

[[name]] recordname { [[initializer [[,initializer]]...]] }

[[name]] recordname constant DUP ([[initializer [[,initializer]]...]])

The recordname is the name of a record type previously declared with the
RECORD directive.

A fieldlist for each field in the record can be a list of integers, character constants,
or expressions that correspond to a value compatible with the size of the field.
You must include curly braces or angle brackets even when you do not specify an
initial value.

If you use the DUP operator (see “Declaring and Referencing Arrays,” earlier in
this chapter) to initialize multiple record variables, only the angle brackets and any

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 131 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 131

132 Programmer’s Guide

initial values need to be enclosed in parentheses. For example, you can define an
array of record variables with

xmas COLOR 50 DUP (<1, 2, 0, 4>)

You do not have to initialize all fields in a record. If an initial value is blank, the
assembler automatically stores the default initial value of the field. If there is no
default value, the assembler clears each bit in the field.

The definition in the following example creates a variable named warning whose
type is given by the record type COLOR. The initial values of the fields in the
variable are set to the values given in the record definition. The initial values
override any default record values given in the declaration.

COLOR RECORD blink:1,back:3,intense:1,fore:3 ; Record

 ; declaration

warning COLOR <1, 0, 1, 4> ; Record

 ; definition

7 0

8Ch1 0 0 0 1 1 0 0

intenseblink

foreback

LENGTHOF, SIZEOF, and TYPE with Records
The SIZEOF and TYPE operators applied to a record name return the number of
bytes used by the record. SIZEOF returns the number of bytes a record variable
occupies. You cannot use LENGTHOF with a record declaration, but you can use
it with defined record variables. LENGTHOF returns the number of records in an
array of records, or 1 for a single record variable. The following example illustrates
these points.

; Record definition

; 9 bits stored in 2 bytes

RGBCOLOR RECORD red:3, green:3, blue:3

 mov ax, RGBCOLOR ; Equivalent to "mov ax, 01FFh"

; mov ax, LENGTHOF RGBCOLOR ; Illegal since LENGTHOF can

 ; apply only to data label

 mov ax, SIZEOF RGBCOLOR ; Equivalent to "mov ax, 2"

 mov ax, TYPE RGBCOLOR ; Equivalent to "mov ax, 2"

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 132 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 132

Chapter 5 Defining and Using Complex Data Types 133

; Record instance

; 8 bits stored in 1 byte

RGBCOLOR2 RECORD red:3, green:3, blue:2

rgb RGBCOLOR2 <1, 1, 1> ; Initialize to 00100101y

 mov ax, RGBCOLOR2 ; Equivalent to

 ; "mov ax, 00FFh"

 mov ax, LENGTHOF rgb ; Equivalent to "mov ax, 1"

 mov ax, SIZEOF rgb ; Equivalent to "mov ax, 1"

 mov ax, TYPE rgb ; Equivalent to "mov ax, 1"

Record Operators
The WIDTH operator (used only with records) returns the width in bits of a record
or record field. The MASK operator returns a bit mask for the bit positions
occupied by the given record field. A bit in the mask contains a 1 if that bit
corresponds to a bit field. The following example shows how to use MASK and
WIDTH.

 .DATA

COLOR RECORD blink:1, back:3, intense:1, fore:3

message COLOR <1, 5, 1, 1>

wblink EQU WIDTH blink ; "wblink" = 1

wback EQU WIDTH back ; "wback" = 3

wintens EQU WIDTH intense ; "wintens" = 1

wfore EQU WIDTH fore ; "wfore" = 3

wcolor EQU WIDTH COLOR ; "wcolor" = 8

 .CODE

 .

 .

 .

 mov ah, message ; Load initial 1101 1001

 and ah, NOT MASK back ; Turn off AND 1000 1111

 ; "back" ---------

 ; 1000 1001

 or ah, MASK blink ; Turn on OR 1000 0000

 ; "blink" ---------

 ; 1000 1001

 xor ah, MASK intense ; Toggle XOR 0000 1000

 ; "intense" ---------

 ; 1000 0001

 IF (WIDTH COLOR) GT 8 ; If color is 16 bit, load

 mov ax, message ; into 16-bit register

 ELSE ; else

 mov al, message ; load into low 8-bit register

 xor ah, ah ; and clear high 8-bits

 ENDIF

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 133 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 133

134 Programmer’s Guide

The example continues by illustrating several ways in which record fields can serve
as operands and expressions:

; Rotate "back" of "message" without changing other values

mov al, message ; Load value from memory

mov ah, al ; Save a copy for work 1101 1001=ah/al

and al, NOT MASK back; Mask out old bits AND 1000 1111=mask

 ; to save old message ---------

 ; 1000 1001=al

mov cl, back ; Load bit position

shr ah, cl ; Shift to right 0000 1101=ah

inc ah ; Increment 0000 1110=ah

shl ah, cl ; Shift left again 1110 0000=ah

and ah, MASK back ; Mask off extra bits AND 0111 0000=mask

 ; to get new message ---------

 ; 0110 0000 ah

or ah, al ; Combine old and new OR 1000 1001 al

 ; ---------

mov message, ah ; Write back to memory 1110 1001 ah

Record variables are often used with the logical operators to perform logical
operations on the bit fields of the record, as in the previous example using the
MASK operator.

Filename: LMAPGC05.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 134 of 30 Printed: 03/06/94 05:56 PM
Printed On: Distiller Colorlayer: ? Document Page: 134

135

C H A P T E R 6

Using Floating-Point and
Binary Coded Decimal Numbers

MASM requires different techniques for handling floating-point (real) numbers and
binary coded decimal (BCD) numbers than for handling integers. You have two
choices for working with real numbers — a math coprocessor or emulation routines.

Math coprocessors — the 8087, 80287, and 80387 chips — work with the main
processor to handle real-number calculations. The 80486 processor performs
floating-point operations directly. All information in this chapter pertaining to the
80387 coprocessor applies to the 80486DX processor as well. It does not apply to
the 80486SX, which does not provide an on-chip coprocessor.

This chapter begins with a summary of the directives and formats of floating-point
data that you need to allocate memory storage and initialize variables before you
can work with floating-point numbers.

The chapter then explains how to use a math coprocessor for floating-point
operations. It covers:

◆ The architecture of the registers.

◆ The operands for the coprocessor instruction formats.

◆ The coordination of coprocessor and main processor memory access.

◆ The basic groups of coprocessor instructions — for loading and storing data,
doing arithmetic calculations, and controlling program flow.

The next main section describes emulation libraries. The emulation routines
provided with all Microsoft high-level languages enable you to use coprocessor
instructions as though your computer had a math coprocessor. However, some
coprocessor instructions are not handled by emulation, as this section explains.

Finally, because math coprocessor and emulation routines can also operate on BCD
numbers, this chapter includes the instruction set for these numbers.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 135 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 135

136 Programmer’s Guide

Using Floating-Point Numbers
Before using floating-point data in your program, you need to allocate the memory
storage for the data. You can then initialize variables either as real numbers in
decimal form or as encoded hexadecimals. The assembler stores allocated data in
10-byte IEEE format. This section covers floating-point declarations and floating-
point data formats.

Declaring Floating-Point Variables and Constants
You can allocate real constants using the REAL4, REAL8, and REAL10
directives. These directives allocate the following floating-point numbers:

Directive Size

REAL4 Short (32-bit) real numbers

REAL8 Long (64-bit) real numbers

REAL10 10-byte (80-bit) real numbers and BCD numbers

Table 6.1 lists the possible ranges for floating-point variables. The number of
significant digits can vary in an arithmetic operation as the least-significant digit
may be lost through rounding errors. This occurs regularly for short and long real
numbers, so you should assume the lesser value of significant digits shown in Table
6.1. Ten-byte real numbers are much less susceptible to rounding errors for reasons
described in the next section. However, under certain circumstances, 10-byte real
operations can have a precision of only 18 digits.

Table 6.1 Ranges of Floating-Point Variables

Data Type Bits
Significant
Digits Approximate Range

Short real 32 6–7 1.18 x 10-38 to 3.40 x 1038

Long real 64 15–16 2.23 x 10-308 to 1.79 x 10308

10-byte real 80 19 3.37 x 10-4932 to 1.18 x 104932

With versions of MASM prior to 6.0, the DD, DQ, and DT directives could
allocate real constants. MASM 6.1 still supports these directives, but the variables
are integers rather than floating-point values. Although this makes no difference in
the assembly code, CodeView displays the values incorrectly.

You can specify floating-point constants either as decimal constants or as encoded
hexadecimal constants. You can express decimal real-number constants in the form:

[[+ | –]] integer[[fraction]][[E[[+ | –]]exponent]]

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 136 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 136

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 137

For example, the numbers 2.523E1 and -3.6E-2 are written in the correct
decimal format. You can use these numbers as initializers for real-number
variables.

The assembler always evaluates digits of real numbers as base 10. It converts real-
number constants given in decimal format to a binary format. The sign, exponent,
and decimal part of the real number are encoded as bit fields within the number.

You can also specify the encoded format directly with hexadecimal digits (0–9 plus
A–F). The number must begin with a decimal digit (0–9) and end with the real-
number designator (R). It cannot be signed. For example, the hexadecimal number
3F800000r can serve as an initializer for a doubleword-sized variable.

The maximum range of exponent values and the number of digits required in the
hexadecimal number depend on the directive. The number of digits for encoded
numbers used with REAL4, REAL8, and REAL10 must be 8, 16, and 20 digits,
respectively. If the number has a leading zero, the number must be 9, 17, or 21
digits.

Examples of decimal constant and hexadecimal specifications are shown here:

; Real numbers

short REAL4 25.23 ; IEEE format

double REAL8 2.523E1 ; IEEE format

tenbyte REAL10 2523.0E-2 ; 10-byte real format

; Encoded as hexadecimals

ieeeshort REAL4 3F800000r ; 1.0 as IEEE short

ieeedouble REAL8 3FF0000000000000r ; 1.0 as IEEE long

temporary REAL10 3FFF8000000000000000r ; 1.0 as 10-byte

 ; real

The section “Storing Numbers in Floating-Point Format,” following, explains the
IEEE formats — the way the assembler actually stores the data.

Pascal or C programmers may prefer to create language-specific TYPEDEF
declarations, as illustrated in this example:

; C-language specific

float TYPEDEF REAL4

double TYPEDEF REAL8

long_double TYPEDEF REAL10

; Pascal-language specific

SINGLE TYPEDEF REAL4

DOUBLE TYPEDEF REAL8

EXTENDED TYPEDEF REAL10

For applications of TYPEDEF, see “Defining Pointer Types with TYPEDEF,”
page 75.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 137 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 137

138 Programmer’s Guide

Storing Numbers in Floating-Point Format
The assembler stores floating-point variables in the IEEE format. MASM 6.1 does
not support .MSFLOAT and Microsoft binary format, which are available in
version 5.1 and earlier. Figure 6.1 illustrates the IEEE format for encoding short (4-
byte), long (8-byte), and 10-byte real numbers. Although this figure places the most
significant bit first for illustration, low bytes actually appear first in memory.

Short Real Number

Long Real Number

31 30

63 62

23 22

52 51 31 0

Exponent

Exponent

Sign

Sign

10-Byte Real Number

79 71 62
63

64 55 47 39 31 23 15 7 0

Exponent

Integer partSign Decimal part

Decimal part

Decimal part

Typical Real Number in Binary Form

-1.110101 x 2 1011

Sign

Decimal part

Exponent

Integer part

Figure 6.1 Encoding for Real Numbers in IEEE Format

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 138 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 138

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 139

The following list explains how the parts of a real number are stored in the IEEE
format. Each item in the list refers to an item in Figure 6.1.

◆ Sign bit (0 for positive or 1 for negative) in the upper bit of the first byte.

◆ Exponent in the next bits in sequence (8 bits for a short real number, 11 bits for
a long real number, and 15 bits for a 10-byte real number).

◆ The integer part of the significand in bit 63 for the 10-byte real format. By
absorbing carry values, this bit allows 10-byte real operations to preserve
precision to 19 digits. The integer part is always 1 in short and long real
numbers; consequently, these formats do not provide a bit for the integer, since
there is no point in storing it.

◆ Decimal part of the significand in the remaining bits. The length is 23 bits for
short real numbers, 52 bits for long real numbers, and 63 bits for 10-byte real
numbers.

The exponent field represents a multiplier 2n. To accommodate negative exponents
(such as 2-6), the value in the exponent field is biased; that is, the actual exponent is
determined by subtracting the appropriate bias value from the value in the exponent
field. For example, the bias for short real numbers is 127. If the value in the
exponent field is 130, the exponent represents a value of 2130-127, or 23. The bias
for long real numbers is 1,023. The bias for 10-byte real numbers is 16,383.

Once you have declared floating-point data for your program, you can use
coprocessor or emulator instructions to access the data. The next section focuses on
the coprocessor architecture, instructions, and operands required for floating-point
operations.

Using a Math Coprocessor
When used with real numbers, packed BCD numbers, or long integers,
coprocessors (the 8087, 80287, 80387, and 80486) calculate many times faster than
the 8086-based processors. The coprocessor handles data with its own registers.
The organization of these registers can be one of the four formats for using
operands explained in “Instruction and Operand Formats,” later in this section.

This section describes how the coprocessor transfers data to and from the
coprocessor, coordinates processor and coprocessor operations, and controls
program flow.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 139 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 139

140 Programmer’s Guide

Coprocessor Architecture
The coprocessor accesses memory as the CPU does, but it has its own data and
control registers — eight data registers organized as a stack and seven control
registers similar to the 8086 flag registers. The coprocessor’s instruction set
provides direct access to these registers.

The eight 80-bit data registers of the 8087-based coprocessors are organized as a
stack, although they need not be used as a stack. As data items are pushed into the
top register, previous data items move into higher-numbered registers, which are
lower on the stack. Register 0 is the top of the stack; register 7 is the bottom. The
syntax for specifying registers is:

ST [[(number)]]

The number must be a digit between 0 and 7 or a constant expression that evaluates
to a number from 0 to 7. ST is another way to refer to ST(0).

All coprocessor data is stored in registers in the 10-byte real format. The registers
and the register format are shown in Figure 6.2.

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

79 63 0

Exponent

Sign Decimal part

Figure 6.2 Coprocessor Data Registers

Internally, all calculations are done on numbers of the same type. Since 10-byte real
numbers have the greatest precision, lower-precision numbers are guaranteed not to
lose precision as a result of calculations. The instructions that transfer values
between the main memory and the coprocessor automatically convert numbers to
and from the 10-byte real format.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 140 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 140

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 141

Instruction and Operand Formats
Because of the stack organization of registers, you can consider registers either as
elements on a stack or as registers much like 8086-family registers. Table 6.2 lists
the four main groups of coprocessor instructions and the general syntax for each.
The names given to the instruction format reflect the way the instruction uses the
coprocessor registers. The instruction operands are placed in the coprocessor data
registers before the instruction executes.

Table 6.2 Coprocessor Operand Formats

Instruction
Format Syntax

Implied
Operands Example

Classical stack Finstruction ST, ST(1) fadd

Memory Finstruction memory ST fadd memloc

Register Finstruction ST(num), ST

Finstruction ST, ST(num)

 — fadd st(5), st

fadd st, st(3)

Register pop FinstructionP ST(num), ST — faddp st(4), st

You can easily recognize coprocessor instructions because, unlike all 8086-family
instruction mnemonics, they start with the letter F. Coprocessor instructions can
never have immediate operands and, with the exception of the FSTSW instruction,
they cannot have processor registers as operands.

Classical-Stack Format
Instructions in the classical-stack format treat the coprocessor registers like items
on a stack — thus its name. Items are pushed onto or popped off the top elements of
the stack. Since only the top item can be accessed on a traditional stack, there is no
need to specify operands. The first (top) register (and the second, if the instruction
needs two operands) is always assumed.

ST (the top of the stack) is the source operand in coprocessor arithmetic operations.
ST(1), the second register, is the destination. The result of the operation replaces
the destination operand, and the source is popped off the stack. This leaves the
result at the top of the stack.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 141 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 141

142 Programmer’s Guide

The following example illustrates the classical-stack format; Figure 6.3 shows the
status of the register stack after each instruction.

 fld1 ; Push 1 into first position

 fldpi ; Push pi into first position

 fadd ; Add pi and 1 and pop

Stack
Contents

Instructions

4.14

fadd

3.14

1.0

fldpi

1.0

fldl

ST

ST(1)

Figure 6.3 Status of the Register Stack

Memory Format
Instructions that use the memory format, such as data transfer instructions, also
treat coprocessor registers like items on a stack. However, with this format, items
are pushed from memory onto the top element of the stack, or popped from the top
element to memory. You must specify the memory operand.

Some instructions that use the memory format specify how a memory operand is to
be interpreted — as an integer (I) or as a binary coded decimal (B). The letter I or B
follows the initial F in the syntax. For example, FILD interprets its operand as an
integer and FBLD interprets its operand as a BCD number. If the instruction name
does not include a type letter, the instruction works on real numbers.

You can also use memory operands in calculation instructions that operate on two
values (see “Using Coprocessor Instructions,” later in this section). The memory
operand is always the source. The stack top (ST) is always the implied destination.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 142 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 142

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 143

The result of the operation replaces the destination without changing its stack
position, as shown in this example and in Figure 6.4:

 .DATA

m1 REAL4 1.0

m2 REAL4 2.0

 .CODE

 .

 .

 .

 fld m1 ; Push m1 into first position

 fld m2 ; Push m2 into first position

 fadd m1 ; Add m2 to first position

 fstp m1 ; Pop first position into m1

 fst m2 ; Copy first position to m2

fld m1 fld m2 fadd m1 fstp m1 fst m2

m1

ST

m2

ST(1)

1.0 1.0 1.0 1.0 3.0 3.0

1.0 2.0 3.0 1.0 1.0

2.0 2.0 2.0 2.0 2.0 1.0

1.0 1.0

Figure 6.4 Status of the Register Stack and Memory Locations

Register Format
Instructions that use the register format treat coprocessor registers as registers
rather than as stack elements. Instructions that use this format require two register
operands; one of them must be the stack top (ST).

In the register format, specify all operands by name. The first operand is the
destination; its value is replaced with the result of the operation. The second
operand is the source; it is not affected by the operation. The stack positions of the
operands do not change.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 143 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 143

144 Programmer’s Guide

The only instructions that use the register operand format are the FXCH instruction
and arithmetic instructions for calculations on two values. With the FXCH
instruction, the stack top is implied and need not be specified, as shown in this
example and in Figure 6.5:

 fadd st(1), st ; Add second position to first -

 ; result goes in second position

 fadd st, st(2) ; Add first position to third -

 ; result goes in first position

 fxch st(1) ; Exchange first and second positions

fadd st(1),st fadd st,st(2) fxch st(1)

ST

ST(1)

ST(2)

1.0 1.0 4.0 3.0

2.0

3.0

3.0 3.0 4.0

3.03.0 3.0

Figure 6.5 Status of the Previously Initialized Register Stack

Register-Pop Format
The register-pop format treats coprocessor registers as a modified stack. The source
register must always be the stack top. Specify the destination with the register’s
name.

Instructions with this format place the result of the operation into the destination
operand, and the top pops off the stack. The register-pop format is used only for
instructions for calculations on two values, as in this example and in Figure 6.6:

 faddp st(2), st ; Add first and third positions and pop -

 ; first position destroyed;

 ; third moves to second and holds result

faddp st(2),st

ST

ST(1)

ST(2)

1.0 2.0

2.0

3.0

4.0

Figure 6.6 Status of the Already Initialized Register Stack

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 144 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 144

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 145

Coordinating Memory Access
The math coprocessor and main processor work simultaneously. However, since the
coprocessor cannot handle device input or output, data originates in the main
processor.

The main processor and the coprocessor have their own registers, which are
separate and inaccessible to each other. They exchange data through memory, since
memory is available to both.

When using the coprocessor, follow these three steps:

1. Load data from memory to coprocessor registers.

2. Process the data.

3. Store the data from coprocessor registers back to memory.

Step 2, processing the data, can occur while the main processor is handling other
tasks. Steps 1 and 3 must be coordinated with the main processor so that the
processor and coprocessor do not try to access the same memory at the same time;
otherwise, problems of coordinating memory access can occur. Since the processor
and coprocessor work independently, they may not finish working on memory in the
order in which you give instructions. The two potential timing conflicts that can
occur are handled in different ways.

One timing conflict results from a coprocessor instruction following a processor
instruction. The processor may have to wait until the coprocessor finishes if the next
processor instruction requires the result of the coprocessor’s calculation. You do
not have to write your code to avoid this conflict, however. The assembler
coordinates this timing automatically for the 8088 and 8086 processors, and the
processor coordinates it automatically on the 80186–80486 processors. This is the
case shown in the first example that follows.

Another conflict results from a processor instruction that accesses memory
following a coprocessor instruction that accesses the same memory. The processor
can try to load a variable that is still being used by the coprocessor. You need
careful synchronization to control the timing, and this synchronization is not
automatic on the 8087 coprocessor. For code to run correctly on the 8087, you must
include WAIT or FWAIT (mnemonics for the same instruction) to ensure that the
coprocessor finishes before the processor begins, as shown in the second example.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 145 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 145

146 Programmer’s Guide

In this situation, the processor does not generate the FWAIT instruction
automatically.

; Processor instruction first - No wait needed

 mov WORD PTR mem32[0], ax ; Load memory

 mov WORD PTR mem32[2], dx

 fild mem32 ; Load to register

; Coprocessor instruction first - Wait needed (for 8087)

 fist mem32 ; Store to memory

 fwait ; Wait until coprocessor

 ; is done

 mov ax, WORD PTR mem32[0] ; Move to register

 mov dx, WORD PTR mem32[2]

When generating code for the 8087 coprocessor, the assembler automatically
inserts a WAIT instruction before the coprocessor instruction. However, if you use
the .286 or .386 directive, the compiler assumes that the coprocessor instructions
are for the 80287 or 80387 and does not insert the WAIT instruction. If your code
does not need to run on an 8086 or 8088 processor, you can make your programs
smaller and more efficient by using the .286 or .386 directive.

Using Coprocessor Instructions
The 8087 family of coprocessors has separate instructions for each of the following
operations:

◆ Loading and storing data

◆ Doing arithmetic calculations

◆ Controlling program flow

The following sections explain the available instructions and show how to use them
for each of these operations. For general syntax information, see “Instruction and
Operand Formats,” earlier in this section.

Loading and Storing Data
Data-transfer instructions copy data between main memory and the coprocessor
registers or between different coprocessor registers. Two principles govern data
transfers:

◆ The choice of instruction determines whether a value in memory is considered
an integer, a BCD number, or a real number. The value is always considered a
10-byte real number once transferred to the coprocessor.

◆ The size of the operand determines the size of a value in memory. Values in the
coprocessor always take up 10 bytes.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 146 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 146

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 147

You can transfer data to stack registers using load commands. These commands
push data onto the stack from memory or from coprocessor registers. Store
commands remove data. Some store commands pop data off the register stack into
memory or coprocessor registers; others simply copy the data without changing it
on the stack.

If you use constants as operands, you cannot load them directly into coprocessor
registers. You must allocate memory and initialize a variable to a constant value.
That variable can then be loaded by using one of the load instructions in the
following list.

The math coprocessor offers a few special instructions for loading certain constants.
You can load 0, 1, pi, and several common logarithmic values directly. Using these
instructions is faster and often more precise than loading the values from initialized
variables.

All instructions that load constants have the stack top as the implied destination
operand. The constant to be loaded is the implied source operand.

The coprocessor data area, or parts of it, can also be moved to memory and later
loaded back. You may want to do this to save the current state of the coprocessor
before executing a procedure. After the procedure ends, restore the previous status.
Saving coprocessor data is also useful when you want to modify coprocessor
behavior by writing certain data to main memory, operating on the data with 8086-
family instructions, and then loading it back to the coprocessor data area.

Use the following instructions for transferring numbers to and from
registers:

Instruction(s) Description

FLD, FST, FSTP Loads and stores real numbers

FILD, FIST, FISTP Loads and stores binary integers

FBLD Loads BCD

FBSTP Stores BCD

FXCH Exchanges register values

FLDZ Pushes 0 into ST

FLD1 Pushes 1 into ST

FLDPI Pushes the value of pi into ST

FLDCW mem2byte Loads the control word into the coprocessor

F[[N]]STCW mem2byte Stores the control word in memory

FLDENV mem14byte Loads environment from memory

F[[N]]STENV mem14byte Stores environment in memory

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 147 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 147

148 Programmer’s Guide

Instruction(s) Description

FRSTOR mem94byte Restores state from memory

F[[N]]SAVE mem94byte Saves state in memory

FLDL2E Pushes the value of log2e into ST

FLDL2T Pushes log210 into ST

FLDLG2 Pushes log102 into ST

FLDLN2 Pushes loge2 into ST

The following example and Figure 6.7 illustrate some of these instructions:

 .DATA

m1 REAL4 1.0

m2 REAL4 2.0

 .CODE

 fld m1 ; Push m1 into first item

 fld st(2) ; Push third item into first

 fst m2 ; Copy first item to m2

 fxch st(2) ; Exchange first and third items

 fstp m1 ; Pop first item into m1

Main Memory

Coprocessor Registers

fld m1 fld st(2) fst m2 fxch st(2) fstp m1

m1

ST

ST(2)

m2

ST(1)

ST(3)

1.0 1.0 1.0 1.0 1.0 3.0

3.0 1.0 4.0 4.0 3.0 1.0

4.0 3.0 3.0 4.0 4.0

2.0 2.0 2.0 4.0 4.0 4.0

4.0 3.0 1.0 1.0 1.0 4.0

4.0 4.0 4.0

Figure 6.7 Status of the Register Stack: Main Memory and Coprocessor

Doing Arithmetic Calculations
Most of the coprocessor instructions for arithmetic operations have several forms,
depending on the operand used. You do not need to specify the operand type in the

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 148 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 148

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 149

instruction if both operands are stack registers, since register values are always 10-
byte real numbers. In most of the arithmetic instructions listed here, the result
replaces the destination register. The instructions include:

Instruction Description

FADD Adds the source and destination

FSUB Subtracts the source from the destination

FSUBR Subtracts the destination from the source

FMUL Multiplies the source and the destination

FDIV Divides the destination by the source

FDIVR Divides the source by the destination

FABS Sets the sign of ST to positive

FCHS Reverses the sign of ST

FRNDINT Rounds ST to an integer

FSQRT Replaces the contents of ST with its square root

FSCALE Multiplies the stack-top value by 2 to the power contained in ST(1)

FPREM Calculates the remainder of ST divided by ST(1)

80387 Only
Instruction Description

FSIN Calculates the sine of the value in ST

FCOS Calculates the cosine of the value in ST

FSINCOS Calculates the sine and cosine of the value in ST

FPREM1 Calculates the partial remainder by performing modulo division on the
top two stack registers

FXTRACT Breaks a number down into its exponent and mantissa and pushes the
mantissa onto the register stack

F2XM1 Calculates 2x–1

FYL2X Calculates Y * log2 X

FYL2XP1 Calculates Y * log2 (X+1)

FPTAN Calculates the tangent of the value in ST

FPATAN Calculates the arctangent of the ratio Y/X

F[[N]]INIT Resets the coprocessor and restores all the default conditions in the
control and status words

F[[N]]CLEX Clears all exception flags and the busy flag of the status word

FINCSTP Adds 1 to the stack pointer in the status word

FDECSTP Subtracts 1 from the stack pointer in the status word

FFREE Marks the specified register as empty

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 149 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 149

150 Programmer’s Guide

The following example illustrates several arithmetic instructions. The code solves
quadratic equations, but does no error checking and fails for some values because it
attempts to find the square root of a negative number. Both Help and the
MATH.ASM sample file show a complete version of this procedure. The complete
form uses the FTST (Test for Zero) instruction to check for a negative number or 0
before calculating the square root.

 .DATA

a REAL4 3.0

b REAL4 7.0

cc REAL4 2.0

posx REAL4 0.0

negx REAL4 0.0

 .CODE

 .

 .

 .

; Solve quadratic equation - no error checking

; The formula is: -b +/- squareroot(b2 - 4ac) / (2a)

 fld1 ; Get constants 2 and 4

 fadd st,st ; 2 at bottom

 fld st ; Copy it

 fmul a ; = 2a

 fmul st(1),st ; = 4a

 fxch ; Exchange

 fmul cc ; = 4ac

 fld b ; Load b

 fmul st,st ; = b2

 fsubr ; = b2 - 4ac

 ; Negative value here produces error

 fsqrt ; = square root(b2 - 4ac)

 fld b ; Load b

 fchs ; Make it negative

 fxch ; Exchange

 fld st ; Copy square root

 fadd st,st(2) ; Plus version = -b + root(b2 - 4ac)

 fxch ; Exchange

 fsubp st(2),st ; Minus version = -b - root(b2 - 4ac)

 fdiv st,st(2) ; Divide plus version

 fstp posx ; Store it

 fdivr ; Divide minus version

 fstp negx ; Store it

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 150 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 150

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 151

Controlling Program Flow
The math coprocessor has several instructions that set control flags in the status
word. The 8087-family control flags can be used with conditional jumps to direct
program flow in the same way that 8086-family flags are used. Since the
coprocessor does not have jump instructions, you must transfer the status word to
memory so that the flags can be used by 8086-family instructions.

An easy way to use the status word with conditional jumps is to move its upper byte
into the lower byte of the processor flags, as shown in this example:

 fstsw mem16 ; Store status word in memory

 fwait ; Make sure coprocessor is done

 mov ax, mem16 ; Move to AX

 sahf ; Store upper word in flags

The SAHF (Store AH into Flags) instruction in this example transfers AH into the
low bits of the flags register.

You can save several steps by loading the status word directly to AX on the 80287
with the FSTSW and FNSTSW instructions. This is the only case in which data
can be transferred directly between processor and coprocessor registers, as shown
in this example:

 fstsw ax

The coprocessor control flags and their relationship to the status word are described
in “Control Registers,” following.

The 8087-family coprocessors provide several instructions for comparing operands
and testing control flags. All these instructions compare the stack top (ST) to a
source operand, which may either be specified or implied as ST(1).

The compare instructions affect the C3, C2, and C0 control flags, but not the C1
flag. Table 6.3 shows the flags’ settings for each possible result of a comparison or
test.

Table 6.3 Control-Flag Settings After Comparison or Test

After FCOM After FTEST C3 C2 C0

ST > source ST is positive 0 0 0

ST < source ST is negative 0 0 1

ST = source ST is 0 1 0 0

Not comparable ST is NAN or projective infinity 1 1 1

Variations on the compare instructions allow you to pop the stack once or twice and
to compare integers and zero. For each instruction, the stack top is always the

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 151 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 151

152 Programmer’s Guide

implied destination operand. If you do not give an operand, ST(1) is the
implied source. With some compare instructions, you can specify the source as
a memory or register operand.

All instructions summarized in the following list have implied operands: either ST
as a single-destination operand or ST as the destination and ST(1) as the source.
Each instruction in the list has implied operands. Some instructions have a wait
version and a no-wait version. The no-wait versions have N as the second letter.
The instructions for comparing and testing flags include:

Instruction Description

FCOM Compares the stack top to the source. The
source and destination are unaffected by the comparison.

FTST Compares ST to 0.

FCOMP Compares the stack top to the source and then pops the
stack.

FUCOM, FUCOMP,
FUCOMPP

Compares the source to ST and sets the condition codes
of the status word according to the result (80386/486
only).

F[[N]]STSW mem2byte Stores the status word in memory.

FXAM Sets the value of the control flags based on the type of
the number in ST.

FPREM Finds a correct remainder for large operands. It uses the
C2 flag to indicate whether the remainder returned is
partial (C2 is set) or complete (C2 is clear). If the bit is
set, the operation should be repeated. It also returns the
least-significant three bits of the quotient in C0, C3, and
C1.

FNOP Copies the stack top onto itself, thus padding the
executable file and taking up processing time without
having any effect on registers or memory.

FDISI, FNDISI, FENI, FNENI Enables or disables interrupts (8087 only).

FSETPM Sets protected mode. Requires a .286P or .386P directive
(80287, 80387, and 80486 only).

The following example illustrates some of these instructions. Notice how
conditional blocks are used to enhance 80287 code.

 .DATA

down REAL4 10.35 ; Sides of a rectangle

across REAL4 13.07

diamtr REAL4 12.93 ; Diameter of a circle

status WORD ?

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 152 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 152

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 153

P287 EQU (@Cpu AND 00111y)

 .CODE

 .

 .

 .

; Get area of rectangle

 fld across ; Load one side

 fmul down ; Multiply by the other

; Get area of circle: Area = PI * (D/2)2

 fld1 ; Load one and

 fadd st, st ; double it to get constant 2

 fdivr diamtr ; Divide diameter to get radius

 fmul st, st ; Square radius

 fldpi ; Load pi

 fmul ; Multiply it

; Compare area of circle and rectangle

 fcompp ; Compare and throw both away

 IF p287

 fstsw ax ; (For 287+, skip memory)

 ELSE

 fnstsw status ; Load from coprocessor to memory

 mov ax, status ; Transfer memory to register

 ENDIF

 sahf ; Transfer AH to flags register

 jp nocomp ; If parity set, can't compare

 jz same ; If zero set, they're the same

 jc rectangle ; If carry set, rectangle is bigger

 jmp circle ; else circle is bigger

nocomp: ; Error handler

 .

 .

 .

same: ; Both equal

 .

 .

 .

rectangle: ; Rectangle bigger

 .

 .

 .

circle: ; Circle bigger

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 153 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 153

154 Programmer’s Guide

Additional instructions for the 80387/486 are FLDENVD and FLDENVW for
loading the environment; FNSTENVD, FNSTENVW, FSTENVD, and
FSTENVW for storing the environment state; FNSAVED, FNSAVEW,
FSAVED, and FSAVEW for saving the coprocessor state; and FRSTORD and
FRSTORW for restoring the coprocessor state.

The size of the code segment, not the operand size, determines the number of bytes
loaded or stored with these instructions. The instructions ending with W store the
16-bit form of the control register data, and the instructions ending with D store the
32-bit form. For example, in 16-bit mode FSAVEW saves the 16-bit control
register data. If you need to store the 32-bit form of the control register data, use
FSAVED.

Control Registers
Some of the flags of the seven 16-bit control registers control coprocessor
operations, while others maintain the current status of the coprocessor. In this sense,
they are much like the 8086-family flags registers (see Figure 6.8).

Control Registers

Control Word

Status Word

Tag Word

Instruction Pointer

Operand Pointer

Figure 6.8 Coprocessor Control Registers

The status word register is the only commonly used control register. (The others are
used mostly by systems programmers.) The format of the status word register is
shown in Figure 6.9, which shows how the coprocessor control flags align with the
processor flags. C3 overwrites the zero flag, C2 overwrites the parity flag, and C0
overwrites the carry flag. C1 overwrites an undefined bit, so it cannot be used
directly with conditional jumps, although you can use the TEST instruction to

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 154 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 154

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 155

check C1 in memory or in a register. The status word register also overwrites the
sign and auxiliary-carry flags, so you cannot count on their being unchanged after
the operation.

15

7

Status Word

Flags

8

0

SF

C3

ZF AF

C2

PF

C1 C0

CF

Figure 6.9 Coprocessor and Processor Control Flags

Using An Emulator Library
If you do not have a math coprocessor or an 80486 processor, you can do most
floating-point operations by writing assembly-language procedures and accessing
an emulator from a high-level language. All Microsoft high-level languages come
with emulator libraries for all memory models.

To use emulator functions, first write your assembly-language procedure using
coprocessor instructions. Then assemble the module with the /FPi option and link it
with your high-level – language modules. You can enter options in the
Programmer’s WorkBench (PWB) environment, or you can use the OPTION
EMULATOR in your source code.

In emulation mode, the assembler generates instructions for the linker that the
Microsoft emulator can use. The form of the OPTION directive in the following
example tells the assembler to use emulation mode. This option (introduced in
Chapter 1) can be defined only once in a module.

OPTION EMULATOR

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 155 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 155

156 Programmer’s Guide

You can use emulator functions in a stand-alone assembler program by assembling
with the /Cx command-line option and linking with the appropriate emulator
library. The following fragment outlines a small-model program that contains
floating-point instructions served by an emulator:

 .MODEL small, c

 OPTION EMULATOR

 .

 .

 .

 PUBLIC main

 .CODE

main: ; Program entry point must

 .STARTUP ; have name 'main'

 .

 fadd st, st ; Floating-point instructions

 fldpi ; emulated

Emulator libraries do not allow for all of the coprocessor instructions. The
following floating-point instructions are not emulated:

FBLD
FBSTP
FCOS
FDECSTP
FINCSTP
FINIT

FLDENV
FNOP
FPREM1
FRSTOR
FRSTORW
FRSTORD

FSAVE
FSAVEW
FSAVED
FSETPM
FSIN
FSINCOS

FSTENV
FUCOM
FUCOMP
FUCOMPP
FXTRACT

For information about writing assembly-language procedures for high-level
languages, see Chapter 12, “Mixed-Language Programming.”

Using Binary Coded Decimal Numbers
Binary coded decimal (BCD) numbers allow calculations on large numbers without
rounding errors. This characteristic makes BCD numbers a common choice for
monetary calculations. Although BCDs can represent integers of any precision, the
8087-based coprocessors accommodate BCD numbers only in the range
±999,999,999,999,999,999.

This section explains how to define BCD numbers, how to access them with a math
coprocessor or emulator, and how to perform simple BCD calculations on the main
processor.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 156 of 26 Printed: 03/06/94 05:57 PM
Printed On: Distiller Colorlayer: ? Document Page: 156

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 157

Defining BCD Constants and Variables
Unpacked BCD numbers are made up of bytes containing a single decimal digit in
the lower 4 bits of each byte. Packed BCD numbers are made up of bytes
containing two decimal digits: one in the upper 4 bits and one in the lower 4 bits.
The leftmost digit holds the sign (0 for positive, 1 for negative).

Packed BCD numbers are encoded in the 8087 coprocessor’s packed BCD format.
They can be up to 18 digits long, packed two digits per byte. The assembler zero-
pads BCDs initialized with fewer than 18 digits. Digit 20 is the sign bit, and digit
19 is reserved.

When you define an integer constant with the TBYTE directive and the current
radix is decimal (t), the assembler interprets the number as a packed BCD number.

The syntax for specifying packed BCDs is the same as for other integers.

pos1 TBYTE 1234567890 ; Encoded as 00000000001234567890h

neg1 TBYTE -1234567890 ; Encoded as 80000000001234567890h

Unpacked BCD numbers are stored one digit to a byte, with the value in the lower
4 bits. They can be defined using the BYTE directive. For example, an unpacked
BCD number could be defined and initialized as follows:

unpackedr BYTE 1,5,8,2,5,2,9 ; Initialized to 9,252,851

unpackedf BYTE 9,2,5,2,8,5,1 ; Initialized to 9,252,851

As these two lines show, you can arrange digits backward or forward, depending on
how you write the calculation routines that handle the numbers.

BCD Calculations on a Coprocessor
As the previous section explains, BCDs differ from other numbers only in the way a
program stores them in memory. Internally, a math coprocessor does not distinguish
BCD integers from any other type. The coprocessor can load, calculate, and store
packed BCD integers up to 18 digits long.

The coprocessor instruction

 fbld bcd1

pushes the packed BCD number at bcd1 onto the coprocessor stack. When your
code completes calculations on the number, place the result back into memory in
BCD format with the instruction

 fbstp bcd1

which discards the variable from the stack top.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 157 of 26 Printed: 03/06/94 05:57 PM

158 Programmer’s Guide

BCD Calculations on the Main Processor
The 8086-family of processors can perform simple arithmetic operations on BCD
integers, but only one digit at a time. The main processor, like the coprocessor,
operates internally on the number’s binary value. It requires additional code to
translate the binary result back into BCD format.

The main processor provides instructions specifically designed to translate to and
from BCD format. These instructions are called “ASCII-adjust” and “decimal-
adjust” instructions. They get their names from Intel mnemonics that use the term
“ASCII” to refer to unpacked BCD numbers and “decimal” to refer to packed BCD
numbers.

Unpacked BCD Numbers
When a calculation using two one-digit values produces a two-digit result, the
instructions AAA, AAS, AAM, and AAD place the first digit in AL and the second
in AH. If the digit in AL needs to carry to or borrow from the digit in AH, the
instructions set the carry and auxiliary carry flags. The four ASCII-adjust
instructions for unpacked BCDs are:

Instruction Description

AAA Adjusts after an addition operation.

AAS Adjusts after a subtraction operation.

AAM Adjusts after a multiplication operation. Always use with MUL, not with
IMUL.

AAD Adjusts before a division operation. Unlike other BCD instructions,
AAD converts a BCD value to a binary value before the operation. After
the operation, use AAM to adjust the quotient. The remainder is lost. If
you need the remainder, save it in another register before adjusting the
quotient. Then move it back to AL and adjust if necessary.

For processor arithmetic on unpacked BCD numbers, you must do the 8-bit
arithmetic calculations on each digit separately, and assign the result to the AL
register. After each operation, use the corresponding BCD instruction to adjust the
result. The ASCII-adjust instructions do not take an operand and always work on
the value in the AL register.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 158 of 26 Printed: 03/06/94 05:57 PM

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers 159

The following examples show how to use each of these instructions in BCD
addition, subtraction, multiplication, and division.

; To add 9 and 3 as BCDs:

 mov ax, 9 ; Load 9

 mov bx, 3 ; and 3 as unpacked BCDs

 add al, bl ; Add 09h and 03h to get 0Ch

 aaa ; Adjust 0Ch in AL to 02h,

 ; increment AH to 01h, set carry

 ; Result 12 (unpacked BCD in AX)

; To subtract 4 from 13:

 mov ax, 103h ; Load 13

 mov bx, 4 ; and 4 as unpacked BCDs

 sub al, bl ; Subtract 4 from 3 to get FFh (-1)

 aas ; Adjust 0FFh in AL to 9,

 ; decrement AH to 0, set carry

 ; Result 9 (unpacked BCD in AX)

; To multiply 9 times 3:

 mov ax, 903h ; Load 9 and 3 as unpacked BCDs

 mul ah ; Multiply 9 and 3 to get 1Bh

 aam ; Adjust 1Bh in AL

 ; to get 27 (unpacked BCD in AX)

; To divide 25 by 2:

 mov ax, 205h ; Load 25

 mov bl, 2 ; and 2 as unpacked BCDs

 aad ; Adjust 0205h in AX

 ; to get 19h in AX

 div bl ; Divide by 2 to get

 ; quotient 0Ch in AL

 ; remainder 1 in AH

 aam ; Adjust 0Ch in AL

 ; to 12 (unpacked BCD in AX)

 ; (remainder destroyed)

If you process multidigit BCD numbers in loops, each digit is processed and
adjusted in turn.

Packed BCD Numbers
Packed BCD numbers are made up of bytes containing two decimal digits: one in
the upper 4 bits and one in the lower 4 bits. The 8086-family processors provide
instructions for adjusting packed BCD numbers after addition and subtraction. You
must write your own routines to adjust for multiplication and division.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 159 of 26 Printed: 03/06/94 05:57 PM

160 Programmer’s Guide

For processor calculations on packed BCD numbers, you must do the 8-bit
arithmetic calculations on each byte separately, placing the result in the AL
register. After each operation, use the corresponding decimal-adjust instruction to
adjust the result. The decimal-adjust instructions do not take an operand and always
work on the value in the AL register.

The 8086-family processors provide the instructions DAA (Decimal Adjust after
Addition) and DAS (Decimal Adjust after Subtraction) for adjusting packed BCD
numbers after addition and subtraction.

These examples use DAA and DAS to add and subtract BCDs.

;To add 88 and 33:

 mov ax, 8833h ; Load 88 and 33 as packed BCDs

 add al, ah ; Add 88 and 33 to get 0BBh

 daa ; Adjust 0BBh to 121 (packed BCD:)

 ; 1 in carry and 21 in AL

;To subtract 38 from 83:

 mov ax, 3883h ; Load 83 and 38 as packed BCDs

 sub al, ah ; Subtract 38 from 83 to get 04Bh

 das ; Adjust 04Bh to 45 (packed BCD:)

 ; 0 in carry and 45 in AL

Unlike the ASCII-adjust instructions, the decimal-adjust instructions never affect
AH. The assembler sets the auxiliary carry flag if the digit in the lower 4 bits
carries to or borrows from the digit in the upper 4 bits, and it sets the carry flag if
the digit in the upper 4 bits needs to carry to or borrow from another byte.

Multidigit BCD numbers are usually processed in loops. Each byte is processed and
adjusted in turn.

Filename: LMAPGC06.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 59 Page: 160 of 26 Printed: 03/06/94 05:57 PM

161

C H A P T E R 7

Controlling Program Flow

Very few programs execute all lines sequentially from .STARTUP to .EXIT.
Rather, complex program logic and efficiency dictate that you control the flow of
your program — jumping from one point to another, repeating an action until a
condition is reached, and passing control to and from procedures. This chapter
describes various ways for controlling program flow and several features that
simplify coding program-control constructs.

The first section covers jumps from one point in the program to another. It explains
how MASM 6.1 optimizes both unconditional and conditional jumps under certain
circumstances, so that you do not have to specify every attribute. The section also
describes instructions you can use to test conditional jumps.

The next section describes loop structures that repeat actions or evaluate conditions.
It discusses MASM directives, such as .WHILE and .REPEAT, that generate
appropriate compare, loop, and jump instructions for you, and the .IF, .ELSE, and
.ELSEIF directives that generate jump instructions.

The “Procedures” section in this chapter explains how to write an assembly-
language procedure. It covers the extended functionality for PROC, a PROTO
directive that lets you write procedure prototypes similar to those used in C, an
INVOKE directive that automates parameter passing, and options for the stack-
frame setup inside procedures.

The last section explains how to pass program control to an interrupt routine.

Jumps
Jumps are the most direct way to change program control from one location to
another. At the processor level, jumps work by changing the value of the IP
(Instruction Pointer) register to a target offset and, for far jumps, by changing the
CS register to a new segment address. Jump instructions fall into only two
categories: conditional and unconditional.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 161 of 50 Printed: 03/06/94 05:58 PM

162 Programmer’s Guide

Unconditional Jumps
The JMP instruction transfers control unconditionally to another instruction.
JMP’s single operand contains the address of the target instruction.

Unconditional jumps skip over code that should not be executed, as shown here:

; Handle one case

label1: .

 .

 .

 jmp continue

; Handle second case

label2: .

 .

 .

 jmp continue

 .

 .

 .

continue:

The distance of the target from the jump instruction and the size of the operand
determine the assembler’s encoding of the instruction. The longer the distance, the
more bytes the assembler uses to code the instruction. In versions of MASM prior
to 6.0, unconditional NEAR jumps sometimes generated inefficient code, but
MASM can now optimize unconditional jumps.

Jump Optimizing
The assembler determines the smallest encoding possible for the direct
unconditional jump. MASM does not require a distance operator, so you do not
have to determine the correct distance of the jump. If you specify a distance, it
overrides any assembler optimization. If the specified distance falls short of the
target address, the assembler generates an error. If the specified distance is longer
than the jump requires, the assembler encodes the given distance and does not
optimize it.

The assembler optimizes jumps when the following conditions are met:

◆ You do not specify SHORT, NEAR, FAR, NEAR16, NEAR32, FAR16,
FAR32, or PROC as the distance of the target.

◆ The target of the jump is not external and is in the same segment as the jump
instruction. If the target is in a different segment (but in the same group), it is
treated as though it were external.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 162 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 163

If these two conditions are met, MASM uses the instruction, distance, and size of
the operand to determine how to optimize the encoding for the jump. No syntax
changes are necessary.

Note This information about jump optimizing also applies to conditional jumps on
the 80386/486.

Indirect Operands
An indirect operand provides a pointer to the target address, rather than the address
itself. A pointer is a variable that contains an address. The processor distinguishes
indirect (pointer) operands from direct (address) operands by the instruction’s
context.

You can specify the pointer’s size with the WORD, DWORD, or FWORD
attributes. Default sizes are based on .MODEL and the default segment size.

 jmp [bx] ; Uses .MODEL and segment size defaults

 jmp WORD PTR [bx] ; A NEAR16 indirect call

If the indirect operand is a register, the jump is always a NEAR16 jump for a 16-
bit register, and NEAR32 for a 32-bit register:

 jmp bx ; NEAR16 jump

 jmp ebx ; NEAR32 jump

A DWORD indirect operand, however, is ambiguous to the assembler.

jmp DWORD PTR [var] ; A NEAR32 jump in a 32-bit segment;

 ; a FAR16 jump in a 16-bit segment

In this case, your code must clear the ambiguity with the NEAR32 or FAR16
keywords. The following example shows how to use TYPEDEF to define
NEAR32 and FAR16 pointer types.

NFP TYPEDEF PTR NEAR32

FFP TYPEDEF PTR FAR16

 jmp NFP PTR [var] ; NEAR32 indirect jump

 jmp FFP PTR [var] ; FAR16 indirect jump

You can use an unconditional jump as a form of conditional jump by specifying the
address in a register or indirect memory operand. Also, you can use indirect
memory operands to construct jump tables that work like C switch statements,
Pascal CASE statements, or Basic ON GOTO, ON GOSUB, or SELECT CASE
statements, as shown in the following example.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 163 of 50 Printed: 03/06/94 05:58 PM

164 Programmer’s Guide

NPVOID TYPEDEF NEAR PTR

 .DATA

ctl_tbl NPVOID extended, ; Null key (extended code)

 ctrla, ; Address of CONTROL-A key routine

 ctrlb ; Address of CONTROL-B key routine

 .CODE

 .

 .

 .

 mov ah, 8h ; Get a key

 int 21h

 cbw ; Stretch AL into AX

 mov bx, ax ; Copy

 shl bx, 1 ; Convert to address

 jmp ctl_tbl[bx] ; Jump to key routine

extended:

 mov ah, 8h ; Get second key of extended key

 int 21h

 . ; Use another jump table

 . ; for extended keys

 .

 jmp next

ctrla: . ; CONTROL-A code here

 .

 .

 jmp next

ctrlb: . ; CONTROL-B code here

 .

 .

 jmp next

 .

 .

next: . ; Continue

In this instance, the indirect memory operands point to addresses of routines for
handling different keystrokes.

Conditional Jumps
The most common way to transfer control in assembly language is to use a
conditional jump. This is a two-step process:

1. First test the condition.

2. Then jump if the condition is true or continue if it is false.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 164 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 165

All conditional jumps except two (JCXZ and JECXZ) use the processor flags for
their criteria. Thus, any statement that sets or clears a flag can serve as a test basis
for a conditional jump. The jump statement can be any one of 30 conditional-jump
instructions. A conditional-jump instruction takes a single operand containing the
target address. You cannot use a pointer value as a target as you can with
unconditional jumps.

Jumping Based on the CX Register
JCXZ and JECXZ are special conditional jumps that do not consult the processor
flags. Instead, as their names imply, these instructions cause a jump only if the CX
or ECX register is zero. The use of JCXZ and JECXZ with program loops is
covered in the next section, “Loops.”

Jumping Based on the Processor Flags
The remaining conditional jumps in the processor’s repertoire all depend on the
status of the flags register. As the following list shows, several conditional jumps
have two or three names — JE (Jump if Equal) and JZ (Jump if Zero), for example.
Shared names assemble to exactly the same machine instruction, so you may choose
whichever mnemonic seems more appropriate. Jumps that depend on the status of
the flags register include:

Instruction Jumps if

JC/JB/JNAE Carry flag is set

JNC/JNB/JAE Carry flag is clear

JBE/JNA Either carry or zero flag is set

JA/JNBE Carry and zero flag are clear

JE/JZ Zero flag is set

JNE/JNZ Zero flag is clear

JL/JNGE Sign flag ≠ overflow flag

JGE/JNL Sign flag = overflow flag

JLE/JNG Zero flag is set or sign ≠ overflow

JG/JNLE Zero flag is clear and sign = overflow

JS Sign flag is set

JNS Sign flag is clear

JO Overflow flag is set

JNO Overflow flag is clear

JP/JPE Parity flag is set (even parity)

JNP/JPO Parity flag is clear (odd parity)

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 165 of 50 Printed: 03/06/94 05:58 PM

166 Programmer’s Guide

The last two jumps in the list, JPE (Jump if Parity Even) and JPO (Jump if Parity
Odd), are useful only for communications programs. The processor sets the parity
flag if an operation produces a result with an even number of set bits. A
communications program can compare the flag against the parity bit received
through the serial port to test for transmission errors.

The conditional jumps in the preceding list can follow any instruction that changes
the processor flags, as these examples show:

; Uses JO to handle overflow condition

 add ax, bx ; Add two values

 jo overflow ; If value too large, adjust

; Uses JNZ to check for zero as the result of subtraction

 sub ax, bx ; Subtract

 mov cx, Count ; First, initialize CX

 jnz skip ; If the result is not zero, continue

 call zhandler ; Else do special case

As the second example shows, the jump does not have to immediately follow the
instruction that alters the flags. Since MOV does not change the flags, it can appear
between the SUB instruction and the dependent jump.

There are three categories of conditional jumps:

◆ Comparison of two values

◆ Individual bit settings in a value

◆ Whether a value is zero or nonzero

Jumps Based on Comparison of Two Values
The CMP instruction is the most common way to test for conditional jumps. It
compares two values without changing either, then sets or clears the processor flags
according to the results of the comparison.

Internally, the CMP instruction is the same as the SUB instruction, except that
CMP does not change the destination operand. Both set flags according to the result
of the subtraction.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 166 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 167

You can compare signed or unsigned values, but you must choose the subsequent
conditional jump to reflect the correct value type. For example, JL (Jump if Less
Than) and JB (Jump if Below) may seem conceptually similar, but a failure to
understand the difference between them can result in program bugs. Table 7.1
shows the correct conditional jumps for comparisons of signed and unsigned values.
The table shows the zero, carry, sign, and overflow flags as ZF, CF, SF, and OF,
respectively.

Table 7.1 Conditional Jumps Based on Comparisons of Two Values

Signed Comparisons
Instruction Jump if True

Unsigned Comparisons
Instruction Jump if True

JE ZF = 1 JE ZF = 1

JNE ZF = 0 JNE ZF = 0

JG/JNLE ZF = 0 and SF = OF JA/JNBE CF = 0 and ZF = 0

JLE/JNG ZF = 1 or SF ≠ OF JBE/JNA CF = 1 or ZF = 1

JL/JNGE SF ≠ OF JB/JNAE CF = 1

JGE/JNL SF = OF JAE/JNB CF = 0

The mnemonic names of jumps always refer to the comparison of CMP’s first
operand (destination) with the second operand (source). For instance, in this
example, JG tests whether the first operand is greater than the second.

 cmp ax, bx ; Compare AX and BX

 jg next1 ; Equivalent to: If (AX > BX) goto next1

 jl next2 ; Equivalent to: If (AX < BX) goto next2

Jumps Based on Bit Settings
The individual bit settings in a single value can also serve as the criteria for a
conditional jump. The TEST instruction tests whether specific bits in an operand
are on or off (set or clear), and sets the zero flag accordingly.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 167 of 50 Printed: 03/06/94 05:58 PM

168 Programmer’s Guide

The TEST instruction is the same as the AND instruction, except that TEST
changes neither operand. The following example shows an application of TEST.

 .DATA

bits BYTE ?

 .CODE

 .

 .

 .

; If bit 2 or bit 4 is set, then call task_a

 ; Assume "bits" is 0D3h 11010011

 test bits, 10100y ; If 2 or 4 is set AND 00010100

 jz skip1 ; --------

 call task_a ; Then call task_a 00010000

skip1: ; Jump taken

 .

 .

 .

; If bits 2 and 4 are clear, then call task_b

 ; Assume "bits" is 0E9h 11101001

 test bits, 10100y ; If 2 and 4 are clear AND 00010100

 jnz skip2 ; --------

 call task_b ; Then call task_b 00000000

skip2: ; Jump taken

The source operand for TEST is often a mask in which the test bits are the only bits
set. The destination operand contains the value to be tested. If all the bits set in the
mask are clear in the destination operand, TEST sets the zero flag. If any of the
flags set in the mask are also set in the destination operand, TEST clears the zero
flag.

The 80386/486 processors provide additional bit-testing instructions. The BT (Bit
Test) series of instructions copy a specified bit from the destination operand to the
carry flag. A JC or JNC can then route program flow depending on the result. For
variations on the BT instruction, see the Reference.

Jumps Based on a Value of Zero
A program often needs to jump based on whether a particular register contains a
value of zero. We’ve seen how the JCXZ instruction jumps depending on the value
in the CX register. You can test for zero in other data registers nearly as efficiently
with the OR instruction. A program can OR a register with itself without changing
the register’s contents, then act on the resulting flags status. For example, the
following example tests whether BX is zero:

 or bx, bx ; Is BX = 0?

 jz is_zero ; Jump if so

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 168 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 169

This code is functionally equivalent to:

 cmp bx, 0 ; Is BX = 0?

 je is_zero ; Jump if so

but produces smaller and faster code, since it does not use an immediate number as
an operand. The same technique also lets you test a register’s sign bit:

 or dx, dx ; Is DX sign bit set?

 js sign_set ; Jump if so

Jump Extending
Unlike an unconditional jump, a conditional jump cannot reference a label more
than 128 bytes away. For example, the following statement is valid as long as
target is within a distance of 128 bytes:

; Jump to target less than 128 bytes away

 jz target ; If previous operation resulted

 ; in zero, jump to target

However, if target is too distant, the following sequence is necessary to enable a
longer jump. Note this sequence is logically equivalent to the preceding example:

; Jumps to distant targets previously required two steps

 jnz skip ; If previous operation result is

 ; NOT zero, jump to "skip"

 jmp target ; Otherwise, jump to target

skip:

MASM can automate jump-extending for you. If you target a conditional jump to a
label farther than 128 bytes away, MASM rewrites the instruction with an
unconditional jump, which ensures that the jump can reach its target. If target lies
within a 128-byte range, the assembler encodes the instruction jz target as is.
Otherwise, MASM generates two substitute instructions:

 jne $ + 2 + (length in bytes of the next instruction)

 jmp NEAR PTR target

The assembler generates this same code sequence if you specify the distance with
NEAR PTR, FAR PTR, or SHORT. Therefore,

 jz NEAR PTR target

becomes

 jne $ + 5

 jmp NEAR PTR target

even if target is less than 128 bytes away.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 169 of 50 Printed: 03/06/94 05:58 PM

170 Programmer’s Guide

MASM enables automatic jump expansion by default, but you can turn it off with
the NOLJMP form of the OPTION directive. For information about the OPTION
directive, see page 24.

If the assembler generates code to extend a conditional jump, it issues a level 3
warning saying that the conditional jump has been lengthened. You can set the
warning level to 1 for development and to level 3 for a final optimizing pass to see
if you can shorten jumps by reorganizing.

If you specify the distance for the jump and the target is out of range for that
distance, a “Jump out of Range” error results.

Since the JCXZ and JECXZ instructions do not have logical negations, expansion
of the jump instruction to handle targets with unspecified distances cannot be
performed for those instructions. Therefore, the distance must always be short.

The size and distance of the target operand determines the encoding for conditional
or unconditional jumps to externals or targets in different segments. The jump-
extending and optimization features do not apply in this case.

Note Conditional jumps on the 80386 and 80486 processors can be to targets up to
32K away, so jump extension occurs only for targets greater than that distance.

Anonymous Labels
When you code jumps in assembly language, you must invent many label names.
One alternative to continually thinking up new label names is to use anonymous
labels, which you can use anywhere in your program. But because anonymous
labels do not provide meaningful names, they are best used for jumping over only a
few lines of code. You should mark major divisions of a program with actual named
labels.

Use two at signs (@@) followed by a colon (:) as an anonymous label. To jump to
the nearest preceding anonymous label, use @B (back) in the jump instruction’s
operand field; to jump to the nearest following anonymous label, use @F (forward)
in the operand field.

The jump in the following example targets an anonymous label:

 jge @F

 .

 .

 .

@@:

The items @B and @F always refer to the nearest occurrences of @@:, so there is
never any conflict between different anonymous labels.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 170 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 171

Decision Directives
The high-level structures you can use for decision-making are the .IF, .ELSEIF,
and .ELSE statements. These directives generate conditional jumps. The expression
following the .IF directive is evaluated, and if true, the following instructions are
executed until the next .ENDIF, .ELSE, or .ELSEIF directive is reached. The
.ELSE statements execute if the expression is false. Using the .ELSEIF directive
puts a new expression inside the alternative part of the original .IF statement to be
evaluated. The syntax is:

.IF condition1
statements
[[.ELSEIF condition2
statements]]
[[.ELSE
statements]]
.ENDIF

The decision structure

 .IF cx == 20

 mov dx, 20

 .ELSE

 mov dx, 30

 .ENDIF

generates this code:

 .IF cx == 20

0017 83 F9 14 * cmp cx, 014h

001A 75 05 * jne @C0001

001C BA 0014 mov dx, 20

 .ELSE

001F EB 03 * jmp @C0003

0021 *@C0001:

0021 BA 001E mov dx, 30

 .ENDIF

0024 *@C0003:

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 171 of 50 Printed: 03/06/94 05:58 PM

172 Programmer’s Guide

Loops
Loops repeat an action until a termination condition is reached. This condition can
be a counter or the result of an expression’s evaluation. MASM 6.1 offers many
ways to set up loops in your programs. The following list compares MASM loop
structures:

Instructions Action

LOOP Automatically decrements CX. When CX = 0, the loop ends. The
top of the loop cannot be greater than 128 bytes from the LOOP
instruction. (This is true for all LOOP instructions.)

LOOPE/LOOPZ,
LOOPNE/LOOPNZ

Loops while equal or not equal. Checks both CX and the state of
the zero flag. LOOPZ ends when either CX=0 or the zero flag is
clear, whichever occurs first. LOOPNZ ends when either CX=0 or
the zero flag is set, whichever occurs first. LOOPE and LOOPZ
assemble to the same machine instruction, as do LOOPNE and
LOOPNZ. Use whichever mnemonic best fits the context of your
loop. Set CX to a number out of range if you don’t want a count to
control the loop.

JCXZ, JECXZ Branches to a label only if CX = 0 or ECX = 0. Unlike other
conditional-jump instructions, which can jump to either a near or a
short label under the 80386 or 80486, JCXZ and JECXZ always
jump to a short label.

Conditional jumps Acts only if certain conditions met. Necessary if several conditions
must be tested. See “Conditional Jumps,” page 164.

The following examples illustrate these loop constructions.

; The LOOP instruction: For 200 to 0 do task

 mov cx, 200 ; Set counter

next: . ; Do the task here

 .

 .

 loop next ; Do again

 ; Continue after loop

; The LOOPNE instruction: While AX is not 'Y', do task

 mov cx, 256 ; Set count too high to interfere

wend: . ; But don't do more than 256 times

 . ; Some statements that change AX

 .

 cmp al, 'Y' ; Is it Y or too many times?

 loopne wend ; No? Repeat

 ; Yes? Continue

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 172 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 173

The JCXZ and JECXZ instructions provide an efficient way to avoid executing
loops when the loop counter CX is empty. For example, consider the following
loops:

mov cx, LoopCount ; Load loop counter

next: . ; Iterate loop CX times

 .

 .

 loop next ; Do again

If LoopCount is zero, CX decrements to -1 on the first pass. It then must
decrement 65,535 more times before reaching 0. Use a JCXZ to avoid this
problem:

mov cx, LoopCount ; Load loop counter

 jcxz done ; Skip loop if count is 0

next: . ; Else iterate loop CX times

 .

 .

 loop next ; Do again

done: ; Continue after loop

Loop-Generating Directives
The high-level control structures generate loop structures for you. These directives
are similar to the while and repeat loops of C or Pascal, and can make your
assembly programs easier to code and to read. The assembler generates the
appropriate assembly code. These directives are summarized as follows:

Directives Action

.WHILE ENDW The statements between .WHILE condition and .ENDW
execute while the condition is true.

.REPEAT UNTIL The loop executes at least once and continues until the
condition given after .UNTIL is true. Generates conditional
jumps.

.REPEAT UNTILCXZ Compares label to an expression and generates appropriate
loop instructions.

.BREAK End a .REPEAT or a .WHILE loop unconditionally.

.CONTINUE Jump unconditionally past any remaining code to bottom of
loop.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 173 of 50 Printed: 03/06/94 05:58 PM

174 Programmer’s Guide

These constructs work much as they do in a high-level language such as C or
Pascal. Keep in mind the following points:

◆ These directives generate appropriate processor instructions. They are not new
instructions.

◆ They require proper use of signed and unsigned data declarations.

These directives cause a set of instructions to execute based on the evaluation of
some condition. This condition can be an expression that evaluates to a signed or
unsigned value, an expression using the binary operators in C (&&, ||, or !), or the
state of a flag. For more information about expression operators, see page 178.

The evaluation of the condition requires the assembler to know if the operands in
the condition are signed or unsigned. To state explicitly that a named memory
location contains a signed integer, use the signed data allocation directives SBYTE,
SWORD, and SDWORD.

.WHILE Loops
As with while loops in C or Pascal, the test condition for .WHILE is checked
before the statements inside the loop execute. If the test condition is false, the loop
does not execute. While the condition is true, the statements inside the loop repeat.

Use the .ENDW directive to mark the end of the .WHILE loop. When the
condition becomes false, program execution begins at the first statement following
the .ENDW directive. The .WHILE directive generates appropriate compare and
jump statements. The syntax is:

.WHILE condition
statements
.ENDW

For example, this loop copies the contents of one buffer to another until a ‘$’
character (marking the end of the string) is found:

 .DATA

 buf1 BYTE "This is a string",'$'

 buf2 BYTE 100 DUP (?)

 .CODE

 sub bx, bx ; Zero out bx

 .WHILE (buf1[bx] != '$')

 mov al, buf1[bx] ; Get a character

 mov buf2[bx], al ; Move it to buffer 2

 inc bx ; Count forward

 .ENDW

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 174 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 175

.REPEAT Loops
MASM’s .REPEAT directive allows for loop constructions like the do loop of C
and the REPEAT loop of Pascal. The loop executes until the condition following
the .UNTIL (or .UNTILCXZ) directive becomes true. Since the condition is
checked at the end of the loop, the loop always executes at least once. The
.REPEAT directive generates conditional jumps. The syntax is:

.REPEAT
statements
.UNTIL condition

.REPEAT
statements
.UNTILCXZ [[condition]]

where condition can also be expr1 == expr2 or expr1 != expr2. When two
conditions are used, expr2 can be an immediate expression, a register, or (if expr1
is a register) a memory location.

For example, the following code fills a buffer with characters typed at the keyboard.
The loop ends when the ENTER key (character 13) is pressed:

 .DATA

buffer BYTE 100 DUP (0)

 .CODE

 sub bx, bx ; Zero out bx

 .REPEAT

 mov ah, 01h

 int 21h ; Get a key

 mov buffer[bx], al ; Put it in the buffer

 inc bx ; Increment the count

 .UNTIL (al == 13) ; Continue until al is 13

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 175 of 50 Printed: 03/06/94 05:58 PM

176 Programmer’s Guide

The .UNTIL directive generates conditional jumps, but the .UNTILCXZ directive
generates a LOOP instruction, as shown by the listing file code for these examples.
In a listing file, assembler-generated code is preceded by an asterisk.

ASSUME bx:PTR SomeStruct

 .REPEAT

 *@C0001:

 inc ax

 .UNTIL ax==6

 * cmp ax, 006h

 * jne @C0001

.REPEAT

 *@C0003:

 mov ax, 1

 .UNTILCXZ

 * loop @C0003

 .REPEAT

 *@C0004:

 .UNTILCXZ [bx].field != 6

 * cmp [bx].field, 006h

 * loope @C0004

.BREAK and .CONTINUE Directives
The .BREAK and .CONTINUE directives terminate a .REPEAT or .WHILE
loop prematurely. These directives allow an optional .IF clause for conditional
breaks. The syntax is:

.BREAK [[.IF condition]]

.CONTINUE [[.IF condition]]

Note that .ENDIF is not used with the .IF forms of .BREAK and .CONTINUE in
this context. The .BREAK and .CONTINUE directives work the same way as the
break and continue instructions in C. Execution continues at the instruction
following the .UNTIL, .UNTILCXZ, or .ENDW of the nearest enclosing loop.

Instead of ending the loop execution as .BREAK does, .CONTINUE causes loop
execution to jump directly to the code that evaluates the loop condition of the
nearest enclosing loop.

The following loop accepts only the keys in the range ‘0’ to ‘9’ and terminates
when you press ENTER.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 176 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 177

 .WHILE 1 ; Loop forever

 mov ah, 08h ; Get key without echo

 int 21h

 .BREAK .IF al == 13 ; If ENTER, break out of the loop

 .CONTINUE .IF (al < '0') || (al > '9')

 ; If not a digit, continue looping

 mov dl, al ; Save the character for processing

 mov ah, 02h ; Output the character

 int 21h

 .ENDW

If you assemble the preceding source code with the /Fl and /Sg command-line
options and then view the results in the listing file, you will see this code:

 .WHILE 1

 0017 *@C0001:

 0017 B4 08 mov ah, 08h

 0019 CD 21 int 21h

 .BREAK .IF al == 13

 001B 3C 0D * cmp al, 00Dh

 001D 74 10 * je @C0002

 .CONTINUE .IF (al '0') || (al '9')

 001F 3C 30 * cmp al, '0'

 0021 72 F4 * jb @C0001

 0023 3C 39 * cmp al, '9'

 0025 77 F0 * ja @C0001

 0027 8A D0 mov dl, al

 0029 B4 02 mov ah, 02h

 002B CD 21 int 21h

 .ENDW

 002D EB E8 * jmp @C0001

 002F *@C0002:

The high-level control structures can be nested. That is, .REPEAT or .WHILE
loops can contain .REPEAT or .WHILE loops as well as .IF statements.

If the code generated by a .WHILE loop, .REPEAT loop, or .IF statement
generates a conditional or unconditional jump, MASM encodes the jump using the
jump extension and jump optimization techniques described in “Unconditional
Jumps,” page 162, and “Conditional Jumps,” page 164.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 177 of 50 Printed: 03/06/94 05:58 PM

178 Programmer’s Guide

Writing Loop Conditions
You can express the conditions of the .IF, .REPEAT, and .WHILE directives
using relational operators, and you can express the attributes of the operand with
the PTR operator. To write loop conditions, you also need to know how the
assembler evaluates the operators and operands in the condition. This section
explains the operators, attributes, precedence level, and expression evaluation order
for the conditions used with loop-generating directives.

Expression Operators
The binary relational operators in MASM 6.1 are the same binary operators used in
C. These operators generate MASM compare, test, and conditional jump
instructions. High-level control instructions include:

Operator Meaning

== Equal

!= Not equal

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

& Bit test

! Logical NOT

&& Logical AND

|| Logical OR

A condition without operators (other than !) tests for nonzero as it does in C. For
example, .WHILE (x) is the same as .WHILE (x != 0), and .WHILE (!x) is
the same as .WHILE (x == 0).

You can also use the flag names (ZERO?, CARRY?, OVERFLOW?, SIGN?,
and PARITY?) as operands in conditions with the high-level control structures.
For example, in .WHILE (CARRY?), the value of the carry flag determines the
outcome of the condition.

Signed and Unsigned Operands
Expression operators generate unsigned jumps by default. However, if either side of
the operation is signed, the assembler considers the entire operation signed.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 178 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 179

You can use the PTR operator to tell the assembler that a particular operand in a
register or constant is a signed number, as in these examples:

 .WHILE SWORD PTR [bx] <= 0

 .IF SWORD PTR mem1 > 0

Without the PTR operator, the assembler would treat the contents of BX as an
unsigned value.

You can also specify the size attributes of operands in memory locations with
SBYTE, SWORD, and SDWORD, for use with .IF, .WHILE, and .REPEAT.

 .DATA

mem1 SBYTE ?

mem2 WORD ?

 .IF mem1 > 0

 .WHILE mem2 < bx

 .WHILE SWORD PTR ax < count

Precedence Level
As with C, you can concatenate conditions with the && operator for AND, the ||
operator for OR, and the ! operator for negate. The precedence level is !, &&, and
||, with ! having the highest priority. Like expressions in high-level languages,
precedence is evaluated left to right.

Expression Evaluation
The assembler evaluates conditions created with high-level control structures
according to short-circuit evaluation. If the evaluation of a particular condition
automatically determines the final result (such as a condition that evaluates to false
in a compound statement concatenated with AND), the evaluation does not
continue.

For example, in this .WHILE statement,

 .WHILE (ax > 0) && (WORD PTR [bx] == 0)

the assembler evaluates the first condition. If this condition is false (that is, if AX is
less than or equal to 0), the evaluation is finished. The second condition is not
checked and the loop does not execute, because a compound condition containing
&& requires both expressions to be true for the entire condition to be true.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 179 of 50 Printed: 03/06/94 05:58 PM

180 Programmer’s Guide

Procedures
Organizing your code into procedures that execute specific tasks divides large
programs into manageable units, allows for separate testing, and makes code more
efficient for repetitive tasks.

Assembly-language procedures are similar to functions, subroutines, and
procedures in high-level languages such as C, FORTRAN, and Pascal. Two
instructions control the use of assembly-language procedures. CALL pushes the
return address onto the stack and transfers control to a procedure, and RET pops
the return address off the stack and returns control to that location.

The PROC and ENDP directives mark the beginning and end of a procedure.
Additionally, PROC can automatically:

◆ Preserve register values that should not change but that the procedure might
otherwise alter.

◆ Set up a local stack pointer, so that you can access parameters and local
variables placed on the stack.

◆ Adjust the stack when the procedure ends.

Defining Procedures
Procedures require a label at the start of the procedure and a RET instruction at the
end. Procedures are normally defined by using the PROC directive at the start of
the procedure and the ENDP directive at the end. The RET instruction normally is
placed immediately before the ENDP directive. The assembler makes sure the
distance of the RET instruction matches the distance defined by the PROC
directive. The basic syntax for PROC is:

label PROC [[NEAR | FAR]]
 .
 .
 .
RET [[constant]]
label ENDP

The CALL instruction pushes the address of the next instruction in your code onto
the stack and passes control to a specified address. The syntax is:

CALL {label | register | memory}

The operand contains a value calculated at run time. Since that operand can be a
register, direct memory operand, or indirect memory operand, you can write call
tables similar to the example code on page 164.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 180 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 181

Calls can be near or far. Near calls push only the offset portion of the calling
address and therefore must target a procedure within the same segment or group.
You can specify the type for the target operand. If you do not, MASM uses the
declared distance (NEAR or FAR) for operands that are labels and for the size of
register or memory operands. The assembler then encodes the call appropriately, as
it does with unconditional jumps. (See previous “Unconditional Jumps” and
“Conditional Jumps.”)

MASM optimizes a call to a far non-external label when the label is in the current
segment by generating the code for a near call, saving one byte.

You can define procedures without PROC and ENDP, but if you do, you must
make sure that the size of the CALL matches the size of the RET. You can specify
the RET instruction as RETN (Return Near) or RETF (Return Far) to override the
default size:

 call NEAR PTR task ; Call is declared near

 . ; Return comes to here

 .

 .

task: ; Procedure begins with near label

 .

 . ; Instructions go here

 .

 retn ; Return declared near

The syntax for RETN and RETF is:

label: | label LABEL NEAR
statements
RETN [[constant]]

label LABEL FAR
statements
RETF [[constant]]

The RET instruction (and its RETF and RETN variations) allows an optional
constant operand that specifies a number of bytes to be added to the value of the SP
register after the return. This operand adjusts for arguments passed to the procedure
before the call, as shown in the example in “Using Local Variables,” following.

When you define procedures without PROC and ENDP, you must make sure that
calls have the same size as corresponding returns. For example, RETF pops two
words off the stack. If a NEAR call is made to a procedure with a far return, the
popped value is meaningless, and the stack status may cause the execution to return
to a random memory location, resulting in program failure.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 181 of 50 Printed: 03/06/94 05:58 PM

182 Programmer’s Guide

An extended PROC syntax automates many of the details of accessing arguments
and saving registers. See “Declaring Parameters with the PROC Directive,” later in
this chapter.

Passing Arguments on the Stack
Each time you call a procedure, you may want it to operate on different data. This
data, called “arguments,” can be passed to the procedure in various ways. Although
you can pass arguments to a procedure in registers or in variables, the most
common method is the stack. Microsoft languages have specific conventions for
passing arguments. These conventions for assembly-language modules shared with
modules from high-level languages are explained in Chapter 12, “Mixed-Language
Programming.”

This section describes how a procedure accesses the arguments passed to it on the
stack. Each argument is accessed as an offset from BP. However, if you use the
PROC directive to declare parameters, the assembler calculates these offsets for
you and lets you refer to parameters by name. The next section, “Declaring
Parameters with the PROC Directive,” explains how to use PROC this way. This
example shows how to pass arguments to a procedure. The procedure expects to
find those arguments on the stack. As this example shows, arguments must be
accessed as offsets of BP.

; C-style procedure call and definition

 mov ax, 10 ; Load and

 push ax ; push constant as third argument

 push arg2 ; Push memory as second argument

 push cx ; Push register as first argument

 call addup ; Call the procedure

 add sp, 6 ; Destroy the pushed arguments

 . ; (equivalent to three pops)

 .

 .

addup PROC NEAR ; Return address for near call

 ; takes two bytes

 push bp ; Save base pointer - takes two bytes

 ; so arguments start at fourth byte

 mov bp, sp ; Load stack into base pointer

 mov ax, [bp+4] ; Get first argument from

 ; fourth byte above pointer

 add ax, [bp+6] ; Add second argument from

 ; sixth byte above pointer

 add ax, [bp+8] ; Add third argument from

 ; eighth byte above pointer

 pop bp ; Restore BP

 ret ; Return result in AX

addup ENDP

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 182 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 183

Figure 7.1 shows the stack condition at key points in the process.

Before
call addup

After
pop bp

After
call addup

After
ret

After
push bp
mov bp,sp

After
add sp,6

Argument 3

Argument 3

Argument 3

Argument 3

Argument 3

Argument 2

Argument 2

Argument 2

Argument 2

Argument 2

Argument 1

Argument 1

Argument 1

Argument 1

Argument 1

Return
address

Return
address

Return
address

Old value
of BP

SP

SP

SP

SP

BP+8

SP

BP+6

BP+4

BP/SP

High
memory

High
memory

Low
memory

Low
memory

High
memory

High
memory

Low
memory

Low
memory

Figure 7.1 Procedure Arguments on the Stack

Starting with the 80186 processor, the ENTER and LEAVE instructions simplify
the stack setup and restore instructions at the beginning and end of procedures.
However, ENTER uses a lot of time. It is necessary only with nested, statically-
scoped procedures. Thus, a Pascal compiler may sometimes generate ENTER. The
LEAVE instruction, on the other hand, is an efficient way to do the stack cleanup.
LEAVE reverses the effect of the last ENTER instruction by restoring BP and SP
to their values before the procedure call.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 183 of 50 Printed: 03/06/94 05:58 PM

184 Programmer’s Guide

Declaring Parameters with the PROC Directive
With the PROC directive, you can specify registers to be saved, define param-
eters to the procedure, and assign symbol names to parameters (rather than as
offsets from BP). This section describes how to use the PROC directive to
automate the parameter-accessing techniques described in the last section.

For example, the following diagram shows a valid PROC statement for a procedure
called from C. It takes two parameters, var1 and arg1, and uses (and must save)
the DI and SI registers:

myproc PROC FAR C PUBLIC USES di si, var1:WORD, arg1:VARARG

Attributes Reglist Parameters

The syntax for PROC is:

label PROC [[attributes]] [[USES reglist]] [[,]] [[parameter[[:tag]]...]]

The parts of the PROC directive include:

Argument Description

label The name of the procedure.

attributes Any of several attributes of the procedure, including the distance, langtype,
and visibility of the procedure. The syntax for attributes is given on the
following page.

reglist A list of registers following the USES keyword that the procedure uses, and
that should be saved on entry. Registers in the list must be separated by
blanks or tabs, not by commas. The assembler generates prologue code to
push these registers onto the stack. When you exit, the assembler generates
epilogue code to pop the saved register values off the stack.

parameter The list of parameters passed to the procedure on the stack. The list can
have a variable number of parameters. See the discussion following for the
syntax of parameter. This list can be longer than one line if the continued
line ends with a comma.

This diagram shows a valid PROC definition that uses several attributes:

myproc PROC FAR C PUBLIC <macroarg> USES di si, var1:WORD, arg1:VARARG

Attributes

Visibility

Langtype

Distance

Prologuearg

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 184 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 185

Attributes
The syntax for the attributes field is:

[[distance]] [[langtype]] [[visibility]] [[<prologuearg>]]

The explanations for these options include:

Argument Description

distance Controls the form of the RET instruction generated. Can be NEAR or FAR. If
distance is not specified, it is determined from the model declared with the
.MODEL directive. NEAR distance is assumed for TINY, SMALL,
COMPACT, and FLAT. The assembler assumes FAR distance for MEDIUM,
LARGE, and HUGE. For 80386/486 programming with 16- and 32-bit
segments, you can specify NEAR16, NEAR32, FAR16, or FAR32.

langtype Determines the calling convention used to access parameters and restore the
stack. The BASIC, FORTRAN, and PASCAL langtypes convert procedure
names to uppercase, place the last parameter in the parameter list lowest on
the stack, and generate a RET num instruction to end the procedure. The RET
adjusts the stack upward by num, which represents the number of bytes in the
argument list. This step, called “cleaning the stack,” returns the stack pointer
SP to the value it had before the caller pushed any arguments.

The C and STDCALL langtype prefixes an underscore to the procedure name
when the procedure’s scope is PUBLIC or EXPORT and places the first
parameter lowest on the stack. SYSCALL is equivalent to the C calling
convention with no underscore prefixed to the procedure’s name. STDCALL
uses caller stack cleanup when :VARARG is specified; otherwise the called
routine must clean up the stack (see Chapter 12).

visibility Indicates whether the procedure is available to other modules. The visibility
can be PRIVATE, PUBLIC, or EXPORT. A procedure name is PUBLIC
unless it is explicitly declared as PRIVATE. If the visibility is EXPORT, the
linker places the procedure’s name in the export table for segmented
executables. EXPORT also enables PUBLIC visibility.

You can explicitly set the default visibility with the OPTION directive.
OPTION PROC:PUBLIC sets the default to public. For more information,
see Chapter 1, “Using the Option Directive.”

prologuearg Specifies the arguments that affect the generation of prologue and epilogue
code (the code MASM generates when it encounters a PROC directive or the
end of a procedure). For an explanation of prologue and epilogue code, see
“Generating Prologue and Epilogue Code,” later in this chapter.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 185 of 50 Printed: 03/06/94 05:58 PM

186 Programmer’s Guide

Parameters
The comma that separates parameters from reglist is optional, if both fields appear
on the same line. If parameters appears on a separate line, you must end the reglist
field with a comma. In the syntax:

parmname [[:tag]

parmname is the name of the parameter. The tag can be the qualifiedtype or the
keyword VARARG. However, only the last parameter in a list of param-
eters can use the VARARG keyword. The qualifiedtype is discussed in “Data
Types,” Chapter 1. An example showing how to reference VARARG param-
eters appears later in this section. You can nest procedures if they do not have
parameters or USES register lists. This diagram shows a procedure definition with
one parameter definition.

myproc PROC FAR C PUBLIC USES di si, var1:WORD, arg1:VARARG

Parameters

Qualifiedtype

Parmname

The procedure presented in “Passing Arguments on the Stack,” page 182, is here
rewritten using the extended PROC functionality. Prior to the procedure call, you
must push the arguments onto the stack unless you use INVOKE. (See “Calling
Procedures with INVOKE,” later in this chapter.)

addup PROC NEAR C,

 arg1:WORD, arg2:WORD, count:WORD

 mov ax, arg1

 add ax, count

 add ax, arg2

 ret

addup ENDP

If the arguments for a procedure are pointers, the assembler does not generate any
code to get the value or values that the pointers reference; your program must still
explicitly treat the argument as a pointer. (For more information about using
pointers, see Chapter 3, “Using Addresses and Pointers.”)

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 186 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 187

In the following example, even though the procedure declares the parameters as
near pointers, you must code two MOV instructions to get the values of the param-
eters. The first MOV gets the address of the parameters, and the second MOV gets
the parameter.

; Call from C as a FUNCTION returning an integer

 .MODEL medium, c

 .CODE

myadd PROC arg1:NEAR PTR WORD, arg2:NEAR PTR WORD

 mov bx, arg1 ; Load first argument

 mov ax, [bx]

 mov bx, arg2 ; Add second argument

 add ax, [bx]

 ret

myadd ENDP

You can use conditional-assembly directives to make sure your pointer parameters
are loaded correctly for the memory model. For example, the following version of
myadd treats the parameters as FAR parameters, if necessary.

 .MODEL medium, c ; Could be any model

 .CODE

myadd PROC arg1:PTR WORD, arg2:PTR WORD

 IF @DataSize

 les bx, arg1 ; Far parameters

 mov ax, es:[bx]

 les bx, arg2

 add ax, es:[bx]

 ELSE

 mov bx, arg1 ; Near parameters

 mov ax, [bx]

 mov bx, arg2

 add ax, [bx]

 ENDIF

 ret

myadd ENDP

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 187 of 50 Printed: 03/06/94 05:58 PM

188 Programmer’s Guide

Using VARARG
In the PROC statement, you can append the :VARARG keyword to the last
parameter to indicate that the procedure accepts a variable number of arguments.
However, :VARARG applies only to the C, SYSCALL, or STDCALL calling
conventions (see Chapter 12). A symbol must precede :VARARG so the procedure
can access arguments as offsets from the given variable name, as this example
illustrates:

addup3 PROTO NEAR C, argcount:WORD, arg1:VARARG

 invoke addup3, 3, 5, 2, 4

addup3 PROC NEAR C, argcount:WORD, arg1:VARARG

 sub ax, ax ; Clear work register

 sub si, si

 .WHILE argcount > 0 ; Argcount has number of arguments

 add ax, arg1[si] ; Arg1 has the first argument

 dec argcount ; Point to next argument

 inc si

 inc si

 .ENDW

 ret ; Total is in AX

addup3 ENDP

You can pass non-default-sized pointers in the VARARG portion of the parameter
list by separately passing the segment portion and the offset portion of the address.

Note When you use the extended PROC features and the assembler encounters a
RET instruction, it automatically generates instructions to pop saved registers,
remove local variables from the stack, and, if necessary, remove parameters. It
generates this code for each RET instruction it encounters. You can reduce code
size by having only one return and jumping to it from various locations.

Using Local Variables
In high-level languages, local variables are visible only within a procedure. In
Microsoft languages, these variables are usually stored on the stack. In assembly-
language programs, you can also have local variables. These variables should not
be confused with labels or variable names that are local to a module, as described
in Chapter 8, “Sharing Data and Procedures Among Modules and Libraries.”

This section outlines the standard methods for creating local variables. The next
section shows how to use the LOCAL directive to make the assembler

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 188 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 189

automatically generate local variables. When you use this directive, the assembler
generates the same instructions as those demonstrated in this section but handles
some of the details for you.

If your procedure has relatively few variables, you can usually write the most
efficient code by placing these values in registers. Use local (stack) data when you
have a large amount of temporary data for the procedure.

To use a local variable, you must save stack space for it at the start of the
procedure. A procedure can then reference the variable by its position in the stack.
At the end of the procedure, you must clean the stack by restoring the stack pointer.
This effectively throws away all local variables and regains the stack space they
occupied.

This example subtracts 2 bytes from the SP register to make room for a local word
variable, then accesses the variable as [bp-2].

 push ax ; Push one argument

 call task ; Call

 .

 .

 .

task PROC NEAR

 push bp ; Save base pointer

 mov bp, sp ; Load stack into base pointer

 sub sp, 2 ; Save two bytes for local variable

 .

 .

 .

 mov WORD PTR [bp-2], 3 ; Initialize local variable

 add ax, [bp-2] ; Add local variable to AX

 sub [bp+4], ax ; Subtract local from argument

 . ; Use [bp-2] and [bp+4] in

 . ; other operations

 .

 mov sp, bp ; Clear local variables

 pop bp ; Restore base

 ret 2 ; Return result in AX and pop

task ENDP ; two bytes to clear parameter

Notice the instruction mov sp,bp at the end of the procedure restores the original
value of SP. The statement is required only if the value of SP changes inside the
procedure (usually by allocating local variables). The argument passed to the
procedure is removed with the RET instruction. Contrast this to the example in
“Passing Arguments on the Stack,” page 182, in which the calling code adjusts the
stack for the argument.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 189 of 50 Printed: 03/06/94 05:58 PM

190 Programmer’s Guide

Figure 7.2 shows the stack at key points in the process.

Before
call task

After
sub sp,2

After
call task

After
mov sp,bp
pop bp

After
push bp
mov bp,sp

After
ret 2

Argument

Argument

Argument

Argument

Argument

Space
for local

Old value
of BP

Return
address

Return
address

Return
address

Return
address

Old value
of BP

SP

SP

BP+4

BP

SP

SP

BP+4

SP

BP/SP

High
memory

High
memory

Low
memory

Low
memory

High
memory

High
memory

Low
memory

Low
memory

Figure 7.2 Local Variables on the Stack

Creating Local Variables Automatically
MASM’s LOCAL directive automates the process for creating local variables on
the stack. LOCAL frees you from having to count stack words, and it makes your
code easier to write and maintain. This section illustrates the advantages of creating
temporary data with the LOCAL directive.

To use the LOCAL directive, list the variables you want to create, giving a type for
each one. The assembler calculates how much space is required on the stack. It also
generates instructions to properly decrement SP (as described in the previous
section) and to reset SP when you return from the procedure.

When you create local variables this way, your source code can refer to each local
variable by name rather than as an offset of the stack pointer. Moreover, the

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 190 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 191

assembler generates debugging information for each local variable. If you have
programmed before in a high-level language that allows scoping, local variables
will seem familiar. For example, a C compiler sets up variables with automatic
storage class in the same way as the LOCAL directive.

We can simplify the procedure in the previous section with the following code:

task PROC NEAR arg:WORD

 LOCAL loc:WORD

 .

 .

 .

 mov loc, 3 ; Initialize local variable

 add ax, loc ; Add local variable to AX

 sub arg, ax ; Subtract local from argument

 . ; Use "loc" and "arg" in other operations

 .

 .

 ret

task ENDP

The LOCAL directive must be on the line immediately following the PROC
statement with the following syntax:

LOCAL vardef [[, vardef]]...

Each vardef defines a local variable. A local variable definition has this form:

label[[[count]]][[:qualifiedtype]]

These are the parameters in local variable definitions:

Argument Description

label The name given to the local variable. You can use this name to access the
variable.

count The number of elements of this name and type to allocate on the stack.
You can allocate a simple array on the stack with count. The brackets
around count are required. If this field is omitted, one data object is
assumed.

qualifiedtype A simple MASM type or a type defined with other types and attributes.
For more information, see “Data Types” in Chapter 1.

If the number of local variables exceeds one line, you can place a comma at the end
of the first line and continue the list on the next line. Alternatively, you can use
several consecutive LOCAL directives.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 191 of 50 Printed: 03/06/94 05:58 PM

192 Programmer’s Guide

The assembler does not initialize local variables. Your program must include code
to perform any necessary initializations. For example, the following code fragment
sets up a local array and initializes it to zero:

arraysz EQU 20

aproc PROC USES di

 LOCAL var1[arraysz]:WORD, var2:WORD

 .

 .

 .

; Initialize local array to zero

 push ss

 pop es ; Set ES=SS

 lea di, var1 ; ES:DI now points to array

 mov cx, arraysz ; Load count

 sub ax, ax

 rep stosw ; Store zeros

; Use the array...

 .

 .

 .

 ret

aproc ENDP

Even though you can reference stack variables by name, the assembler treats them
as offsets of BP, and they are not visible outside the procedure. In the following
procedure, array is a local variable.

index EQU 10

test PROC NEAR

LOCAL array[index]:WORD

 .

 .

 .

 mov bx, index

; mov array[bx], 5 ; Not legal!

The second MOV statement may appear to be legal, but since array is an
offset of BP, this statement is the same as

; mov [bp + bx + arrayoffset], 5 ; Not legal!

BP and BX can be added only to SI and DI. This example would be legal, however,
if the index value were moved to SI or DI. This type of error in your program can
be difficult to find unless you keep in mind that local variables in procedures are
offsets of BP.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 192 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 193

Declaring Procedure Prototypes
MASM provides the INVOKE directive to handle many of the details important to
procedure calls, such as pushing parameters according to the correct calling
conventions. To use INVOKE, the procedure called must have been declared
previously with a PROC statement, an EXTERNDEF (or EXTERN) statement,
or a TYPEDEF. You can also place a prototype defined with PROTO before the
INVOKE if the procedure type does not appear before the INVOKE. Procedure
prototypes defined with PROTO inform the assembler of types and numbers of
arguments so the assembler can check for errors and provide automatic conversions
when INVOKE calls the procedure.

Declaring procedure prototypes is good programming practice, but is optional.
Prototypes in MASM perform the same function as prototypes in C and other high-
level languages. A procedure prototype includes the procedure name, the types, and
(optionally) the names of all parameters the procedure expects. Prototypes usually
are placed at the beginning of an assembly program or in a separate include file so
the assembler encounters the prototype before the actual procedure.

Prototypes enable the assembler to check for unmatched parameters and are
especially useful for procedures called from other modules and other languages. If
you write routines for a library, you may want to put prototypes into an include file
for all the procedures used in that library. For more information about using include
files, see Chapter 8, “Sharing Data and Procedures among Modules and Libraries.”

The PROTO directive provides one way to define a procedure prototype. The
syntax for a prototype definition is the same as for a procedure declaration (see
“Declaring Parameters with the PROC Directive,” earlier in this chapter), except
that you do not include the list of registers, prologuearg list, or the scope of the
procedure.

Also, the PROTO keyword precedes the langtype and distance attributes. The
attributes (like C and FAR) are optional. However, if they are not specified, the
defaults are based on any .MODEL or OPTION LANGUAGE statement. The
names of the parameters are also optional, but you must list parameter types. A
label preceding :VARARG is also optional in the prototype but not in the PROC
statement.

If a PROTO and a PROC for the same function appear in the same module, they
must match in attribute, number of parameters, and parameter types. The easiest
way to create prototypes with PROTO is to write your procedure and then copy the
first line (the line that contains the PROC keyword) to a location in your program
that follows the data declarations. Change PROC to PROTO and remove the
USES reglist, the prologuearg field, and the visibility field. It is important that the
prototype follow the declarations for any types used in it to avoid any forward
references used by the parameters in the prototype.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 193 of 50 Printed: 03/06/94 05:58 PM

194 Programmer’s Guide

The following example illustrates how to define and then declare two typical
procedures. In both prototype and declaration, the comma before the argument list
is optional only when the list does not appear on a separate line:

; Procedure prototypes.

addup PROTO NEAR C argcount:WORD, arg2:WORD, arg3:WORD

myproc PROTO FAR C, argcount:WORD, arg2:VARARG

; Procedure declarations

addup PROC NEAR C, argcount:WORD, arg2:WORD, arg3:WORD

.

.

.

myproc PROC FAR C PUBLIC <callcount> USES di si,

 argcount:WORD,

 arg2:VARARG

When you call a procedure with INVOKE, the assembler checks the arguments
given by INVOKE against the parameters expected by the procedure. If the data
types of the arguments do not match, MASM reports an error or converts the type to
the expected type. These conversions are explained in the next section.

Calling Procedures with INVOKE
INVOKE generates a sequence of instructions that push arguments and call a
procedure. This helps maintain code if arguments or langtype for a procedure are
changed. INVOKE generates procedure calls and automatically:

◆ Converts arguments to the expected types.

◆ Pushes arguments on the stack in the correct order.

◆ Cleans the stack when the procedure returns.

If arguments do not match in number or if the type is not one the assembler can
convert, an error results.

If the procedure uses VARARG, INVOKE can pass a number of arguments
different from the number in the parameter list without generating an error or
warning. Any additional arguments must be at the end of the INVOKE argument
list. All other arguments must match those in the prototype parameter list.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 194 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 195

The syntax for INVOKE is:

INVOKE expression [[, arguments]]

where expression can be the procedure’s label or an indirect reference to a
procedure, and arguments can be an expression, a register pair, or an expression
preceded with ADDR. (The ADDR operator is discussed later in this chapter.)

Procedures with these prototypes

addup PROTO NEAR C argcount:WORD, arg2:WORD, arg3:WORD

myproc PROTO FAR C, argcount:WORD, arg2:VARARG

and these procedure declarations

addup PROC NEAR C, argcount:WORD, arg2:WORD, arg3:WORD

.

.

.

myproc PROC FAR C PUBLIC <callcount> USES di si,

 argcount:WORD,

 arg2:VARARG

can be called with INVOKE statements like this:

 INVOKE addup, ax, x, y

 INVOKE myproc, bx, cx, 100, 10

The assembler can convert some arguments and parameter type combinations so
that the correct type can be passed. The signed or unsigned qualities of the
arguments in the INVOKE statements determine how the assembler converts them
to the types expected by the procedure.

The addup procedure, for example, expects parameters of type WORD, but the
arguments passed by INVOKE to the addup procedure can be any of these types:

◆ BYTE, SBYTE, WORD, or SWORD

◆ An expression whose type is specified with the PTR operator to be one of those
types

◆ An 8-bit or 16-bit register

◆ An immediate expression in the range –32K to +64K

◆ A NEAR PTR

If the type is smaller than that expected by the procedure, MASM widens the
argument to match.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 195 of 50 Printed: 03/06/94 05:58 PM

196 Programmer’s Guide

Widening Arguments
For INVOKE to correctly handle type conversions, you must use the signed data
types for any signed assignments. MASM widens an argument to match the type
expected by a procedure’s parameters in these cases:

Type Passed Type Expected

BYTE, SBYTE WORD, SWORD, DWORD, SDWORD

WORD, SWORD DWORD, SDWORD

The assembler can extend a segment if far data is expected, and it can convert the
type given in the list to the types expected. If the assembler cannot convert the type,
however, it generates an error.

Detecting Errors
If the assembler needs to widen an argument, it first copies the value to AL or AX.
It widens an unsigned value by placing a zero in the higher register area, and
widens a signed value with a CBW, CWD, or CWDE instruction as required.
Similarly, the assembler copies a constant argument value into AL or AX when the
.8086 directive is in effect. You can see these generated instructions in the listing
file when you include the /Sg command-line option.

Using the accumulator register to widen or copy an argument may lead to an error if
you attempt to pass AX as another argument. For example, consider the following
INVOKE statement for a procedure with the C calling convention

 INVOKE myprocA, ax, cx, 100, arg

where arg is a BYTE variable and myproc expects four arguments of type
WORD. The assembler widens and then pushes arg like this:

 mov al, DGROUP:arg

 xor ah, ah

 push ax

The generated code thus overwrites the last argument (AX) passed to the procedure.
The assembler generates an error in this case, requiring you to rewrite the
INVOKE statement.

To summarize, the INVOKE directive overwrites AX and perhaps DX when
widening arguments. It also uses AX to push constants on the 8088 and 8086. If
you use these registers (or EAX and EDX on an 80386/486) to pass arguments,
they may be overwritten. The assembler’s error detection prevents this from ever
becoming a run-time bug, but AX and DX should remain your last choice for
holding arguments.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 196 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 197

Invoking Far Addresses
You can pass a FAR pointer in a segment::offset pair, as shown in the following.
Note the use of double colons to separate the register pair. The registers could be
any other register pair, including a pair that an MS-DOS call uses to return values.

FPWORD TYPEDEF FAR PTR WORD

SomeProc PROTO var1:DWORD, var2:WORD, var3:WORD

 pfaritem FPWORD faritem

 .

 .

 .

 les bx, pfaritem

 INVOKE SomeProc, ES::BX, arg1, arg2

However, INVOKE cannot combine into a single address one argument for the
segment and one for the offset.

Passing an Address
You can use the ADDR operator to pass the address of an expression to a
procedure that expects a NEAR or FAR pointer. This example generates code to
pass a far pointer (to arg1) to the procedure proc1.

PBYTE TYPEDEF FAR PTR BYTE

arg1 BYTE "This is a string"

proc1 PROTO NEAR C fparg:PBYTE

 .

 .

 .

INVOKE proc1, ADDR arg1

For information on defining pointers with TYPEDEF, see “Defining Pointer Types
with TYPEDEF” in Chapter 3.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 197 of 50 Printed: 03/06/94 05:58 PM

198 Programmer’s Guide

Invoking Procedures Indirectly
You can make an indirect procedure call such as call [bx + si] by using a
pointer to a function prototype with TYPEDEF, as shown in this example:

FUNCPROTO TYPEDEF PROTO NEAR ARG1:WORD

FUNCPTR TYPEDEF PTR FUNCPROTO

 .DATA

pfunc FUNCPTR OFFSET proc1, OFFSET proc2

 .CODE

 .

 .

 .

 mov bx, OFFSET pfunc ; BX points to table

 mov si, Num ; Num contains 0 or 2

 INVOKE FUNCPTR PTR [bx+si], arg1 ; Call proc1 if Num=0

 ; or proc2 if Num=2

You can also use ASSUME to accomplish the same task. The following ASSUME
statement associates the type FUNCPTR with the BX register.

 ASSUME BX:FUNCPTR

 mov bx, OFFSET pfunc

 mov si, Num

 INVOKE [bx+si], arg1

Checking the Code Generated
Code generated by the INVOKE directive may vary depending on the processor
mode and calling conventions in effect. You can check your listing files to see the
code generated by the INVOKE directive if you use the /Sg command-line
option.

Generating Prologue and Epilogue Code
When you use the PROC directive with its extended syntax and argument list, the
assembler automatically generates the prologue and epilogue code in your
procedure. “Prologue code” is generated at the start of the procedure. It sets up a
stack pointer so you can access parameters from within the procedure. It also saves
space on the stack for local variables, initializes registers such as DS, and pushes
registers that the procedure uses. Similarly, “epilogue code” is the code at the end
of the procedure that pops registers and returns from the procedure.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 198 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 199

The assembler automatically generates the prologue code when it encounters the
first instruction or label after the PROC directive. This means you cannot label the
prologue for the purpose of jumping to it. The assembler generates the epilogue
code when it encounters a RET or IRET instruction. Using the assembler-
generated prologue and epilogue code saves time and decreases the number of
repetitive lines of code in your procedures.

The generated prologue or epilogue code depends on the:

◆ Local variables defined.

◆ Arguments passed to the procedure.

◆ Current processor selected (affects epilogue code only).

◆ Current calling convention.

◆ Options passed in the prologuearg of the PROC directive.

◆ Registers being saved.

The prologuearg list contains options specifying how to generate the prologue or
epilogue code. The next section explains how to use these options, gives the
standard prologue and epilogue code, and explains the techniques for defining your
own prologue and epilogue code.

Using Automatic Prologue and Epilogue Code
The standard prologue and epilogue code handles parameters and local variables. If
a procedure does not have any parameters or local variables, the prologue and
epilogue code that sets up and restores a stack pointer is omitted, unless
FORCEFRAME is included in the prologuearg list. (FORCEFRAME is
discussed later in this section.) Prologue and epilogue code also generates a push
and pop for each register in the register list.

The prologue code consists of three steps:

1. Point BP to top of stack.

2. Make space on stack for local variables.

3. Save registers the procedure must preserve.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 199 of 50 Printed: 03/06/94 05:58 PM

200 Programmer’s Guide

The epilogue cancels these three steps in reverse order, then cleans the stack, if
necessary, with a RET num instruction. For example, the procedure declaration

myproc PROC NEAR PASCAL USES di si,

 arg1:WORD, arg2:WORD, arg3:WORD

 LOCAL local1:WORD, local2:WORD

generates the following prologue code:

 push bp ; Step 1:

 mov bp, sp ; point BP to stack top

 sub sp, 4 ; Step 2: space for 2 local words

 push di ; Step 3:

 push si ; save registers listed in USES

The corresponding epilogue code looks like this:

 pop si ; Undo Step 3

 pop di

 mov sp, bp ; Undo Step 2

 pop bp ; Undo Step 1

 ret 6 ; Clean stack of pushed arguments

Notice the RET 6 instruction cleans the stack of the three word-sized arguments.
The instruction appears in the epilogue because the procedure does not use the C
calling convention. If myproc used C conventions, the epilogue would end with a
RET instruction without an operand.

The assembler generates standard epilogue code when it encounters a RET
instruction without an operand. It does not generate an epilogue if RET has a
nonzero operand. To suppress generation of a standard epilogue, use RETN or
RETF with or without an operand, or use RET 0.

The standard prologue and epilogue code recognizes two operands passed in the
prologuearg list, LOADDS and FORCEFRAME. These operands modify the
prologue code. Specifying LOADDS saves and initializes DS. Specifying
FORCEFRAME as an argument generates a stack frame even if no arguments are
sent to the procedure and no local variables are declared. If your procedure has any
parameters or locals, you do not need to specify FORCEFRAME.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 200 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 201

For example, adding LOADDS to the argument list for myproc creates this
prologue:

 push bp ; Step 1:

 mov bp, sp ; point BP to stack top

 sub sp, 4 ; Step 2: space for 2 locals

 push ds ; Save DS and point it

 mov ax, DGROUP ; to DGROUP, as

 mov ds, ax ; instructed by LOADDS

 push di ; Step 3:

 push si ; save registers listed in USES

The epilogue code restores DS:

 pop si ; Undo Step 3

 pop di

 pop ds ; Restore DS

 mov sp, bp ; Undo Step 2

 pop bp ; Undo Step 1

 ret 6 ; Clean stack of pushed arguments

User-Defined Prologue and Epilogue Code
If you want a different set of instructions for prologue and epilogue code in your
procedures, you can write macros that run in place of the standard prologue and
epilogue code. For example, while you are debugging your procedures, you may
want to include a stack check or track the number of times a procedure is called.
You can write your own prologue code to do these things whenever a procedure
executes. Different prologue code may also be necessary if you are writing
applications for Windows. User-defined prologue macros will respond correctly if
you specify FORCEFRAME in the prologuearg of a procedure.

To write your own prologue or epilogue code, the OPTION directive must appear
in your program. It disables automatic prologue and epilogue code generation.
When you specify

OPTION PROLOGUE : macroname

OPTION EPILOGUE : macroname

the assembler calls the macro specified in the OPTION directive instead of
generating the standard prologue and epilogue code. The prologue macro must be a
macro function, and the epilogue macro must be a macro procedure.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 201 of 50 Printed: 03/06/94 05:58 PM

202 Programmer’s Guide

The assembler expects your prologue or epilogue macro to have this form:

macroname MACRO procname, \
flag, \

parmbytes, \
localbytes, \
<reglist>, \
userparms

Your macro must have formal parameters to match all the actual arguments passed.
The arguments passed to your macro include:

Argument Description

procname The name of the procedure.

flag A 16-bit flag containing the following information:

Bit = Value Description

Bit 0, 1, 2 For calling conventions (000=unspecified language
type, 001=C, 010=SYSCALL, 011=STDCALL,
100=PASCAL, 101=FORTRAN, 110=BASIC).

Bit 3 Undefined (not necessarily zero).

Bit 4 Set if the caller restores the stack
(use RET, not RETn).

Bit 5 Set if procedure is FAR.

Bit 6 Set if procedure is PRIVATE.

Bit 7 Set if procedure is EXPORT.

Bit 8 Set if the epilogue is generated as a result of an IRET
instruction and cleared if the epilogue is generated as a
result of a RET instruction.

Bits 9–15 Undefined (not necessarily zero).

parmbytes The accumulated count in bytes of all parameters given in the PROC
statement.

localbytes The count in bytes of all locals defined with the LOCAL directive.

reglist A list of the registers following the USES operator in the procedure
declaration. Enclose this list with angle brackets (< >) and separate each
item with commas. Reverse the list for epilogues.

userparms Any argument you want to pass to the macro. The prologuearg (if there is
one) specified in the PROC directive is passed to this argument.

Your macro function must return the parmbytes parameter. However, if the
prologue places other values on the stack after pushing BP and these values are not
referenced by any of the local variables, the exit value must be the number of bytes
for procedure locals plus any space between BP and the locals. Therefore,
parmbytes is not always equal to the bytes occupied by the locals.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 202 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 203

The following macro is an example of a user-defined prologue that counts the
number of times a procedure is called.

ProfilePro MACRO procname, \

 flag, \

 bytecount, \

 numlocals, \

 regs, \

 macroargs

 .DATA

procname&count WORD 0

 .CODE

 inc procname&count ; Accumulates count of times the

 ; procedure is called

 push bp

 mov bp, sp

 ; Other BP operations

 IFNB <regs>

 FOR r, regs

 push r

 ENDM

 ENDIF

 EXITM %bytecount

ENDM

Your program must also include this statement before calling any procedures that
use the prologue:

OPTION PROLOGUE:ProfilePro

If you define either a prologue or an epilogue macro, the assembler uses the
standard prologue or epilogue code for the one you do not define. The form of the
code generated depends on the .MODEL and PROC options used.

If you want to revert to the standard prologue or epilogue code, use
PROLOGUEDEF or EPILOGUEDEF as the macroname in the OPTION statement.

OPTION EPILOGUE:EPILOGUEDEF

You can completely suppress prologue or epilogue generation with

OPTION PROLOGUE:None

OPTION EPILOGUE:None

In this case, no user-defined macro is called, and the assembler does not generate a
default code sequence. This state remains in effect until the next OPTION
PROLOGUE or OPTION EPILOGUE is encountered.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 203 of 50 Printed: 03/06/94 05:58 PM

204 Programmer’s Guide

For additional information about writing macros, see Chapter 9, “Using Macros.”
The PROLOGUE.INC file provided in the MASM 6.1 distribution disks can create
the prologue and epilogue sequences for the Microsoft C professional development
system.

MS-DOS Interrupts
In addition to jumps, loops, and procedures that alter program execution, interrupt
routines transfer execution to a different location. In this case, control goes to an
interrupt routine.

You can write your own interrupt routines, either to replace an existing routine or to
use an undefined interrupt number. For example, you may want to replace an MS-
DOS interrupt handler, such as the Critical Error (Interrup 24h) and CONTROL+C

(Interrupt 23h) handlers. The BOUND instruction checks array bounds and calls
Interrupt 5 when an error occurs. If you use this instruction, you need to write an
interrupt handler for it.

This section summarizes the following:

◆ How to call interrupts

◆ How the processor handles interrupts

◆ How to redefine an existing interrupt routine

The example routine in this section handles addition or multiplication overflow and
illustrates the steps necessary for writing an interrupt routine. For additional
information about MS-DOS and BIOS interrupts, see Chapter 11, “Writing
Memory-Resident Software.”

Calling MS-DOS and ROM-BIOS Interrupts
Interrupts provide a way to access MS-DOS and ROM-BIOS from assembly
language. They are called with the INT instruction, which takes an immediate value
between 0 and 255 as its only operand.

MS-DOS and ROM-BIOS interrupt routines accept data through registers. For
instance, most MS-DOS routines (and many BIOS routines) require a function
number in the AH register. Many handler routines also return values in registers.
To use an interrupt, you must know what data the handler routine expects and what
data, if any, it returns. For information, consult Help or one of the other references
mentioned in the Introduction.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 204 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 205

The following fragment illustrates a simple call to MS-DOS Function 9, which
displays the string msg on the screen:

 .DATA

msg BYTE "This writes to the screen$"

 .CODE

 mov ax, SEG msg ; Necessary only if DS does not

 mov ds, ax ; already point to data segment

 mov dx, offset msg ; DS:DX points to msg

 mov ah, 09h ; Request Function 9

 int 21h

When the INT instruction executes, the processor:

1. Looks up the address of the interrupt routine in the Interrupt Vector Table. This
table starts at the lowest point in memory (segment 0, offset 0) and consists of a
series of far pointers called vectors. Each vector comprises a 4-byte address
(segment:offset) pointing to an interrupt handler routine. The table sequence
implies the number of the interrupt the vector references: the first vector points
to the Interrupt 0 handler, the second vector to the Interrupt 1 handler, and so
forth. Thus, the vector at 0000:i*4 holds the address of the handler routine for
Interrupt i.

2. Clears the trap flag (TF) and interrupt enable flag (IF).

3. Pushes the flags register, the current code segment (CS), and the current
instruction pointer (IP), in that order. (The current instruction is the one
following the INT statement.) As with a CALL, this ensures control returns to
the next logical position in the program.

4. Jumps to the address of the interrupt routine, as specified in the Interrupt Vector
Table.

5. Executes the code of the interrupt routine until it encounters an IRET
instruction.

6. Pops the instruction pointer, code segment, and flags.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 205 of 50 Printed: 03/06/94 05:58 PM

206 Programmer’s Guide

Figure 7.3 illustrates how interrupts work.

Before INT Inside INT Routine After IRET

INT segment

INT offset

Program flags

Program CS

Program IP

Previous flags

Previous CS

Previous IP

Program flags

(changes in routine)

(changes in routine)

(changes in routine)

Program flags

Program CS

Program IP

Interrupt
Vector Table

Flags Register

Code Segment

Instruction
Pointer

Stack

High memory

Low memory

New CS from
table

New IP from
table

SP

SP

SP

Figure 7.3 Operation of Interrupts

Replacing an Interrupt Routine
To replace an existing interrupt routine, your program must:

◆ Provide a new routine to handle the interrupt.

◆ Replace the old routine’s address in the Interrupt Vector Table with the address
of your new routine.

◆ Replace the old address back into the vector table before your program ends.

You can write an interrupt routine as a procedure by using the PROC and ENDP
directives. The routine should always be defined as FAR and should end with an
IRET instruction instead of a RET instruction.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 206 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 207

Note You can use the full extended PROC syntax (described in “Declaring
Parameters with the PROC Directive,” earlier in this chapter) to write interrupt
procedures. However, you should not make interrupt procedures NEAR or specify
arguments for them. You can use the USES keyword, however, to correctly
generate code to save and restore a register list in interrupt procedures.

The IRET instruction in MASM 6.1 has two forms that suppress epilogue code.
This allows an interrupt to have local variables or use a user-defined prologue.
IRETF pops a FAR16 return address, and IRETFD pops a FAR32 return address.

The following example shows how to replace the handler for Interrupt 4. Once
registered in the Interrupt Vector Table, the new routine takes control when the
processor encounters either an INT 4 instruction or its special variation INTO
(Interrupt on Overflow). INTO is a conditional instruction that acts only when the
overflow flag is set. With INTO after a numerical calculation, your code can
automatically route control to a handler routine if the calculation results in a
numerical overflow. By default, the routine for Interrupt 4 simply consists of an
IRET, so it returns without doing anything. Using INTO is an alternative to using
JO (Jump on Overflow) to jump to another set of instructions.

The following example program first executes INT 21h to invoke MS-DOS
Function 35h (Get Interrupt Vector). This function returns the existing vector for
Interrupt 4. The program stores the vector, then invokes MS-DOS Function 25h
(Set Interrupt Vector) to place the address of the ovrflow procedure in the
Interrupt Vector Table. From this point on, ovrflow gains control whenever the
processor executes INTO while the overflow flag is set. The new routine displays a
message and returns with AX and DX set to 0.

 .MODEL LARGE, C

FPFUNC TYPEDEF FAR PTR

 .DATA

msg BYTE "Overflow - result set to 0",13,10,'$'

vector FPFUNC ?

 .CODE

 .STARTUP

 mov ax, 3504h ; Load Interrupt 4 and call DOS

 int 21h ; Get Interrupt Vector

 mov WORD PTR vector[2],es ; Save segment

 mov WORD PTR vector[0],bx ; and offset

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 207 of 50 Printed: 03/06/94 05:58 PM

208 Programmer’s Guide

 push ds ; Save DS

 mov ax, cs ; Load segment of new routine

 mov ds, ax

 mov dx, OFFSET ovrflow ; Load offset of new routine

 mov ax, 2504h ; Load Interrupt 4 and call DOS

 int 21h ; Set Interrupt Vector

 pop ds ; Restore

 .

 .

 .

 add ax, bx ; Do arithmetic

 into ; Call Interrupt 4 if overflow

 .

 .

 .

 lds dx, vector ; Load original address

 mov ax, 2504h ; Restore it to vector table

 int 21h ; with DOS set vector function

 mov ax, 4C00h ; Terminate function

 int 21h

ovrflow PROC FAR

 sti ; Enable interrupts

 ; (turned off by INT)

 mov ah, 09h ; Display string function

 mov dx, OFFSET msg ; Load address

 int 21h ; Call DOS

 sub ax, ax ; Set AX to 0

 cwd ; Set DX to 0

 iret ; Return

ovrflow ENDP

 END

Before the program ends, it again uses MS-DOS Function 25h to reset the original
Interrupt 4 vector back into the Interrupt Vector Table. This reestablishes the
original routine as the handler for Interrupt 4.

The first instruction of the ovrflow routine warrants further discussion. When the
processor encounters an INT instruction, it clears the interrupt flag before
branching to the specified interrupt handler routine. The interrupt flag serves a
crucial role in smoothing the processor’s tasks, but must not be abused. When clear,
the flag inhibits hardware interrupts such as the keyboard or system timer. It should
be left clear only briefly and only when absolutely necessary. Unless you have a

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 208 of 50 Printed: 03/06/94 05:58 PM

Chapter 7 Controlling Program Flow 209

compelling reason to leave the flag clear, always include an STI (Set Interrupt
Flag) instruction at the beginning of your interrupt handler routine to reenable
hardware interrupts.

CLI (Clear Interrupt Flag) and its corollary STI are designed to protect small
sections of time-dependent code from interruptions by the hardware. If you use CLI
in your program, be sure to include a matching STI instruction as well. The sample
interrupt handlers in Chapter 11, “Writing Memory-Resident Software,” illustrate
how to use these important instructions.

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 209 of 50 Printed: 03/06/94 05:58 PM

210 Programmer’s Guide

Filename: LMAPGC07.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 210 of 50 Printed: 03/06/94 05:58 PM

211

C H A P T E R 8

Sharing Data and Procedures
Among Modules and Libraries

To use symbols and procedures in more than one module, the assembler must be
able to recognize the shared data as global to all the modules where they are used.
MASM provides techniques to simplify data-sharing and give a high-level interface
to multiple-module programming. With these techniques, you can place shared
symbols in include files. This makes the data declarations in the file available to all
modules that use the include file.

This chapter explains the two data-sharing methods MASM 6.1 offers. The first
method simplifies data sharing between modules with include files. The second does
not involve include files. Instead, this method allows modules to share procedures
and data items using the PUBLIC and EXTERN directives.

The last section of this chapter explains how to create program libraries and access
their routines.

Selecting Data-Sharing Methods
If data defined in one module is to be used in other modules of a program, you must
declare the data public and external. MASM provides several ways to do this:

◆ Declare a symbol public with the PUBLIC directive in the module where it is
defined. This makes the symbol available to other modules. You must also place
an EXTERN statement for that symbol in all other modules that refer to the
public symbol. This statement informs the assembler that the symbol is external
— that is, defined in another module.

◆ Declare the data communal with the COMM directive. However, communal
variables have limitations. You cannot depend on their location in memory
because they are allocated by the linker, and they cannot be initialized.

The EXTERNDEF directive declares a symbol either public or external, as
appropriate. EXTERNDEF simplifies the declarations for global (public and
external) variables and encourages the use of include files.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 211 of 14 Printed: 03/06/94 06:00 PM

212 Programmer’s Guide

The next section provides further details on using include files. For more
information on PUBLIC and EXTERN, see “Using Alternatives to Include Files,”
page 219.

Sharing Symbols with Include Files
Include files can contain any valid MASM statement, but typically consist of type
and symbol declarations. The assembler inserts the contents of the include file into
a module at the location of the INCLUDE directive. Include files are optional, but
can simplify project organization by eliminating the need to insert common
declarations into all modules of a program. An alternative to using include files is
described in “Using Alternatives to Include Files,” page 219.

This section explains how to organize symbol definitions and the declarations that
make them global (available to all modules); how to make both variables and
procedures public with EXTERNDEF, PROTO, and COMM.; and where to
place these directives in the modules and include files.

Organizing Modules
This section summarizes the organization of declarations and definitions in modules
and include files and the use of the INCLUDE directive.

Include Files
Type declarations that need to be identical in every module should be placed in an
include file. This ensures consistency and saves time when you update programs.
Include files should contain only symbol declarations and any other declarations
that are resolved at assembly time. (For a list of assembly-time operations, see
“Generating and Running Executable Programs” in Chapter 1.)

If more than one module accesses the include file, the file cannot contain statements
that define and allocate memory for symbols. Otherwise, the assembler would
attempt to allocate the same symbol more than once.

Note An include file used in two or more modules should not allocate data
variables.

Modules
An INCLUDE statement is usually placed before data and code segments in your
modules. When the assembler encounters an INCLUDE directive, it opens the
specified file and assembles all its statements. The assembler then returns to the
original module and continues the assembly.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 212 of 14 Printed: 03/06/94 06:00 PM

Chapter 8 Sharing Data and Procedures Among Modules and Libraries 213

The INCLUDE directive takes the form:

INCLUDE filename

where filename is the full name of the include file. For example, the following
declaration inserts the contents of the include file SCREEN.INC in your program:

INCLUDE SCREEN.INC

The filename in the INCLUDE directive must be fully specified; no extensions are
assumed. If a full pathname is not given, the assembler first searches the directory
of the source file containing the INCLUDE directive.

If the include file is not in the source file directory, the assembler searches the paths
specified in the assembler’s command-line option /I, or in PWB’s Include Paths
field in the MASM Option dialog box (accessed from the Option menu). The /I
option takes this form:

/I path

You can include more than one /I option on the command line. The assembler then
searches for include files within each specified path in the order given. If none of
these directories contains the include file, the assembler finally searches in the paths
specified in the INCLUDE environment variable. If the include file still cannot be
found, an assembly error occurs. (The /x command-line option tells the assembler to
ignore the INCLUDE environment variable when searching for include files.)

An include file may specify another include file. The assembler processes the
second include file before returning to the first. Your program can nest include files
this way as deeply as the amount of free memory allows.

Include Files or Modules
You can use the EQU directive to create named constants that cannot be redefined
in your program. (For information about the EQU directive, see “Integer Constants
and Constant Expressions,” page 11.) Placing a constant defined with EQU in an
include file makes it available to all modules that use that include file.

Placing TYPEDEF, STRUCT, UNION, and RECORD definitions in an include
file guarantees consistency in type definitions. If required, the variable instances
derived from these definitions can be made public among the modules with
EXTERNDEF declarations (see the next section). Macros, including macros
defined with TEXTEQU, must be placed in include files to make them visible in
other modules.

If you elect to use full segment definitions with, or instead of, simplified definitions,
you can force a consistent segment order in all files by defining segments in an
include file. This technique is explained in “Controlling the Segment Order,”
page 47.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 213 of 14 Printed: 03/06/94 06:00 PM

214 Programmer’s Guide

Declaring Symbols Public and External
It is sometimes useful to make certain procedures and variables (such as status
flags) global to all program modules. Global variables are freely accessible within
all routines; you do not have to explicitly pass them to the routines that need them.
This section describes how to make variables and procedures global using the
EXTERNDEF, PROTO, or COMM declarations within include files.

When a procedure is defined in one module and called in another module, it must be
declared public in the defining module and external in the calling module(s).
MASM offers three ways to declare a procedure public and external:

◆ Use the PUBLIC directive in the defining module and EXTERN in all other
modules that reference the procedure. The PUBLIC and EXTERN directives
are explained on page 220.

◆ Declare the procedure with EXTERNDEF.

◆ Prototype the procedure with the PROTO directive.

Using EXTERNDEF
MASM treats EXTERNDEF as a public declaration in the defining module, and as
an external declaration in the referencing module(s). You can use the
EXTERNDEF statement in your include file to make a variable common to two or
more modules. EXTERNDEF works with all types of variables, including arrays,
structures, unions, and records. It also works with procedures.

As a result, a single include file can contain an EXTERNDEF declaration that
works in both the defining module and any referencing module. It is ignored in
modules that neither define nor reference the variable. Therefore, an include file for
a library which is used in multiple .EXE files does not force the definition of a
symbol as EXTERN does.

The EXTERNDEF statement takes this form:

EXTERNDEF [[langtype]] name:qualifiedtype

The name is the variable’s identifier. The qualifiedtype is explained in detail in
“Data Types,” page 14.

The optional langtype specifier sets the naming conventions for the name it
precedes. It overrides any language specified in the .MODEL directive. The
specifier can be C, SYSCALL, STDCALL, PASCAL, FORTRAN, or BASIC.
For information on selecting the appropriate langtype type, see “Naming and
Calling Conventions,” page 308.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 214 of 14 Printed: 03/06/94 06:00 PM

Chapter 8 Sharing Data and Procedures Among Modules and Libraries 215

The following diagram shows the statements that declare an array, make it public,
and use it in another module.

 INCLUDE MOD.INC
 .
 .
 .
 .DATA
array1 BYTE 2, 4, 6

MOD2.ASMMOD1.ASM

MOD.INC

EXTERNDEF array1:BYTE

 INCLUDE MOD.INC
 .
 .
 .
 .CODE
 mov al, array1[2]

Figure 8.1 Using EXTERNDEF for Variables

The file position of EXTERNDEF directives is important. For more information,
see “Positioning External Declarations,” following.

You can also make procedures visible by using EXTERNDEF without PROTO
inside an include file. This method treats the procedure name as a simple identifier,
without the parameter list, so you forgo the assembler’s ability to check for the
correct parameters during assembly. Use EXTERNDEF with procedures in the
same way as variables:

EXTERNDEF MyProc:FAR ; Declare far procedure external

You can also use EXTERNDEF to make a code label global between modules so
that one module can reference a label in another module. Give the label global
scope with the double colon operator, like this:

EXTERNDEF codelabel:NEAR

.

.

.

codelabel::

Another module can reference codelabel like this:

EXTERNDEF codelabel:NEAR

.

.

.

 jmp codelabel

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 215 of 14 Printed: 03/06/94 06:00 PM

216 Programmer’s Guide

Using PROTO
This section describes how to prototype a procedure with the PROTO directive.
PROTO automatically issues an EXTERNDEF for the procedure unless the
PROC statement declares the procedure PRIVATE. Defining a prototype enables
type-checking for the procedure arguments.

Follow these steps to create an interface for a procedure defined in one module and
called from other modules:

1. Place the PROTO declaration in the include file.

2. Define the procedure with PROC in one module. The PROC directive declares
the procedure PUBLIC by default.

3. Call the procedure with the INVOKE statement (or with CALL). Make sure
that all calling modules access the include file.

For descriptions, syntax, and examples of PROTO, PROC, and INVOKE, see
Chapter 7, “Controlling Program Flow.”

The following example illustrates these three steps. In the example, a PROTO
statement defines the far procedure CopyFile, which uses the C parameter-passing
and naming conventions, and takes the arguments filename and numberlines.
The diagram following the example shows the file placement for these statements.

This definition goes into the include file:

CopyFile PROTO FAR C filename:BYTE, numberlines:WORD

The procedure definition for CopyFile is:

CopyFile PROC FAR C USES cx, filename:BYTE, numberlines:WORD

To call the CopyFile procedure, you can use this INVOKE statement:

 INVOKE CopyFile, NameVar, 200

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 216 of 14 Printed: 03/06/94 06:00 PM

Chapter 8 Sharing Data and Procedures Among Modules and Libraries 217

INCLUDE TOOLS.INC
.
.
.
.CODE
INVOKE CopyFile, NameVar, 200

 INCLUDE TOOLS.INC
 .
 .
 .
 .CODE
CopyFile PROC FAR C USES cx,
 filename:BYTE,
 numberlines:WORD

TOOLS.ASM

TOOLS.INC

FILE1.ASM

CopyFile PROTO FAR C filename:BYTE, numberlines:WORD

Figure 8.2 Using PROTO and INVOKE

Using COMM
Another way to share variables among modules is to add the COMM (communal)
declaration to your include file. Since communal variables are allocated by the
linker and cannot be initialized, you cannot depend on their location or sequence.

Communal variables are supported by MASM primarily for compatibility with
communal variables in Microsoft C. Communal variables are not used in any other
Microsoft language, and they are not compatible with C++ and some other
languages.

COMM declares a data variable external and instructs the linker to allocate the
variable if it has not been explicitly defined in a module. The memory space for
communal variables may not be assigned until load time, so using communal
variables may reduce the size of your executable file.

The COMM declaration has the syntax:

COMM [[langtype]] [[NEAR | FAR]] label:type[[:count]]

The label is the name of the variable. The langtype sets the naming conventions for
the name it precedes. It overrides any language specified in the .MODEL directive.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 217 of 14 Printed: 03/06/94 06:00 PM

218 Programmer’s Guide

If NEAR or FAR is not specified, the variable determines the default from the
current memory model (NEAR for TINY, SMALL, COMPACT, and FLAT;
FAR for MEDIUM, LARGE, and HUGE). If you do not provide a memory
model with the .MODEL directive, you must specify a distance when accessing a
communal variable, like this:

 mov ax, NEAR PTR CommNear

 mov bx, FAR PTR CommFar

The type can be a constant expression, but it is usually a type such as BYTE,
WORD, or DWORD, or a structure, union, or record. If you first declare the type
with TYPEDEF, CodeView can provide type information. The count is the number
of elements. If no count is given, one element is assumed.

The following example creates the on far variable DataBlock, which is a 1,024-
element array of uninitialized signed doublewords:

COMM FAR DataBlock:SDWORD:1024

Note C variables declared outside functions (except static variables) are communal
unless explicitly initialized; they are the same as assembly-language communal
variables. If you are writing assembly-language modules for C, you can declare the
same communal variables in both C and MASM include files. However, communal
variables in C do not have to be declared communal in assembler. The linker will
match the EXTERN, PUBLIC, and COMM statements for the variable.

EXTERNDEF (explained in the previous section) is more flexible than COMM
because you can initialize variables defined with it, and your code can rely on the
position and sequence of the defined data.

Positioning External Declarations
Although LINK determines the actual address of an external symbol, the assembler
assumes a default segment for the symbol, based on the location of the external
directive in the source code. You should therefore position EXTERN and
EXTERNDEF directives according to these rules:

◆ If you know which segment defines an external symbol, put the EXTERN
statement in that segment.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 218 of 14 Printed: 03/06/94 06:00 PM

Chapter 8 Sharing Data and Procedures Among Modules and Libraries 219

◆ If you know the group but not the segment, position the EXTERN statement
outside any segment and reference the variable with the group name. For
example, if var1 is in DGROUP, reference the variable as

 mov DGROUP:var1, 10

◆ If you know nothing about the location of an external variable, put the
EXTERN statement outside any segment. You can use the SEG directive to
access the external variable like this:

 mov ax, SEG var1

 mov es, ax

 mov ax, es:var1

◆ If the symbol is an absolute symbol or a far code label, you can declare it
external anywhere in the source code.

Always close any segments opened in include files so that external declarations
following an include statement are not incorrectly placed inside a segment. If you
want to be certain an external definition lies outside a segment, you can use
@CurSeg. The @CurSeg predefined symbol returns a blank if the definition is not
in a segment. For example,

 .DATA

 .

 .

 .

@CurSeg ENDS ; Close segment

 EXTERNDEF var:WORD

For information about predefined symbols such as @CurSeg, see “Predefined
Symbols,” page 10.

Using Alternatives to Include Files
If your project uses only two modules (or if it is written with a version of MASM
prior to 6.0), you may want to continue using PUBLIC in the defining module and
EXTERN in the referencing module, and not create an include file for the project.
The EXTERN directive can be used in an include file, but the include file
containing EXTERN cannot be added to the module that contains the
corresponding PUBLIC directive for that symbol. This section assumes that you
are not using include files.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 219 of 14 Printed: 03/06/94 06:00 PM

220 Programmer’s Guide

PUBLIC and EXTERN
The PUBLIC and EXTERN directives are less flexible than EXTERNDEF and
PROTO because they are module-specific: PUBLIC must appear in the defining
module and EXTERN must appear in the calling modules. This section shows how
to use PUBLIC and EXTERN. Information on where to place the external
declarations in your file is in “Positioning External Declarations,” previous.

The PUBLIC directive makes a name visible outside the module in which it is
defined. This gives other program modules access to that identifier.

The EXTERN directive performs the complementary function. It tells the
assembler that a name referenced within a particular module is actually defined and
declared public in another module that will be specified at link time.

A PUBLIC directive can appear anywhere in a file. Its syntax is:

PUBLIC [[langtype]] name[[, [[langtype]] name]]...

The name must be the name of an identifier defined within the current source file.
Only code labels, data labels, procedures, and numeric equates can be declared
public.

If you specify the langtype field here, it overrides the language specified by
.MODEL. The langtype field can be C, SYSCALL, STDCALL, PASCAL,
FORTRAN, or BASIC. For more information on specifying langtype types, see
“Declaring Parameters with the PROC Directive,” page 184, and “Naming and
Calling Conventions,” page 308.

The EXTERN directive tells the assembler that an identifier is external — defined
in some other module that will be supplied at link time. Its syntax is:

EXTERN [[langtype]] name:{ABS | qualifiedtype}

“Data Types,” page 14, describes qualifiedtype. You can use the ABS (absolute)
keyword only with external numeric constants. ABS causes the identifier to be
imported as a relocatable unsized constant. This identifier can then be used
anywhere a constant can be used. If the identifier is not found in another module at
link time, the linker generates an error.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 220 of 14 Printed: 03/06/94 06:00 PM

Chapter 8 Sharing Data and Procedures Among Modules and Libraries 221

In the following example, the procedure BuildTable and the variable Var are
declared public. The procedure uses the Pascal naming and data-passing
conventions:

BuildTable PROC USES cx dx,
 sizevar:WORD
 .
 .
 .
 ret
BuildTable ENDP

 .MODEL small, pascal
PUBLIC BuildTable, Var
 .
 .
 .
 .DATA
Var BYTE 0
 .
 .
 .
 .CODE

MOD1.ASM MOD2.ASM

 .MODEL small, pascal
EXTERN var:BYTE, BuildTable:NEAR
 .CODE
 .
 .
 .
 mov al, var
 call BuildTable
 .
 .
 .

Figure 8.3 Using PUBLIC and EXTERN

Other Alternatives
You can also use the directives discussed earlier (EXTERNDEF, PROTO, and
COMM) without the include file. In this case, place the declarations to make a
symbol global in the same module where the symbol is defined. You might want to
use this technique if you are linking only a few modules that have very little data in
common.

Developing Libraries
As you create reusable procedures, you can place them in a library file for
convenient access. Although you can put any routine into a library, each library file,
recognizable by its .LIB extension, usually contains related routines. For example,
you might place string-manipulation functions in one library, matrix calculations in
another, and port communications in another. Do not place communal variables
(defined with the COMM directive) in a library.

A library consists of combined object modules, each created from a single source
file. The object module is the smallest independent unit in a library. If you link with
one symbol in a module, the linker adds the entire module to your program, but not
the entire library.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 221 of 14 Printed: 03/06/94 06:00 PM

222 Programmer’s Guide

Associating Libraries with Modules
You can choose either of two methods for associating your libraries with the
modules that use them: you can use the INCLUDELIB directive inside your source
files, or link the modules from the command line.

To associate a specified library with your object code, use INCLUDELIB. You
can add this directive to the source file to specify the libraries you want linked,
rather than specifying them in the LINK command line. The INCLUDELIB
syntax is:

INCLUDELIB libraryname

The libraryname can be a file name or a complete path specification. If you do not
specify an extension, .LIB is assumed. The libraryname is placed in the comment
record of the object file. LINK reads this record and links with the specified library
file.

For example, the statement INCLUDELIB GRAPHICS passes a message from the
assembler to the linker telling LINK to use library routines from the file
GRAPHICS.LIB. If you place this statement in the source file DRAW.ASM and
GRAPHICS.LIB is in the same directory, you can assemble and link the program
with the following command:

ML DRAW.ASM

Without the INCLUDELIB directive, you must link the program DRAW.ASM
with either of the following commands:

ML DRAW.ASM GRAPHICS.LIB

ML DRAW /link GRAPHICS

If you want to assemble and link separately, type

ML /c DRAW.ASM

LINK DRAW,,,GRAPHICS

If you do not specify a complete path in the INCLUDELIB statement or at the
command line, LINK searches for the library file in the following order:

1. In the current directory.

2. In any directories in the library field of the LINK command line.

3. In any directories specified by the LIB environment variable.

The LIB.EXE utility helps you create, organize, and maintain run-time libraries.
Refer to Environment and Tools for instructions on LIB.EXE.

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 222 of 14 Printed: 03/06/94 06:00 PM

Chapter 8 Sharing Data and Procedures Among Modules and Libraries 223

Using EXTERN with Library Routines
In some cases, EXTERN helps you limit the size of your executable file by
specifying in the syntax an alternative name for a procedure. You would use this
form of the EXTERN directive when declaring a procedure or symbol that may not
need to be used.

The syntax looks like this:

EXTERN [[langtype]] name [[(altname)]] :qualifiedtype

The addition of the altname to the syntax provides the name of an alternate
procedure that the linker uses to resolve the external reference if the procedure
given by name is not needed. Both name and altname must have the same
qualifiedtype.

When the linker encounters an external definition for a procedure that gives an
altname, the linker finishes processing that module before it links the object module
that contains the procedure given by name. If the program does not reference any
symbols in the name file’s object from any of the linked modules, the linker uses
altname to satisfy the external reference. This saves space because the library
object module is not brought in.

For example, assume that the contents of STARTUP.ASM include these statements:

EXTERN init(dummy):PROC

 .

 .

 .

dummy PROC

 .

 .

 . ; A procedure definition containing no

 ret ; executable code

dummy ENDP

 .

 .

 .

 call init ; Defined in FLOAT.OBJ

In this example, the reference to the routine init (defined in FLOAT.OBJ) does
not force the module FLOAT.OBJ to be linked into the executable file. If another
reference causes FLOAT.OBJ to be linked into the executable file, then init will
refer to the init label in FLOAT.OBJ. If there are no references that force linkage
with FLOAT.OBJ, the linker will use the alternate name for init(dummy).

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 223 of 14 Printed: 03/06/94 06:00 PM

224 Programmer’s Guide

Filename: LMAPGC08.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 224 of 14 Printed: 03/06/94 06:00 PM

225

C H A P T E R 9

Using Macros

A “macro” is a symbolic name you give to a series of characters (a text macro) or
to one or more statements (a macro procedure or function). As the assembler
evaluates each line of your program, it scans the source code for names of
previously defined macros. When it finds one, it substitutes the macro text for the
macro name. In this way, you can avoid writing the same code several places in
your program.

This chapter describes the following types of macros:

◆ Text macros, which expand to text within a source statement.

◆ Macro procedures, which expand to one or more complete statements and can
optionally take parameters.

◆ Repeat blocks, which generate a group of statements a specified number of times
or until a specified condition becomes true.

◆ Macro functions, which look like macro procedures and can be used like text
macros but which also return a value.

◆ Predefined macro functions and string directives, which perform string
operations.

This chapter explains how to use macros for simple code substitutions and how to
write sophisticated macros with parameter lists and repeat loops. It also describes
how to use these features in conjunction with local symbols, macro operators, and
predefined macro functions.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 225 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 225

226 Programmer’s Guide

Text Macros
You can give a sequence of characters a symbolic name and then use the name in
place of the text later in the source code. The named text is called a text macro.

The TEXTEQU directive defines a text macro, as these examples show:

name TEXTEQU <text>
name TEXTEQU macroId | textmacro
name TEXTEQU %constExpr

In the previous lines, text is a sequence of characters enclosed in angle brackets,
macroId is a previously defined macro function, textmacro is a previously defined
text macro, and %constExpr is an expression that evaluates to text.

Here are some examples:

msg TEXTEQU <Some text> ; Text assigned to symbol

string TEXTEQU msg ; Text macro assigned to symbol

msg TEXTEQU <Some other text> ; New text assigned to symbol

value TEXTEQU %(3 + num) ; Text representation of resolved

 ; expression assigned to symbol

The first line assigns text to the symbol msg. The second line equates the text of the
msg text macro with a new text macro called string. The third line assigns new
text to msg. Although msg has new text, string retains its original text value. The
fourth line assigns 7 to value if num equals 4. If a text macro expands to another
text macro (or macro function, as discussed on page 248), the resulting text macro
will expand recursively.

Text macros are useful for naming strings of text that do not evaluate to integers.
For example, you might use a text macro to name a floating-point constant or a
bracketed expression. Here are some practical examples:

pi TEXTEQU <3.1416> ; Floating point constant

WPT TEXTEQU <WORD PTR> ; Sequence of key words

arg1 TEXTEQU <[bp+4]> ; Bracketed expression

Macro Procedures
If your program must perform the same task many times, you can avoid repeatedly
typing the same statements each time by writing a macro procedure. Think of macro
procedures (commonly called macros) as text-processing mechanisms that
automatically generate repeated text.

This section uses the term “macro procedure” rather than “macro” when necessary
to distinguish between a macro procedure and a macro function. Macro functions
are described in “Returning Values with Macro Functions.”

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 226 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 226

Chapter 9 Using Macros 227

Conforming to common usage, this chapter occasionally speaks of “calling” a
macro, a term that deserves further scrutiny. It’s natural to think of a program
calling a macro procedure in the same way it calls a normal subroutine procedure,
because they seem to perform identically. However, a macro is simply a
representative for real code. Wherever a macro name appears in your program, so
in reality does all the code the macro represents. A macro does not cause the
processor to vector off to a new location as does a normal procedure. Thus, the
expression “calling a macro” may imply the effect, but does not accurately describe
what actually occurs.

Creating Macro Procedures
You can define a macro procedure without parameters by placing the desired
statements between the MACRO and ENDM directives:

name MACRO
statements
ENDM

For example, suppose you want a program to beep when it encounters certain
errors. You could define a beep macro as follows:

beep MACRO

 mov ah, 2 ;; Select DOS Print Char function

 mov dl, 7 ;; Select ASCII 7 (bell)

 int 21h ;; Call DOS

ENDM

The double semicolons mark the beginning of macro comments. Macro comments
appear in a listing file only at the macro’s initial definition, not at the point where
the macro is referenced and expanded. Listings are usually easier to read if the
comments aren’t repeatedly expanded. However, regular comments (those with a
single semicolon) are listed in macro expansions. See Appendix C for listing files
and examples of how macros are expanded in listings.

Once you define a macro, you can call it anywhere in the program by using the
macro’s name as a statement. The following example calls the beep macro two
times if an error flag has been set.

 .IF error ; If error flag is true

 beep ; execute macro two times

 beep

 .ENDIF

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 227 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 227

228 Programmer’s Guide

During assembly, the instructions in the macro replace the macro reference. The
listing file shows:

 .IF error

0017 80 3E 0000 R 00 * cmp error, 000h

001C 74 0C * je @C0001

 beep

001E B4 02 1 mov ah, 2

0020 B2 07 1 mov dl, 7

0022 CD 21 1 int 21h

 beep

0024 B4 02 1 mov ah, 2

0026 B2 07 1 mov dl, 7

0028 CD 21 1 int 21h

 .ENDIF

002A *@C0001:

Contrast this with the results of defining beep as a procedure using the PROC
directive and then calling it with the CALL instruction.

Many such tasks can be handled as either a macro or a procedure. In deciding
which method to use, you must choose between speed and size. For repetitive tasks,
a procedure produces smaller code, because the instructions physically appear only
once in the assembled program. However, each call to the procedure involves the
additional overhead of a CALL and RET instruction. Macros do not require a
change in program flow and so execute faster, but generate the same code multiple
times rather than just once.

Passing Arguments to Macros
By defining parameters for macros, you can define a general task and then execute
variations of it by passing different arguments each time you call the macro. The
complete syntax for a macro procedure includes a parameter list:

name MACRO parameterlist
statements
ENDM

The parameterlist can contain any number of parameters. Use commas to separate
each parameter in the list. You cannot use reserved words as parameter names
unless you disable the keyword with OPTION NOKEYWORD. You must also
set the compatibility mode with OPTION M510 or the /Zm command-line option.

To pass arguments to a macro, place the arguments after the macro name when you
call the macro:

macroname arglist

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 228 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 228

Chapter 9 Using Macros 229

The assembler treats as one item all text between matching quotation marks in an
arglist.

The beep macro introduced in the previous section used the MS-DOS interrupt to
write only the bell character (ASCII 7). We can rewrite the macro with a parameter
that accepts any character:

writechar MACRO char

 mov ah, 2 ;; Select DOS Print Char function

 mov dl, char ;; Select ASCII char

 int 21h ;; Call DOS

ENDM

Whenever it expands the macro, the assembler replaces each instance of char with
the given argument value. The rewritten macro now writes any character to the
screen, not just ASCII 7:

 writechar 7 ; Causes computer to beep

 writechar ‘A’ ; Writes A to screen

If you pass more arguments than there are parameters, the additional arguments
generate a warning (unless you use the VARARG keyword; see page 242). If you
pass fewer arguments than the macro procedure expects, the assembler assigns
empty strings to the remaining parameters (unless you have specified default
values). This may cause errors. For example, a reference to the writechar macro
with no argument results in the following line:

 mov dl,

The assembler generates an error for the expanded statement but not for the macro
definition or the macro call.

You can make macros more flexible by leaving off arguments or adding additional
arguments. The next section tells some of the ways your macros can handle missing
or extra arguments.

Specifying Required and Default Parameters
Macro parameters can have special attributes to make them more flexible and
improve error handling. You can make parameters required, give them default
values, or vary their number. Variable parameters are used almost exclusively with
the FOR directive, so are covered in “FOR Loops and Variable-Length
Parameters,” later in this chapter.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 229 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 229

230 Programmer’s Guide

The syntax for a required parameter is:

parameter:REQ

For example, you can rewrite the writechar macro to require the char
parameter:

writechar MACRO char:REQ

 mov ah, 2 ;; Select DOS Print Char function

 mov dl, char ;; Select ASCII char

 int 21h ;; Call DOS

ENDM

If the call does not include a matching argument, the assembler reports the error in
the line that contains the macro reference. REQ can thus improve error reporting.

You can also accommodate missing parameters by specifying a default value, like
this:

parameter:=textvalue

Suppose that you often use writechar to beep by printing ASCII 7. The following
macro definition uses an equal sign to tell the assembler to assume the parameter
char is 7 unless you specify otherwise:

writechar MACRO char:=<7>

 mov ah, 2 ;; Select DOS Print Char function

 mov dl, char ;; Select ASCII char

 int 21h ;; Call DOS

ENDM

If a reference to this macro does not include the argument char, the assembler fills
in the blank with the default value of 7 and the macro beeps when called.

Enclose the default parameter value in angle brackets so the assembler recognizes
the supplied value as a text value. This is explained in detail in “Text Delimiters
and the Literal-Character Operator,” later in this chapter.

Missing arguments can also be handled with the IFB, IFNB, .ERRB, and
.ERRNB directives. They are described in the section “Conditional Directives” in
chapter 1 and in Help. Here is a slightly more complex macro that uses some of
these techniques:

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 230 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 230

Chapter 9 Using Macros 231

Scroll MACRO distance:REQ, attrib:=<7>, tcol, trow, bcol, brow

 IFNB <tcol> ;; Ignore arguments if blank

 mov cl, tcol

 ENDIF

 IFNB <trow>

 mov ch, trow

 ENDIF

 IFNB <bcol>

 mov dl, bcol

 ENDIF

 IFNB <brow>

 mov dh, brow

 ENDIF

 IFDIFI <attrib>, <bh> ;; Don’t move BH onto itself

 mov bh, attrib

 ENDIF

 IF distance LE 0 ;; Negative scrolls up, positive down

 mov ax, 0600h + (-(distance) AND 0FFh)

 ELSE

 mov ax, 0700h + (distance AND 0FFh)

 ENDIF

 int 10h

ENDM

In this macro, the distance parameter is required. The attrib parameter has a
default value of 7 (white on black), but the macro also tests to make sure the
corresponding argument isn’t BH, since it would be inefficient (though legal) to
load a register onto itself. The IFNB directive is used to test for blank arguments.
These are ignored to allow the user to manipulate rows and columns directly in
registers CX and DX at run time.

The following shows two valid ways to call the macro:

 ; Assume DL and CL already loaded

 dec dh ; Decrement top row

 inc ch ; Increment bottom row

 Scroll -3 ; Scroll white on black dynamic

 ; window up three lines

 Scroll 5, 17h, 2, 2, 14, 12 ; Scroll white on blue constant

 ; window down five lines

This macro can generate completely different code, depending on its arguments. In
this sense, it is not comparable to a procedure, which always has the same code
regardless of arguments.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 231 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 231

232 Programmer’s Guide

Defining Local Symbols in Macros
You can make a symbol local to a macro by identifying it at the start of the macro
with the LOCAL directive. Any identifier may be declared local.

You can choose whether you want numeric equates and text macros to be local or
global. If a symbol will be used only inside a particular macro, you can declare it
local so that the name will be available for other declarations outside the macro.

You must declare as local any labels within a macro, since a label can occur only
once in the source. The LOCAL directive makes a special instance of the label
each time the macro appears. This prevents redefinition of the label when
expanding the macro. It also allows you to reuse the label elsewhere in your code.

You must declare all local symbols immediately following the MACRO statement
(although blank lines and comments may precede the local symbol). Separate each
symbol with a comma. You can attach comments to the LOCAL statement and list
multiple LOCAL statements in the macro. Here is an example macro that declares
local labels:

power MACRO factor:REQ, exponent:REQ

 LOCAL again, gotzero ;; Local symbols

 sub dx, dx ;; Clear top

 mov ax, 1 ;; Multiply by one on first loop

 mov cx, exponent ;; Load count

 jcxz gotzero ;; Done if zero exponent

 mov bx, factor ;; Load factor

again:

 mul bx ;; Multiply factor times exponent

 loop again ;; Result in AX

gotzero:

ENDM

If the labels again and gotzero were not declared local, the macro would work
the first time it is called, but it would generate redefinition errors on subsequent
calls. MASM implements local labels by generating different names for them each
time the macro is called. You can see this in listing files. The labels in the power
macro might be expanded to ??0000 and ??0001 on the first call and to ??0002
and ??0003 on the second.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 232 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 232

Chapter 9 Using Macros 233

You should avoid using anonymous labels in macros (see “Anonymous Labels” in
Chapter 7). Although legal, they can produce unwanted results if you expand a
macro near another anonymous label. For example, consider what happens in the
following:

Update MACRO arg1

@@: .

 .

 .

 loop @B

ENDM

 .

 .

 .

 jcxz @F

 Update ax

@@:

Expanding Update places another anonymous label between the jump and its
target. The line

 jcxz @F

consequently jumps to the start of the loop rather than over the loop — exactly the
opposite of what the programmer intended.

Assembly-Time Variables and Macro Operators
In writing macros, you will often assign and modify values assigned to symbols.
Think of these symbols as assembly-time variables. Like memory variables, they
are symbols that represent values. But since macros are processed at assembly time,
any symbol modified in a macro must be resolved as a constant by the end of
assembly.

The three kinds of assembly-time variables are:

◆ Macro parameters

◆ Text macros

◆ Macro functions

When the assembler expands a macro, it processes the symbols in the order shown
here. MASM first replaces macro parameters with the text of their actual
arguments, then expands text macros.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 233 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 233

234 Programmer’s Guide

Macro parameters are similar to procedure parameters in some ways, but they also
have important differences. In a procedure, a parameter has a type and a memory
location. Its value can be modified within the procedure. In a macro, a parameter is
a placeholder for the argument text. The value can only be assigned to another
symbol or used directly; it cannot be modified. The macro may interpret the
argument text it receives either as a numeric value or as a text value.

It is important to understand the difference between text values and numeric values.
Numeric values can be processed with arithmetic operators and assigned to numeric
equates. Text values can be processed with macro functions and assigned to text
macros.

Macro operators are often helpful when processing assembly-time variables. Table
9.1 shows the macro operators that MASM provides.

Table 9.1 MASM Macro Operators

Symbol Name Description

< > Text Delimiters Opens and closes a literal string.

! Literal-Character Operator Treats the next character as a literal
character, even if it would normally have
another meaning.

% Expansion Operator Causes the assembler to expand a constant
expression or text macro.

& Substitution Operator Tells the assembler to replace a macro
parameter or text macro name with its
actual value.

The next sections explain these operators in detail.

Text Delimiters and the Literal-Character Operator
The angle brackets (< >) are text delimiters. A text value is usually delimited when
assigning a text macro. You can do this with TEXTEQU, as previously shown, or
with the SUBSTR and CATSTR directives discussed in “String Directives and
Predefined Functions,” later in this chapter.

By delimiting the text of macro arguments, you can pass text that includes spaces,
commas, semicolons, and other special characters. The following example expands
a macro called work in two different ways:

 work <1, 2, 3, 4, 5> ; Passes one argument with 13 chars,

 ; including commas and spaces

 work 1, 2, 3, 4, 5 ; Passes five arguments, each

 ; with 1 character

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 234 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 234

Chapter 9 Using Macros 235

The literal-character operator (!) lets you include angle brackets as part of a
delimited text value, so the assembler does not interpret them as delimiters. The
assembler treats the character following ! literally rather than as a special
character, like this:

errstr TEXTEQU <Expression !> 255> ; errstr = “Expression > 255”

Text delimiters also have a special use with the FOR directive, as explained in
“FOR Loops and Variable-Length Parameters,” later in this chapter.

Expansion Operator
The expansion operator (%) expands text macros or converts constant expressions
into their text representations. It performs these tasks differently in different
contexts, as discussed in the following.

Converting Numeric Expressions to Text
The expansion operator can convert numbers to text. The operator forces immediate
evaluation of a constant expression and replaces it with a text value consisting of
the digits of the result. The digits are generated in the current radix (default
decimal).

This application of the expansion operator is useful when defining a text macro, as
the following lines show. Notice how you can enclose expressions with parentheses
to make them more readable:

a TEXTEQU <3 + 4> ; a = “3 + 4”

b TEXTEQU %3 + 4 ; b = “7”

c TEXTEQU %(3 + 4) ; c = “7”

When assigning text macros, you can use numeric equates in the constant
expressions, but not text macros:

num EQU 4 ; num = 4

numstr TEXTEQU <4> ; numstr = <4>

a TEXTEQU %3 + num ; a = <7>

b TEXTEQU %3 + numstr ; b = <7>

The expansion operator gives you flexibility when passing arguments to macros. It
lets you pass a computed value rather than the literal text of an expression. The
following example illustrates by defining a macro

work MACRO arg

 mov ax, arg * 4

ENDM

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 235 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 235

236 Programmer’s Guide

which accepts different arguments:

 work 2 + 3 ; Passes “2 + 3”

 ; Code: mov ax, 2 + (3 * 4)

 work %2 + 3 ; Passes 5

 ; Code: mov ax, 5 * 4

 work 2 + num ; Passes “2 + num”

 work %2 + num ; Passes “6”

 work 2 + numstr ; Passes “2 + numstr”

 work %2 + numstr ; Passes “6”

You must consider operator precedence when using the expansion operator.
Parentheses inside the macro can force evaluation in a desired order:

work MACRO arg

 mov ax, (arg) * 4

ENDM

 work 2 + 3 ; Code: mov ax, (2 + 3) * 4

 work %2 + 3 ; Code: mov ax, (5) * 4

Several other uses for the expansion operator are reviewed in “Returning Values
with Macro Functions,” later in this chapter.

Expansion Operator as First Character on a Line
The expansion operator has a different meaning when used as the first character on
a line. In this case, it instructs the assembler to expand any text macros and macro
functions it finds on the rest of the line.

This feature makes it possible to use text macros with directives such as ECHO,
TITLE, and SUBTITLE, which take an argument consisting of a single text value.
For instance, ECHO displays its argument to the standard output device during
assembly. Such expansion can be useful for debugging macros and expressions, but
the requirement that its argument be a single text value may have unexpected
results. Consider this example:

ECHO Bytes per element: %(SIZEOF array / LENGTHOF array)

Instead of evaluating the expression, this line echoes it:

Bytes per element: %(SIZEOF array / LENGTHOF array)

However, you can achieve the desired result by assigning the text of the expression
to a text macro and then using the expansion operator at the beginning of the line to
force expansion of the text macro.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 236 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 236

Chapter 9 Using Macros 237

temp TEXTEQU %(SIZEOF array / LENGTHOF array)

% ECHO Bytes per element: temp

Note that you cannot get the same results simply by putting the % at the beginning
of the first echo line, because % expands only text macros, not numeric equates or
constant expressions.

Here are more examples of the expansion operator at the start of a line:

; Assume memmod, lang, and os specified with /D option

% SUBTITLE Model: memmod Language: lang Operating System: os

; Assume num defined earlier

tnum TEXTEQU %num

% .ERRE num LE 255, <Failed because tnum !> 255>

Substitution Operator
References to a parameter within a macro can sometimes be ambiguous. In such
cases, the assembler may not expand the argument as you intend. The substitution
operator (&) lets you identify unambiguously any parameter within a macro.

As an example, consider the following macro:

errgen MACRO num, msg

 PUBLIC errnum

 errnum BYTE “Error num: msg”

ENDM

This macro is open to several interpretations:

◆ Is errnum a distinct word or the word err next to the parameter num?

◆ Should num and msg within the string be treated literally as part of the string or
as arguments?

In each case, the assembler chooses the most literal interpretation. That is, it treats
errnum as a distinct word, and num and msg as literal parts of the string.

The substitution operator can force different interpretations. If we rewrite the macro
with the & operator, it looks like this:

errgen MACRO num, msg

 PUBLIC err&num

 err&num BYTE “Error &num: &msg”

ENDM

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 237 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 237

238 Programmer’s Guide

When called with the following arguments,

errgen 5, <Unreadable disk>

the macro now generates this code:

 PUBLIC err5

err5 BYTE “Error 5: Unreadable disk”

When it encounters the & operator, the assembler interprets subsequent text as a
parameter name until the next & or until the next separator character (such as a
space, tab, or comma). Thus, the assembler correctly parses the expression
err&num because num is delimited by & and a space. The expression could also be
written as err&num&, which again unambiguously identifies num as a parameter.

The rule also works in reverse. You can delimit a parameter reference with & at the
end rather than at the beginning. For example, if num is 5, the expression num&12
resolves to “512.”

The assembler processes substitution operators from left to right. This can have
unexpected results when you are pasting together two macro parameters. For
example, if arg1 has the value var and arg2 has the value 3, you could paste
them together with this statement:

&arg1&&arg2& BYTE “Text”

Eliminating extra substitution operators, you might expect the following to be
equivalent:

&arg1&arg2 BYTE “Text”

However, this actually produces the symbol vararg2, because in processing from
left to right, the assembler associates both the first and the second & symbols with
the first parameter. The assembler replaces &arg1& by var, producing vararg2.
The arg2 is never evaluated. The correct abbreviation is:

arg1&&arg2 BYTE “Text”

which produces the desired symbol var3. The symbol arg1&&arg2 is replaced by
var&arg2, which is replaced by var3.

The substitution operator is also necessary if you want to substitute a text macro
inside quotes. For example,

arg TEXTEQU <hello>

%echo This is a string “&arg” ; Produces: This is a string “hello”

%echo This is a string “arg” ; Produces: This is a string “arg”

You can also use the substitution operator in lines beginning with the expansion
operator (%) symbol, even outside macros (see page 236). It may be necessary to

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 238 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 238

Chapter 9 Using Macros 239

use the substitution operator to paste text macro names to adjacent characters or
symbol names, as shown here:

text TEXTEQU <var>

value TEXTEQU %5

% ECHO textvalue is text&&value

This echoes the message

textvalue is var5

Macro substitution always occurs before evaluation of the high-level control
structures. The assembler may therefore mistake a bit-test operator (&) in your
macro for a substitution operator. You can guarantee the assembler correctly
recognizes a bit-test operator by enclosing its operands in parentheses, as shown
here:

test MACRO x

 .IF ax==&x ; &x substituted with parameter value

 mov ax, 10

 .ELSEIF ax&(x) ; & is bitwise AND

 mov ax, 20

 .ENDIF

ENDM

The rules for using the substitution operator have changed significantly since
MASM 5.1, making macro behavior more consistent and flexible. If you have
macros written for MASM 5.1 or earlier, you can specify the old behavior by using
OLDMACROS or M510 with the OPTION directive (see page 24).

Defining Repeat Blocks with Loop Directives
A “repeat block” is an unnamed macro defined with a loop directive. The loop
directive generates the statements inside the repeat block a specified number of
times or until a given condition becomes true.

MASM provides several loop directives, which let you specify the number of loop
iterations in different ways. Some loop directives can also accept arguments for
each iteration. Although the number of iterations is usually specified in the
directive, you can use the EXITM directive to exit the loop early.

Repeat blocks can be used outside macros, but they frequently appear inside macro
definitions to perform some repeated operation in the macro. Since repeat blocks
are macros themselves, they end with the ENDM directive.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 239 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 239

240 Programmer’s Guide

This section explains the following four loop directives: REPEAT, WHILE, FOR,
and FORC. In versions of MASM prior to 6.0, REPEAT was called REPT, FOR
was called IRP, and FORC was called IRPC. MASM 6.1 recognizes the old
names.

The assembler evaluates repeat blocks on the first pass only. You should therefore
avoid using address spans as loop counters, as in this example:

REPEAT (OFFSET label1 - OFFSET label2) ; Don't do this!

Since the distance between two labels may change on subsequent assembly passes
as the assembler optimizes code, you should not assume that address spans remain
constant between passes.

Note The REPEAT and WHILE directives should not be confused with the
REPEAT and WHILE directives (see “Loop-Generating Directives” in Chapter
7), which generate loop and jump instructions for run-time program control.

REPEAT Loops
REPEAT is the simplest loop directive. It specifies the number of times to generate
the statements inside the macro. The syntax is:

REPEAT constexpr
statements
ENDM

The constexpr can be a constant or a constant expression, and must contain no
forward references. Since the repeat block expands at assembly time, the number of
iterations must be known then.

Here is an example of a repeat block used to generate data. It initializes an array
containing sequential ASCII values for all uppercase letters.

alpha LABEL BYTE ; Name the data generated

letter = ‘A’ ; Initialize counter

REPEAT 26 ;; Repeat for each letter

 BYTE letter ;; Allocate ASCII code for letter

 letter = letter + 1 ;; Increment counter

ENDM

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 240 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 240

Chapter 9 Using Macros 241

Here is another use of REPEAT, this time inside a macro:

beep MACRO iter:=<3>

 mov ah, 2 ;; Character output function

 mov dl, 7 ;; Bell character

 REPEAT iter ;; Repeat number specified by macro

 int 21h ;; Call DOS

 ENDM

ENDM

WHILE Loops
The WHILE directive is similar to REPEAT, but the loop continues as long as a
given condition is true. The syntax is:

WHILE expression
statements
ENDM

The expression must be a value that can be calculated at assembly time. Normally,
the expression uses relational operators, but it can be any expression that evaluates
to zero (false) or nonzero (true). Usually, the condition changes during the
evaluation of the macro so that the loop won’t attempt to generate an infinite
amount of code. However, you can use the EXITM directive to break out of the
loop.

The following repeat block uses the WHILE directive to allocate variables
initialized to calculated values. This is a common technique for generating lookup
tables. (A lookup table is any list of precalculated results, such as a table of interest
payments or trigonometric values or logarithms. Programs optimized for speed often
use lookup tables, since calculating a value often takes more time than looking it up
in a table.)

cubes LABEL BYTE ;; Name the data generated

root = 1 ;; Initialize root

cube = root * root * root ;; Calculate first cube

WHILE cube LE 32767 ;; Repeat until result too large

 WORD cube ;; Allocate cube

 root = root + 1 ;; Calculate next root and cube

 cube = root * root * root

ENDM

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 241 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 241

242 Programmer’s Guide

FOR Loops and Variable-Length Parameters
With the FOR directive you can iterate through a list of arguments, working on
each of them in turn. It has the following syntax:

FOR parameter, <argumentlist>
statements
ENDM

The parameter is a placeholder that represents the name of each argument inside
the FOR block. The argument list must contain comma-separated arguments and
must always be enclosed in angle brackets. Here’s an example of a FOR block:

series LABEL BYTE

FOR arg, <1,2,3,4,5,6,7,8,9,10>

 BYTE arg DUP (arg)

ENDM

On the first iteration, the arg parameter is replaced with the first argument, the
value 1. On the second iteration, arg is replaced with 2. The result is an array with
the first byte initialized to 1, the next 2 bytes initialized to 2, the next 3 bytes
initialized to 3, and so on.

The argument list is given specifically in this example, but in some cases the list
must be generated as a text macro. The value of the text macro must include the
angle brackets.

arglist TEXTEQU <!<3,6,9!>> ; Generate list as text macro

%FOR arg, arglist

 . ; Do something to arg

 .

 .

ENDM

Note the use of the literal character operator (!) to identify angle brackets as
characters, not delimiters. See “Text Delimiters (< >) and the Literal-Character
Operator,” earlier in this chapter.

The FOR directive also provides a convenient way to process macros with a
variable number of arguments. To do this, add VARARG to the last parameter to
indicate that a single named parameter will have the actual value of all additional
arguments. For example, the following macro definition includes the three possible
parameter attributes — required, default, and variable.

work MACRO rarg:REQ, darg:=<5>, varg:VARARG

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 242 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 242

Chapter 9 Using Macros 243

The variable argument must always be last. If this macro is called with the
statement

 work 4, , 6, 7, a, b

the first argument is received as the value 4, the second is replaced by the default
value 5, and the last four are received as the single argument <6, 7, a, b>. This
is the same format expected by the FOR directive. The FOR directive discards
leading spaces but recognizes trailing spaces.

The following macro illustrates variable arguments:

show MACRO chr:VARARG

 mov ah, 02h

 FOR arg, <chr>

 mov dl, arg

 int 21h

 ENDM

ENDM

When called with

 show ‘O’, ‘K’, 13, 10

the macro displays each of the specified characters one at a time.

The parameter in a FOR loop can have the required or default attribute. You can
modify the show macro to make blank arguments generate errors:

show MACRO chr:VARARG

 mov ah, 02h

 FOR arg:REQ, <chr>

 mov dl, arg

 int 21h

 ENDM

ENDM

The macro now generates an error if called with

 show ‘O’,, ‘K’, 13, 10

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 243 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 243

244 Programmer’s Guide

Another approach would be to use a default argument:

show MACRO chr:VARARG

 mov ah, 02h

 FOR arg:=<‘ ’>, <chr>

 mov dl, arg

 int 21h

 ENDM

ENDM

Now calling the macro with

 show ‘O’,, ‘K’, 13, 10

inserts the default character, a space, for the blank argument.

FORC Loops
The FORC directive is similar to FOR, but takes a string of text rather than a list
of arguments. The statements are assembled once for each character (including
spaces) in the string, substituting a different character for the parameter each time
through.

The syntax looks like this:

FORC parameter, < text>
statements
ENDM

The text must be enclosed in angle brackets. The following example illustrates
FORC:

FORC arg, <ABCDEFGHIJKLMNOPQRSTUVWXYZ>

 BYTE ‘&arg’ ;; Allocate uppercase letter

 BYTE ‘&arg’ + 20h ;; Allocate lowercase letter

 BYTE ‘&arg’ - 40h ;; Allocate ordinal of letter

ENDM

Notice that the substitution operator must be used inside the quotation marks to
make sure that arg is expanded to a character rather than treated as a literal string.

With versions of MASM earlier than 6.0, FORC is often used for complex parsing
tasks. A long sentence can be examined character by character. Each character is
then either thrown away or pasted onto a token string, depending on whether it is a
separator character. The new predefined macro functions and string processing
directives discussed in the following section are usually more efficient for these
tasks.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 244 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 244

Chapter 9 Using Macros 245

String Directives and Predefined Functions
The assembler provides four directives for manipulating text:

Directive Description

SUBSTR Assigns part of string to a new symbol.

INSTR Searches for one string within another.

SIZESTR Determines the size of a string.

CATSTR Concatenates one or more strings to a single string.

These directives assign a processed value to a text macro or numeric equate. For
example, the following lines

num = 7

newstr CATSTR <3 + >, %num, < = > , %3 + num ; "3 + 7 = 10"

assign the string "3 + 7 = 10" to newstr. CATSTR and SUBSTR assign text
in the same way as the TEXTEQU directive. SIZESTR and INSTR assign a
number in the same way as the = operator. The four string directives take only text
values as arguments. Use the expansion operator (%) when you need to make sure
that constants and numeric equates expand to text, as shown in the preceding lines.

Each of the string directives has a corresponding predefined macro function version:
@SubStr, @InStr, @SizeStr, and @CatStr. Macro functions are similar to the
string directives, but you must enclose their arguments in parentheses. Macro
functions return text values and can appear in any context where text is expected.
The following section, “Returning Values with Macro Functions,” tells how to
write your own macro functions. The following example is equivalent to the
previous CATSTR example:

num = 7

newstr TEXTEQU @CatStr(<3 + >, %num, < = > , %3 + num)

Macro functions are often more convenient than their directive counterparts because
you can use a macro function as an argument to a string directive or to another
macro function. Unlike string directives, predefined macro function names are case
sensitive when you use the /Cp command-line option.

Each string directive and predefined function acts on a string, which can be any
textItem. The textItem can be text enclosed in angle brackets (< >), the name of a
text macro, or a constant expression preceded by % (as in %constExpr). Refer to
Appendix B, “BNF Grammar,” for a list of types that textItem can represent.

The following sections summarize the syntax for each of the string directives and
functions. The explanations focus on the directives, but the functions work the same
except where noted.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 245 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 245

246 Programmer’s Guide

SUBSTR
name SUBSTR string, start[[, length]]
@SubStr(string, start[[, length]])

The SUBSTR directive assigns a substring from a given string to the symbol name.
The start parameter specifies the position in string, beginning with 1, to start the
substring. The length gives the length of the substring. If you do not specify length,
SUBSTR returns the remainder of the string, including the start character.

INSTR
name INSTR [[start,]] string, substring
@InStr([[start]], string, substring)

The INSTR directive searches a specified string for an occurrence of substring and
assigns its position number to name. The search is case sensitive. The start
parameter is the position in string to start the search for substring. If you do not
specify start, it is assumed to be position 1, the start of the string. If INSTR does
not find substring, it assigns position 0 to name.

The INSTR directive assigns the position value name as if it were a numeric
equate. In contrast, the @InStr returns the value as a string of digits in the current
radix.

The @InStr function has a slightly different syntax than the INSTR directive. You
can omit the first argument and its associated comma from the directive. You can
leave the first argument blank with the function, but a blank function argument must
still have a comma. For example,

pos INSTR <person>, <son>

is the same as

pos = @InStr(, <person>, <son>)

You can also assign the return value to a text macro, like this:

strpos TEXTEQU @InStr(, <person>, <son>)

SIZESTR
name SIZESTR string
@SizeStr(string)

The SIZESTR directive assigns the number of characters in string to name. An
empty string returns a length of zero. The SIZESTR directive assigns the size
value to a name as if it were a numeric equate. The @SizeStr function returns the
value as a string of digits in the current radix.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 246 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 246

Chapter 9 Using Macros 247

CATSTR
name CATSTR string[, string]...
@CatStr(string[, string]...)

The CATSTR directive concatenates a list of text values into a single text value
and assigns it to name. TEXTEQU is technically a synonym for CATSTR.
TEXTEQU is normally used for single-string assignments, while CATSTR is
used for multistring concatenations.

The following example pushes and pops one set of registers, illustrating several
uses of string directives and functions:

; SaveRegs - Macro to generate a push instruction for each

; register in argument list. Saves each register name in the

; regpushed text macro.

regpushed TEXTEQU <> ;; Initialize empty string

SaveRegs MACRO regs:VARARG

 LOCAL reg

 FOR reg, <regs> ;; Push each register

 push reg ;; and add it to the list

 regpushed CATSTR <reg>, <,>, regpushed

 ENDM ;; Strip off last comma

 regpushed CATSTR <!<>, regpushed ;; Mark start of list with <

 regpushed SUBSTR regpushed, 1, @SizeStr(regpushed)

 regpushed CATSTR regpushed, <!>> ;; Mark end with >

ENDM

; RestoreRegs - Macro to generate a pop instruction for registers

; saved by the SaveRegs macro. Restores one group of registers.

RestoreRegs MACRO

 LOCAL reg

 %FOR reg, regpushed ;; Pop each register

 pop reg

 ENDM

ENDM

Notice how the SaveRegs macro saves its result in the regpushed text macro for
later use by the RestoreRegs macro. In this case, a text macro is used as a global
variable. By contrast, the reg text macro is used only in RestoreRegs. It is
declared LOCAL so it won’t take the name reg from the global name space. The
MACROS.INC file provided with MASM 6.1 includes expanded versions of these
same two macros.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 247 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 247

248 Programmer’s Guide

Returning Values with Macro Functions
A macro function is a named group of statements that returns a value. When calling
a macro function, you must enclose its argument list in parentheses, even if the list
is empty. The function always returns text.

MASM 6.1 provides several predefined macro functions for common tasks. The
predefined macros include @Environ (see page 10) and the string functions
@SizeStr, @CatStr, @SubStr, and @InStr (discussed in the preceding section).

You define macro functions in exactly the same way as macro procedures, except
that a macro function always returns a value through the EXITM directive. Here is
an example:

DEFINED MACRO symbol:REQ

 IFDEF symbol

 EXITM <-1> ;; True

 ELSE

 EXITM <0> ;; False

 ENDIF

ENDM

This macro works like the defined operator in the C language. You can use it to test
the defined state of several different symbols with a single statement, as shown
here:

IF DEFINED(DOS) AND NOT DEFINED(XENIX)

 ;; Do something

ENDIF

Notice that the macro returns integer values as strings of digits, but the IF statement
evaluates numeric values or expressions. There is no conflict because the assembler
sees the value returned by the macro function exactly as if the user had typed the
values directly into the program:

IF -1 AND NOT 0

Returning Values with EXITM
The return value must be text, a text equate name, or the result of another macro
function. A macro function must first convert a numeric value — such as a constant,
a numeric equate, or the result of a numeric expression — before returning it. The
macro function can use angle brackets or the expansion operator (%) to convert
numbers to text. The DEFINED macro, for instance, could have returned its value as

 EXITM %-1

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 248 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 248

Chapter 9 Using Macros 249

Here is another example of a macro function that uses the WHILE directive to
calculate factorials:

factorial MACRO num:REQ

 LOCAL i, factor

 factor = num

 i = 1

 WHILE factor GT 1

 i = i * factor

 factor = factor - 1

 ENDM

 EXITM %i

ENDM

The integer result of the calculation is changed to a text string with the expansion
operator (%). The factorial macro can define data, as shown here:

var WORD factorial(4)

This statement initializes var with the number 24 (the factorial of 4).

Using Macro Functions with Variable-Length Parameter Lists
You can use the FOR directive to handle macro parameters with the VARARG
attribute. “FOR Loops and Variable-Length Parameters,” page 242, explains how
to do this in simple cases where the variable parameters are handled sequentially,
from first to last. However, you may sometimes need to process the parameters in
reverse order or nonsequentially. Macro functions make these techniques possible.

For example, the following macro function determines the number of arguments in a
VARARG parameter:

@ArgCount MACRO arglist:VARARG

 LOCAL count

 count = 0

 FOR arg, <arglist>

 count = count + 1 ;; Count the arguments

 ENDM

 EXITM %count

ENDM

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 249 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 249

250 Programmer’s Guide

You can use @ArgCount inside a macro that has a VARARG parameter, as shown
here:

work MACRO args:VARARG

% ECHO Number of arguments is: @ArgCount(args)

ENDM

Another useful task might be to select an item from an argument list using an index
to indicate the item. The following macro simplifies this.

@ArgI MACRO index:REQ, arglist:VARARG

 LOCAL count, retstr

 retstr TEXTEQU <> ;; Initialize count

 count = 0 ;; Initialize return string

 FOR arg, <arglist>

 count = count + 1

 IF count EQ index ;; Item is found

 retstr TEXTEQU <arg> ;; Set return string

 EXITM ;; and exit IF

 ENDIF

 ENDM

 EXITM retstr ;; Exit function

ENDM

You can use @ArgI like this:

work MACRO args:VARARG

% ECHO Third argument is: @ArgI(3, args)

ENDM

Finally, you might need to process arguments in reverse order. The following macro
returns a new argument list in reverse order.

@ArgRev MACRO arglist:REQ

 LOCAL txt, arg

 txt TEXTEQU <>

% FOR arg, <arglist>

 txt CATSTR <arg>, <,>, txt ;; Paste each onto list

 ENDM

 ;; Remove terminating comma

 txt SUBSTR txt, 1, @SizeStr(%txt) - 1

 txt CATSTR <!<>, txt, <!>> ;; Add angle brackets

 EXITM txt

ENDM

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 250 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 250

Chapter 9 Using Macros 251

Here is an example showing @ArgRev in use:

work MACRO args:VARARG

% FOR arg, @ArgRev(<args>) ;; Process in reverse order

 ECHO arg

 ENDM

ENDM

These three macro functions appear in the MACROS.INC include file, located on
one of the MASM distribution disks.

Expansion Operator in Macro Functions
This list summarizes the behavior of the expansion operator (%) with macro
functions.

◆ If a macro function is preceded by a %, it will be expanded. However, if it
expands to a text macro or a macro function call, it will not expand further.

◆ If you use a macro function call as an argument for another macro function call,
a % is not needed.

◆ If a macro function is called inside angle brackets and is preceded by %, it will
be expanded.

Advanced Macro Techniques
The concept of replacing macro names with predefined macro text is simple in
theory, but it has many implications and complications. Here is a brief summary of
some advanced techniques you can use in macros.

Defining Macros within Macros
Macros can define other macros, a technique called “nesting macros.” MASM
expands macros as it encounters them, so nested macros are always processed in
nesting order. You cannot reference a nested macro directly in your program, since
the assembler begins expansion from the outer macro. In effect, a nested macro is
local to the macro that defines it. Only the amount of available memory limits the
number of macros a program can nest.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 251 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 251

252 Programmer’s Guide

The following example demonstrates how one macro can define another. The macro
takes as an argument the name of a shift or rotate instruction, then creates another
macro that simplifies the instruction for 8088/86 processors.

shifts MACRO opname ;; Macro generates macros

 opname&s MACRO operand:REQ, rotates:=<1>

 IF rotates LE 2 ;; One at a time is faster

 REPEAT rotate ;; for 2 or less

 opname operand, 1

 ENDM

 ELSE ;; Using CL is faster for

 mov cl, rotates ;; more than 2

 opname operand, cl

 ENDIF

 ENDM

ENDM

Recall that the 8086 processor allows only 1 or CL as an operand for shift and
rotate instructions. Expanding shifts generates a macro for the shift instruction
that uses whichever operand is more efficient. You create the entire series of
macros, one for each shift instruction, like this:

 ; Call macro repeatedly to make new macros

 shifts ror ; Generates rors

 shifts rol ; Generates rols

 shifts shr ; Generates shrs

 shifts shl ; Generates shls

 shifts rcl ; Generates rcls

 shifts rcr ; Generates rcrs

 shifts sal ; Generates sals

 shifts sar ; Generates sars

Then use the new macros as replacements for shift instructions, like this:

 shrs ax, 5

 rols bx, 3

Testing for Argument Type and Environment
Macros can expand conditional blocks of code by testing for argument type with the
OPATTR operator. OPATTR returns a single word constant that indicates the
type and scope of an expression, like this:

OPATTR expression

If expression is not valid or is forward-referenced, OPATTR returns a 0.
Otherwise, the return value incorporates the bit flags shown in the table below.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 252 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 252

Chapter 9 Using Macros 253

OPATTR serves as an enhanced version of the .TYPE operator, which returns
only the low byte (bits 0 – 7) shown in the table. Bits 11 – 15 of the return value are
undefined.

Bit Set If expression

0 References a code label

1 Is a memory variable or has a relocatable data label

2 Is an immediate value

3 Uses direct memory addressing

4 Is a register value

5 References no undefined symbols and is without error

6 Is relative to SS

7 References an external label

8 – 10 Has the following language type:

◆ 000 — No language type

◆ 001 — C

◆ 010 — SYSCALL

◆ 011 — STDCALL

◆ 100 — Pascal

◆ 101 — FORTRAN

◆ 110 — Basic

A macro can use OPATTR to determine if an argument is a constant, a register, or
a memory operand. With this information, the macro can conditionally generate the
most efficient code depending on argument type.

For example, given a constant argument, a macro can test it for 0. Depending on the
argument’s value, the code can select the most effective method to load the value
into a register:

 IF CONST

 mov bx, CONST ; If CONST > 0, move into BX

 ELSE

 sub bx, bx ; More efficient if CONST = 0

 ENDIF

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 253 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 253

254 Programmer’s Guide

The second method is faster than the first, yet has the same result (with the
byproduct of changing the processor flags).

The following macro illustrates some techniques using OPATTR by loading an
address into a specified offset register:

load MACRO reg:REQ, adr:REQ

 IF (OPATTR (adr)) AND 00010000y ;; Register

 IFDIFI reg, adr ;; Don’t load register

 mov reg, adr ;; onto itself

 ENDIF

 ELSEIF (OPATTR (adr)) AND 00000100y

 mov reg, adr ;; Constant

 ELSEIF (TYPE (adr) EQ BYTE) OR (TYPE (adr) EQ SBYTE)

 mov reg, OFFSET adr ;; Bytes

 ELSEIF (SIZE (TYPE (adr)) EQ 2

 mov reg, adr ;; Near pointer

 ELSEIF (SIZE (TYPE (adr)) EQ 4

 mov reg, WORD PTR adr[0] ;; Far pointer

 mov ds, WORD PTR adr[2]

 ELSE

 .ERR <Illegal argument>

 ENDIF

ENDM

A macro also can generate different code depending on the assembly environment.
The predefined text macro @Cpu returns a flag for processor type. The following
example uses the more efficient constant variation of the PUSH instruction if the
processor is an 80186 or higher.

IF @Cpu AND 00000010y

 pushc MACRO op ;; 80186 or higher

 push op

 ENDM

ELSE

 pushc MACRO op ;; 8088/8086

 mov ax, op

 push ax

 ENDM

ENDIF

Another macro can now use pushc rather than conditionally testing for processor
type itself. Although either case produces the same code, using pushc assembles
faster because the environment is checked only once.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 254 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 254

Chapter 9 Using Macros 255

You can test the language and operating system using the @Interface text macro.
The memory model can be tested with the @Model, @DataSize, or @CodeSize
text macros.

You can save the contexts inside macros with PUSHCONTEXT and
POPCONTEXT. The options for these keywords are:

Option Description

ASSUMES Saves segment register information

RADIX Saves current default radix

LISTING Saves listing and CREF information

CPU Saves current CPU and processor

ALL All of the above

Using Recursive Macros
Macros can call themselves. In MASM 5.1 and earlier, recursion is an important
technique for handling variable arguments. MASM 6.1 handles variable arguments
much more cleanly with the FOR directive and the VARARG attribute, as
described in “FOR Loops and Variable-Length Parameters,” earlier in this chapter.
However, recursion is still available and may be useful for some macros.

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 255 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 255

256 Programmer’s Guide

Filename: LMAPGC09.DOC Project:
Template: MSGRIDA1.DOT Author: rick debroux Last Saved By: Ruth L Silverio
Revision #: 86 Page: 256 of 32 Printed: 03/06/94 06:01 PM
Printed On: Distiller Colorlayer: ? Document Page: 256

257

C H A P T E R 1 0

Writing a Dynamic-Link Library
For Windows

The Windows operating system relies heavily on service routines and data
contained in special libraries called “dynamic-link libraries,” or DLLs for short.
Most of what Windows comprises, from the collections of screen fonts to the
routines that handle the graphical interface, is provided by DLLs. MASM 6.1
contains tools that you can use to write DLLs in assembly language. This chapter
shows you how.

DLLs do not run under MS-DOS. The information in this chapter applies only to
Windows, drawing in part on the chapter “Writing a Module-Definition File” in
Environment and Tools. The acronym API, which appears throughout this chapter,
refers to the application programming interface that Windows provides for
programs. For documentation of API functions, see the Programmer’s Reference,
Volume 2 of the Windows Software Development Kit (SDK).

The first section of this chapter gives an overview of DLLs and their similarities to
normal libraries. The next section explores the parts of a DLL and the rules you
must follow to create one. The third section applies this information to an example
DLL.

Overview of DLLs
A dynamic-link library is similar to a normal run-time library. Both types of
libraries contain a collection of compiled procedures, which serve one or more
calling modules. To link a normal library, the linker copies the required functions
from the library file (which usually has a .LIB extension) and combines them with
other modules to form an executable program in .EXE format. This process is
called static linking.

In dynamic linking, the library functions are not copied to an .EXE file. Instead,
they reside in a separate file in executable form, ready to serve any calling program,
called a “client.” When the first client requires the library, Windows takes care of
loading the functions into memory and establishing linkage. If subsequent clients

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 257 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 257

258 Programmer’s Guide

also need the library, Windows dynamically links them with the proper library
functions already in memory.

Loading a DLL
How Windows loads a DLL affects the client rather than the DLL itself.
Accordingly, this section focuses on how to set up a client program to use a DLL.
Since the client can itself be a DLL, this is information a DLL programmer should
know. However, MASM 6.1 does not provide all the tools required to create a
stand-alone program for Windows. To create such a program, called an
“application,” you must use tools in the Windows SDK.

Windows provides two methods for loading a dynamic-link library into memory:

Method Description

Implicit loading Windows loads the DLL along with the first client program and links
it before the client begins execution.

Explicit loading Windows does not load the DLL until the first client explicitly
requests it during execution.

When you write a DLL, you do not need to know beforehand which of the two
methods will be used to load the library. The loading method is determined by how
the client is written, not the DLL.

Implicit Loading
The implicit method of loading a DLL offers the advantage of simplicity. The client
requires no extra programming effort and can call the library functions as if they
were normal run-time functions. However, implicit loading carries two constraints:

◆ The name of the library file must have a .DLL extension.

◆ You must either list all DLL functions the client calls in the IMPORTS section
of the client’s module-definition file, or link the client with an import library.

An import library contains no executable code. It consists of only the names and
locations of exported functions in a DLL. The linker uses the locations in the import
library to resolve references to DLL functions in the client and to build an
executable header. For example, the file LIBW.LIB provided with MASM 6.1 is
the import library for the DLL files that contain the Windows API functions.

The IMPLIB utility described in Environment and Tools creates an import library.
Run IMPLIB from the MS-DOS command line like this:

IMPLIB implibfile dllfile

where implibfile is the name of the import library you want to create from the DLL
file dllfile. Once you have created an import library from a DLL, link it with a

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 258 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 258

Chapter 10 Writing a Dynamic-Link Library for Windows 259

client program that relies on implicit loading, but does not list imported functions in
its module-definition file. Continuing the preceding example, here’s the link step for
a client program that calls library procedures in the DLL dllfile:

LINK client.OBJ, client.EXE, , implibfile, client.DEF

This simplified example creates the client program client.EXE, linking it with the
import library implibfile, which in turn was created from the DLL file dllfile.

To summarize implicit loading, a client program must either

◆ List DLL functions in the IMPORTS section of its module-definition file, or

◆ Link with an import library created from the DLL.

Implicit loading is best when a client always requires at least one procedure in the
library, since Windows automatically loads the library with the client. If the client
does not always require the library service, or if the client must choose at run time
between several libraries, you should use explicit loading, discussed next.

Explicit Loading
To explicitly load a DLL, the client does not require linking with an import library,
nor must the DLL file have an extension of .DLL. Explicit loading involves three
steps in which the client calls Windows API functions:

1. The client calls LoadLibrary to load the DLL.

2. The client calls GetProcAddress to obtain the address of each DLL function it
requires.

3. When finished with the DLL, the client calls FreeLibrary to unload the DLL
from memory.

The following example fragment shows how a client written in assembly language
explicitly loads a DLL called SYSINFO.DLL and calls the DLL function
GetSysDate.

 INCLUDE windows.inc

 .DATA

hInstance HINSTANCE 0

szDLL BYTE 'SYSINFO.DLL', 0

szDate BYTE 'GetSysDate', 0

lpProc DWORD 0

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 259 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 259

260 Programmer’s Guide

 .CODE

 .

 .

 .

 INVOKE LoadLibrary, ADDR szDLL ; Load SYSINFO.DLL

 mov hInstance, ax ; Save instance count

 INVOKE GetProcAddress, ax, ADDR szDate ; Get and save

 mov lpProc, ax ; far address of

 mov lpProc[2], dx ; GetSysDate

 call lpProc ; Call GetSysDate

 .

 .

 .

 INVOKE FreeLibrary, hInstance ; Unload SYSINFO.DLL

For simplicity, the above example contains no error-checking code. An actual
program should check all values returned from the API functions.

The explicit method of loading a DLL requires more programming effort in the
client program. However, the method allows the client to control which (if any)
dynamic-link libraries to load at run time.

Searching for a DLL File
To load a DLL, whether implicitly or explicitly, Windows searches for the DLL file
in the following directories in the order shown:

1. The current directory

2. The Windows directory, which contains WIN.COM

3. The Windows system directory, which contains system files such as GDI.EXE

4. The directory where the client program resides (except Windows 3.0 and
earlier)

5. Directories listed in the PATH environment string

6. Directories mapped in a network

If Windows does not locate the DLL in any of these directories, it prompts the user
with a message box.

Building a DLL
A DLL has additional programming requirements beyond those for a normal run-
time library. This section describes the requirements pertaining to the library’s
code, data, and stack. It also discusses the effects of the library’s extension name.

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 260 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 260

Chapter 10 Writing a Dynamic-Link Library for Windows 261

DLL Code
The code in a DLL consists of exported and nonexported functions. Exported
functions, listed in the EXPORTS section of the module-definition file, are public
routines serving clients. Nonexported functions provide private, internal support for
the exported procedures. They are not visible to a client.

Under Windows, an exported library routine must appear to the caller as a far
procedure. Your DLL routines can use any calling convention you wish, provided
the caller assumes the same convention. You can think of dynamic-link code as
code for a normal run-time library with the following additions:

◆ An entry procedure

◆ A termination procedure

◆ Special prologue and epilogue code

Entry Procedure
A DLL, like any Windows-based program, must have an entry procedure. Windows
calls the entry procedure only once when it first loads the DLL, passing the
following information in registers:

◆ DS contains the library’s data segment address.

◆ DI holds the library’s instance handle.

◆ CX holds the library’s heap size in bytes.

Note Windows API functions destroy all registers except DI, SI, BP, DS, and the
stack pointer. To preserve the contents of other registers, your program must save
the registers before an API call and restore them afterwards.

This information corresponds to the data provided to an application. Since a DLL
has only one occurrence in memory, called an “instance,” the value in DI is not
usually important. However, a DLL can use its instance handle to obtain resources
from its own executable file.

The entry procedure does not need to record the address of the data segment.
Windows automatically ensures that each exported routine in the DLL has access to
the library’s data segment, as explained in “Prologue and Epilogue Code,” on page
264.

The heap size contained in CX reflects the value provided in the HEAPSIZE
statement of the module-definition file. You need not make an accurate guess in the
HEAPSIZE statement about the library’s heap requirements, provided you specify
a moveable data segment. With a moveable segment, Windows automatically
allocates more heap when needed. However, Windows can provide no more heap in

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 261 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 261

262 Programmer’s Guide

a fixed data segment than the amount specified in the HEAPSIZE statement. In any
case, a library’s total heap cannot exceed 64K, less the amount of static data. Static
data and heap reside in the same segment.

Windows does not automatically deallocate unneeded heap while the DLL is in
memory. Therefore, you should not set an unnecessarily large value in the
HEAPSIZE statement, since doing so wastes memory.

The entry procedure calls the Windows API function LocalInit to allocate the heap.
The library must create a heap before its routines call any heap functions, such as
LocalAlloc. The following example illustrates these steps:

DLLEntry PROC FAR PASCAL PUBLIC ; Entry point for DLL

 jcxz @F ; If no heap, skip

 INVOKE LocalInit, ds, 0, cx ; Else set up the heap

 .IF (ax) ; If successful,

 INVOKE UnlockSegment, -1 ; unlock the data segment

@@: call LibMain ; Call DLL's data init routine

 mov ax, TRUE ; Return AX = 1 if okay,

 .ENDIF ; else if LocalInit error,

 ret ; return AX = 0

DLLEntry ENDP

This example code is taken from the DLLENTRY.ASM module, contained in the
LIB subdirectory on one of the MASM 6.1 distribution disks. After allocating the
heap, the procedure calls the library’s initialization procedure — called LibMain in
this case. LibMain initializes the library’s static data (if required), then returns to
DLLEntry, which returns to Windows. If Windows receives a return value of 0
(FALSE) from DLLEntry, it unloads the library and displays an error message.

The process is similar to the way MS-DOS loads a terminate-and-stay-resident
program (TSR), described in the next chapter. Both the DLL and TSR return
control immediately to the operating system, then wait passively in memory to be
called.

The following section explains how a DLL gains control when Windows unloads it
from memory.

Termination Procedure
Windows maintains a DLL in memory until the last client program terminates or
explicitly unloads the library. When unloading a DLL, Windows first calls the
library’s termination procedure. This allows the DLL to return resources and do any
necessary cleanup operations before Windows unloads the library from memory.

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 262 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 262

Chapter 10 Writing a Dynamic-Link Library for Windows 263

Libraries that have registered window procedures with RegisterClass need not call
UnregisterClass to remove the class registration. Windows does this automatically
when it unloads the library.

You must name the library’s termination procedure WEP (for Windows Exit
Procedure) and list it in the EXPORTS section of the library’s module-definition
file. To ensure immediate operation, provide an ordinal number and use the
RESIDENTNAME keyword, as described in the chapter “Creating Module-
Definition Files” in Environment and Tools. This keeps the name “WEP” in the
Windows-resident name table at all times.

Besides its name, the code for WEP should also remain constantly in memory. To
ensure this, place WEP in its own code segment and set the segment’s attributes as
PRELOAD FIXED in the SEGMENTS statement of the module-definition file.
Thus, your DLL code should use a memory model that allows multiple code
segments, such as medium model. Since a termination procedure is usually short,
keeping it resident in memory does not burden the operating system.

The termination procedure accepts a single parameter, which can have one of two
values. These values are assigned to the following symbolic constants in the
WINDOWS.INC file located in the LIB subdirectory:

◆ WEP_SYSTEM_EXIT (value 1) indicates Windows is shutting down.

◆ WEP_FREE_DLL (value 0) indicates the library’s last client has terminated or
has called FreeLibrary, and Windows is unloading the DLL.

The following fragment provides an outline for a typical termination procedure:

WEP PROC FAR PASCAL EXPORT

 wExitCode:WORD

 Prolog ; Prologue macro,

 .IF wExitCode == WEP_FREE_DLL ; discussed below

 . ; Get ready to

 . ; unload

 .

 ELSEIF wExitCode == WEP_SYSTEM_EXIT

 . ; Windows is

 . ; shutting down

 .

 . ENDIF ; If neither value,

 ; take no action

 mov ax, TRUE ; Always return AX = 1

 Epilog ; Epilogue code,

 ret ; discussed below

WEP ENDP

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 263 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 263

264 Programmer’s Guide

Usually, the WEP procedure takes the same actions regardless of the parameter
value, since in either case Windows will unload the DLL.

Under Windows 3.0, the WEP procedure receives stack space of about 256 bytes.
This allows the procedure to unhook interrupts, but little else. Any other action,
such as calling an API function, usually results in an unrecoverable application
error because of stack overflow. Later versions of Windows provide at least 4K of
stack to the WEP procedure, allowing it to call many API functions.

However, WEP should not send or post a message to a client, because the client may
already be terminated. The WEP procedure should also not attempt file I/O, since
only application processes — not DLLs — can own files. When control reaches WEP,
the client may no longer exist and its files are closed.

Prologue and Epilogue Code
Exported procedures in a Windows-based program require special epilogue and
prologue code. (For a definition of these terms, see “Generating Prologue and
Epilogue Code” in Chapter 7.) The SAMPLES subdirectory on one of the MASM
6.1 distribution disks contains macros you can use for far procedures in your
Windows-based programs. Here’s a listing of the prologue macro:

Prolog MACRO

 mov ax, ds ; Must be 1st, since Windows overwrites

 nop ; Placeholder for 3rd byte

 inc bp ; Push odd BP. Not required, but

 push bp ; allows CodeView to recognize frame

 mov bp, sp ; Set up stack frame to access params

 push ds ; Save DS

 mov ds, ax ; Point DS to DLL's data segment

 ENDM

The instruction

 inc bp

marks the beginning of the stack frame with an odd number. This allows real-mode
Windows to locate segment addresses on the stack and update the addresses when it
moves or discards the corresponding segments. In protected mode, selector values
do not change when segments are moved, so marking the stack frame is not
required. However, certain debugging applications, such as Microsoft Codeview for
Windows and the Microsoft Windows 80386 Debugger (both documented in
Programming Tools of the SDK), search for a marked frame to determine if the
frame belongs to a far procedure. Without the mark, these debuggers give
meaningless information when backtracing through the stack. Therefore, you should
include the INC BP instruction for Windows-based programs that may run in real
mode or that require debugging with a Microsoft debugger.

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 264 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 264

Chapter 10 Writing a Dynamic-Link Library for Windows 265

Another characteristic of the prologue macro may seem puzzling at first glance. The
macro moves DS into AX, then AX back into DS. This sequence of instructions lets
Windows selectively overwrite the prologue code in far procedures. When
Windows loads a program, it compares the names of far procedures with the list of
exported procedures in the module-definition file. For procedures that do not appear
on the list, Windows leaves their prologue code untouched. However, Windows
overwrites the first 3 bytes of all exported procedures with

 mov ax, DGROUP

where DGROUP represents the selector value for the library’s data segment. This
explains why the prologue macro reserves the third byte with a NOP instruction.
The 1-byte instruction serves as padding to provide a 3-byte area for Windows to
overwrite.

The epilogue code returns BP to normal, like this:

Epilog MACRO

 pop ds ; Recover original DS

 pop bp ; and BP+1

 dec bp ; Reset to original BP

 ENDM

DLL Data
A DLL can have its own local data segment up to 64K. Besides static data, the
segment contains the heap from which a procedure can allocate memory through the
LocalAlloc API function. You should minimize static data in a DLL to reserve as
much memory as possible for temporary allocations. Furthermore, all procedures in
the DLL draw from the same heap space. If more than one procedure in the library
accesses the heap, a procedure should not hold allocated space unnecessarily at the
expense of the other procedures.

A Windows-based program must reserve a “task header” in the first 16 bytes of its
data segment. If you link your program with a C run-time function, the C startup
code automatically allocates the task header. Otherwise, you must explicitly reserve
and initialize the header with zeros. The sample program described in “Example of
a DLL:SYSINFO,” page 267, shows how to allocate a task header.

DLL Stack
A DLL does not declare a stack segment and does not allocate stack space. A client
program calls a library’s exported procedure through a simple far call, and the stack
does not change. The procedure is, in effect, part of the calling program, and
therefore uses the caller’s stack.

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 265 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 265

266 Programmer’s Guide

This simple arrangement differs from that used in small and medium models, in
which many C run-time functions accept near pointers as arguments. Such functions
assume the pointer is relative to the current data segment. In applications, the call
works even if the argument points to a local variable on the stack, since DS and SS
contain the same segment address.

However, in a DLL, DS and SS point to different segments. Under small and
medium models, a library procedure must always pass pointers to static variables
located in the data segment, not to local variables on the stack.

When you write a DLL, include the FARSTACK keyword with the .MODEL
directive, like this:

 .MODEL small, pascal, farstack

This informs the assembler that SS points to a segment other than DGROUP. With
full segment definitions, also add the line:

 ASSUME DS:DGROUP, SS:NOTHING

DLL Extension Names
You can name an explicitly-loaded DLL file with any extension. The many files in
your Windows directory with extensions such as .DRV and .FON are almost
certainly DLLs. Many DLLs have an .EXE extension, though they are not true
executable files.

A library with an .EXE extension should always include stub code, specified by the
STUB statement in the module-definition file. The stub code activates when run
under MS-DOS, usually displaying a message to inform the user that the program
requires Windows. Without the stub code, the system hangs if a user attempts to run
a DLL with an .EXE extension.

Do not name a DLL with a .COM extension, since MS-DOS will give control to the
first byte of the program header. The header does not contain executable
instructions, and the system will hang even if the DLL has stub code.

Summary
Following is a summary of the previous information in this chapter.

◆ A dynamic-link library has only one instance — that is, it can load only once
during a Windows session.

◆ A single DLL can service calls from many client programs. Windows takes care
of linkage between the DLL and each client.

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 266 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 266

Chapter 10 Writing a Dynamic-Link Library for Windows 267

◆ Windows loads a DLL either implicitly (along with the first client) or explicitly
(when the first client calls LoadLibrary). It unloads the DLL when the last
client either terminates or calls FreeLibrary.

◆ A client calls a DLL routine as a simple far procedure. The routine can use any
calling convention.

◆ Windows ensures that the first instruction in a DLL procedure moves the
address of the library’s data segment into AX. You must provide the proper
prologue code to allow space for this 3-byte instruction and to copy AX to DS.

◆ All procedures in a DLL have access to a single common data segment. The
segment contains both static variables and heap space, and cannot exceed 64K.

◆ A DLL procedure uses the caller’s stack.

◆ All exported procedures in a DLL must appear in the EXPORTS list in the
library’s module-definition file.

Example of a DLL: SYSINFO
Like any library, a DLL should be as small and fast as possible — a good argument
for writing it in assembly language. This section describes an example library
called SYSINFO, written entirely in assembly language. The following text applies
previous information in this chapter to an actual DLL.

SYSINFO contains three callable procedures. The acronym ASCIIZ refers to a
string of ASCII characters terminated with a zero. The callable procedures are:

Procedure Description

GetSysTime Returns a far pointer to a 12-byte ASCIIZ string containing the current
time in hh:mm:ss format.

GetSysDate Returns a far pointer to an ASCIIZ string containing the current date in
any of six languages.

GetSysInfo Returns a far pointer to a structure containing the following system
data:

◆ ASCIIZ string of Windows version

◆ ASCIIZ string of MS-DOS version

◆ Current keyboard status

◆ Current video mode

◆ Math coprocessor flag

◆ Processor type

◆ ASCIIZ string of ROM-BIOS release date

To see SYSINFO in action, follow the steps below. The file SYSDATA.EXE
resides in the SAMPLES\WINDLL subdirectory of MASM if you requested

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 267 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 267

268 Programmer’s Guide

example files when installing MASM. Otherwise, you must first install the file with
the MASM 6.1 SETUP utility.

◆ Create SYSINFO.DLL as described in the following section and place it in the
SAMPLES\WINDLL subdirectory for MASM 6.1.

◆ From the Windows File Manager, make the SAMPLES\WINDLL subdirectory
the current directory.

◆ In the Program Manager, choose Run from the File menu and type

SYSDATA

to run the example program SYSDATA.EXE. This program calls the routines in
SYSINFO.DLL and displays the returned data.

Entry Routine for SYSINFO
SYSINFO links with the DLLENTRY module, which serves as the library’s entry
point when Windows first loads the program. For a listing and description of
DLLENTRY.ASM, see the previous section, “Entry Procedure.”

DLLENTRY replaces the LIBENTRY module provided with the Windows SDK,
but unlocks the data segment after calling the API function InitTask. LIBENTRY
does not unlock the segment. DLLENTRY saves some space over LIBENTRY,
because it does not pass any arguments to LibMain.

The LibMain procedure handles the library’s initialization tasks. You can name
the procedure whatever you want, provided you make the same change in

DLLENTRY.ASM and reassemble both modules. You can even combine
DLLENTRY with LibMain to form one procedure, like this:

DLLInit PROC FAR PASCAL PUBLIC ; Entry point for DLL

 jcxz @F ; If no heap, skip

 INVOKE LocalInit, ds, 0, cx ; Else set up the heap

 .IF (ax) ; If successful,

 INVOKE UnlockSegment, -1 ; unlock the data segment

@@: . ; Initialize DLL data. This

 . ; replaces the call to the

 . ; LibMain procedure.

 mov ax, TRUE ; Return AX = 1 if okay,

 .ENDIF ; else if LocalInit error,

 ret ; return AX = 0

DLLInit ENDP

END DLLInit

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 268 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 268

Chapter 10 Writing a Dynamic-Link Library for Windows 269

Whatever you call your combined procedure (DLLInit in the preceding example),
place the name on the END statement as shown. This identifies the procedure as the
one that first executes when Windows loads the DLL.

SYSINFO accommodates several international languages. Currently, SYSINFO
recognizes English, French, Spanish, German, Italian, and Swedish, but you can
easily extend the code to include other languages. LibMain calls GetProfileString
to determine the current language, then initializes the variable indx accordingly.
The variable indirectly points to an array of strings containing days and months in
different languages. The GetSysDate procedure uses these strings to create a full
date in the correct language.

Static Data
SYSINFO stores the strings in its static data segment. This data remains in memory
along with the library’s code. All procedures have equal access to the data segment.

Because the library does not call any C run-time functions, it explicitly allocates the
low paragraph of the data segment with the variable TaskHead. This 16-byte area
serves as the required Windows task header, described in “DLL Data,” earlier in
this chapter.

Module-Definition File
The library’s module-definition file, named SYSINFO.DEF, looks like this:

LIBRARY SYSINFO

DESCRIPTION 'Sample assembly-language DLL'

EXETYPE WINDOWS

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE SINGLE

SEGMENTS CODE2 PRELOAD FIXED

EXPORTS WEP @1 RESIDENTNAME

 GetSysTime @2

 GetSysDate @3

 GetSysInfo @4

Note the following points about the module-definition file:

◆ The LIBRARY statement identifies SYSINFO as a dynamic-link library.

◆ SYSINFO places its termination procedure WEP in a separate code segment,
called CODE2, which the SEGMENTS statement declares as FIXED. This
keeps the WEP routine fixed in memory, while all other code remains moveable.

◆ The EXPORTS section lists all procedures the library exports, including WEP.

◆ None of the library’s procedures require heap space, so SYSINFO.DEF
includes no HEAPSIZE statement.

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 269 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 269

270 Programmer’s Guide

Assembling and Linking SYSINFO
The following listing shows the description file for SYSINFO:

sysinfo.obj: sysinfo.asm dll.inc

 ML /c /W3 sysinfo.asm

dllentry.obj: dllentry.asm dll.inc.

 ML /c /W3 dllentry.asm

sysinfo.dll: dllentry.obj sysinfo.obj

 LINK dllentry sysinfo, sysinfo.dll,, libw.lib mnocrtdw.lib,

sysinfo.def

To create SYSINFO.DLL, run the NMAKE utility described in Chapter 16 of
Environments and Tools. Or assemble and link SYSINFO with the three command
lines shown in the preceding listing. This does not require running NMAKE.

SYSINFO links with the library modules MNOCRTDW.LIB and LIBW.LIB. The
first supplies the required Windows startup code for a medium-model DLL that
does not use any C run-time functions. LIBW.LIB is the Windows import library,
which contains no executable code. The import library provides linkage information
for the Windows API functions referenced in the DLL. Windows establishes the
final links when it loads the program.

Expanding SYSINFO
SYSINFO is an example of how to write an assembly-language DLL without
overwhelming detail. It has plenty of room for expansion and improvements. The
following list may give you some ideas:

◆ To create a heap area for the library, add the line

HEAPSIZE value

to the module-definition file, where value is an approximate guess for the
amount of heap required in bytes. The DLLEntry procedure automatically
allocates the indicated amount of heap. Keep the data segment moveable,
because Windows then provides more heap space if required by the DLL
procedures.

◆ If you want to add a procedure that calls C run-time functions, you must replace
MNOCRTDW.LIB with MDLLCW.LIB, which is supplied with the Windows
SDK. The MDLLCW.LIB library contains the run-time functions for medium-
model DLLs.

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 270 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 270

Chapter 10 Writing a Dynamic-Link Library for Windows 271

◆ Each time the GetSysInfo procedure is called, it retrieves the version number
of MS-DOS and Windows, gets the processor type, checks for a coprocessor,
and reads the ROM-BIOS release date. Since this information does not change
throughout a Windows session, it would be handled more efficiently in the
LibMain procedure, which executes only once. The code is currently placed in
GetSysInfo for the sake of clarity at the expense of efficiency.

◆ SYSINFO is not a true international program. You can easily add more
languages, extending the days and months arrays accordingly. Moreover, for
the sake of simplicity, the GetSysDate procedure arranges the date with an
American bias. For example, in many parts of the world, the date numeral
appears before the month rather than after. If you use SYSINFO in your own
applications, you should include code in LibMain to determine the correct date
format with additional calls to GetProfileString. You can find more
information on how to do this in Chapter 18 of the Microsoft Windows
Programmer’s Reference, Volume 1, supplied with the Windows SDK.

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 271 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 271

272 Programmer’s Guide

Filename: LMAPGC10.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 62 Page: 272 of 16 Printed: 03/06/94 06:02 PM
Printed On: Distiller Colorlayer: ? Document Page: 272

273

C H A P T E R 1 1

Writing Memory-Resident Software

Through its memory-management system, MS-DOS allows a program to remain
resident in memory after terminating. The resident program can later regain control
of the processor to perform tasks such as background printing or “popping up” a
calculator on the screen. Such a program is commonly called a TSR, from the
terminate-and-stay-resident function it uses to return to MS-DOS.

This chapter explains the techniques of writing memory-resident software. The first
two sections present introductory material. Following sections describe important
MS-DOS and BIOS interrupts and focus on how to write safe, compatible,
memory-resident software. Two example programs illustrate the techniques
described in the chapter. The MASM 6.1 disks contain complete source code for the
two example TSR programs.

Terminate-and-Stay-Resident Programs
MS-DOS maintains a pointer to the beginning of unused memory. Programs load
into memory at this position and terminate execution by returning control to MS-
DOS. Normally, the pointer remains unchanged, allowing MS-DOS to reuse the
same memory when loading other programs.

A terminating program can, however, prevent other programs from loading on top
of it. These programs exit to MS-DOS through the terminate-and-stay-resident
function, which resets the free-memory pointer to a higher position. This leaves the
program resident in a protected block of memory, even though it is no longer
running.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 273 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 273

274 Programmer’s Guide

The terminate-and-stay-resident function (Function 31h) is one of the MS-DOS
services invoked through Interrupt 21h. The following fragment shows how a TSR
program terminates through Function 31h and remains resident in a 1000h-byte
block of memory:

 mov ah, 31h ; Request DOS Function 31h

 mov al, err ; Set return code

 mov dx, 100h ; Reserve 100h paragraphs

 ; (1000h bytes)

 int 21h ; Terminate-and-stay-resident

Note In current versions of MS-DOS, Interrupt 27h also provides a terminate-and-
stay-resident service. However, Microsoft cannot guarantee future support for
Interrupt 27h and does not recommend its use.

Structure of a TSR
TSRs consist of two distinct parts that execute at different times. The first part is
the installation section, which executes only once, when MS-DOS loads the
program. The installation code performs any initialization tasks required by the
TSR and then exits through the terminate-and-stay-resident function.

The second part of the TSR, called the resident section, consists of code and data
left in memory after termination. Though often identified with the TSR itself, the
resident section makes up only part of the entire program.

The TSR’s resident code must be able to regain control of the processor and execute
after the program has terminated. Methods of executing a TSR are classified as
either passive or active.

Passive TSRs
The simplest way to execute a TSR is to transfer control to it explicitly from
another program. Because the TSR in this case does not solicit processor control, it
is said to be passive. If the calling program can determine the TSR’s memory
address, it can grant control via a far jump or call. More commonly, a program
activates a passive TSR through a software interrupt. The installation section of the
TSR writes the address of its resident code to the proper position in the interrupt
vector table (see “MS-DOS Interrupts” in Chapter 7). Any subsequent program can
then execute the TSR by calling the interrupt.

Passive TSRs often replace existing software interrupts. For example, a passive
TSR might replace Interrupt 10h, the BIOS video service. By intercepting calls that
read or write to the screen, the TSR can access the video buffer directly, increasing
display speed.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 274 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 274

Chapter 11 Writing Memory-Resident Software 275

Passive TSRs allow limited access since they can be invoked only from another
program. They have the advantage of executing within the context of the calling
program, and thus run no risk of interfering with another process. Such a risk does
exist with active TSRs.

Active TSRs
The second method of executing a TSR involves signaling it through some hardware
event, such as a predetermined sequence of keystrokes. This type of TSR is “active”
because it must continually search for its startup signal. The advantage of active
TSRs lies in their accessibility. They can take control from any running application,
execute, and return, all on demand.

An active TSR, however, must not seize processor control blindly. It must contain
additional code that determines the proper moment at which to execute. The extra
code consists of one or more routines called “interrupt handlers,” described in the
following section.

Interrupt Handlers in Active TSRs
The memory-resident portion of an active TSR consists of two parts. One part
contains the body of the TSR — the code and data that perform the program’s main
tasks. The other part contains the TSR’s interrupt handlers.

An interrupt handler is a routine that takes control when a specific interrupt occurs.
Although sometimes called an “interrupt service routine,” a TSR’s handler usually
does not service the interrupt. Instead, it passes control to the original interrupt
routine, which does the actual interrupt servicing. (See the section “Replacing an
Interrupt Routine” in Chapter 7 for information on how to write an interrupt
handler.)

Collectively, interrupt handlers ensure that a TSR operates compatibly with the rest
of the system. Individually, each handler fulfills one or more of the following
functions:

◆ Auditing hardware events that may signal a request for the TSR

◆ Monitoring system status

◆ Determining whether a request for the TSR should be honored, based on current
system status

Auditing Hardware Events for TSR Requests
Active TSRs commonly use a special keystroke sequence or the timer as a request
signal. A TSR invoked through one of these channels must be equipped with
handlers that audit keyboard or timer events.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 275 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 275

276 Programmer’s Guide

A keyboard handler receives control at every keystroke. It examines each key,
searching for the proper signal or “hot key.” Generally, a keyboard handler should
not attempt to call the TSR directly when it detects the hot key. If the TSR cannot
safely interrupt the current process at that moment, the keyboard handler is forced
to exit to allow the process to continue. Since the handler cannot regain control until
the next keystroke, the user has to press the hot key repeatedly until the handler can
comply with the request.

Instead, the handler should merely set a request flag when it detects a hot-key signal
and then exit normally. Examples in the following paragraphs illustrate this
technique.

For computers other than MCA (IBM PS/2 and compatible), an active TSR audits
keystrokes through a handler for Interrupt 09, the keyboard interrupt:

Keybrd PROC FAR

 sti ; Interrupts are okay

 push ax ; Save AX register

 in al, 60h ; AL = key scan code

 call CheckHotKey ; Check for hot key

 .IF carry? ; If hot key pressed,

 mov cs:TsrRequestFlag, TRUE ; raise flag and

 . ; set up for exit

 .

 .

A TSR running on a PS/2 computer cannot reliably read key scan codes using this
method. Instead, the TSR must search for its hot key through a handler for Interrupt
15h (Miscellaneous System Services). The handler determines the current keypress
from the AL register when AH equals 4Fh, as shown here:

MiscServ PROC FAR

 sti ; Interrupts okay

 .IF ah == 4Fh ; If Keyboard Intercept Service:

 call CheckHotKey ; Check for hot key

 .IF carry? ; If hot key pressed,

 mov cs:TsrRequestFlag, TRUE ; raise flag and

 . ; set up for exit

 .

 .

The example program on page 293 shows how a TSR tests for a PS/2 machine and
then sets up a handler for either Interrupt 09 or Interrupt 15h to audit keystrokes.

Setting a request flag in the keyboard handler allows other code, such as the timer
handler (Interrupt 08), to recognize a request for the TSR. The timer handler gains
control at every timer interrupt, which occurs an average of 18.2 times per second.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 276 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 276

Chapter 11 Writing Memory-Resident Software 277

The following fragment shows how a timer handler tests the request flag and
continually polls until it can safely execute the TSR.

NewTimer PROC FAR

 .

 .

 .

 cmp TsrRequestFlag, FALSE ; Has TSR been requested?

 .IF !zero? ; If so, can system be

 call CheckSystem ; interrupted safely?

 .IF carry? ; If so,

 call ActivateTsr ; activate TSR

 .

 .

 .

Monitoring System Status
A TSR that uses a hardware device such as the video or disk must not interrupt
while the device is active. A TSR monitors a device by handling the device’s
interrupt. Each interrupt handler simply sets a flag to indicate the device is in use,
and then clears the flag when the interrupt finishes.

The following shows a typical monitor handler:

NewHandler PROC FAR

 mov cs:ActiveFlag, TRUE ; Set active flag

 pushf ; Simulate interrupt by

 ; pushing flags, then

 call OldHandler ; far-calling original routine

 mov cs:ActiveFlag, FALSE ; Clear active flag

 iret ; Return from interrupt

NewHandler ENDP

Only hardware used by the TSR requires monitoring. For example, a TSR that
performs disk input/output (I/O) must monitor disk use through Interrupt 13h. The
disk handler sets an active flag that prevents the TSR from executing during a read
or write operation. Otherwise, the TSR’s own I/O would move the disk head. This
would cause the suspended disk operation to continue with the head incorrectly
positioned when the TSR returned control to the interrupted program.

In the same way, an active TSR that displays to the screen must monitor calls to
Interrupt 10h. The Interrupt 10h BIOS routine does not protect critical sections of
code that program the video controller. The TSR must therefore ensure it does not
interrupt such nonreentrant operations.

The activities of the operating system also affect the system status. With few
exceptions, MS-DOS functions are not reentrant and must not be interrupted.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 277 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 277

278 Programmer’s Guide

However, monitoring MS-DOS is somewhat more complicated than monitoring
hardware. This subject is discussed in “Using MS-DOS in Active TSRs,” later in
this chapter.

Figure 11.1 illustrates the process described so far. It shows a time line for a typical
TSR signaled from the keyboard. When the keyboard handler detects the proper hot
key, it sets a request flag called TsrRequestFlag. Thereafter, the timer handler
continually checks the system status until it can safely call the TSR.

Interrupt 10h (video)
VideoActiveFlag

Interrupt 13h (disk)
DiskActiveFlag

Interrupt 09h (keyboard)
TsrRequestFlag

Interrupt 08h (timer)

TSR
TsrActiveFlag

Time in seconds:

set clear

clear

clear

set clear

set

clear set

t +1/18 +2/18 +3/18 +4/18

.

.

. . . .

.

4 5 61 2 3

Figure 11.1 Time Line of Interactions Between Interrupt Handlers for a Typical
TSR

The following comments describe the chain of events depicted in Figure 11.1. Each
comment refers to one of the numbered pointers in the figure.

1. At time = t, the timer handler activates. It finds the flag TsrRequestFlag
clear, indicating the user has not requested the TSR. The handler terminates
without taking further action. Notice that Interrupt 13h is currently processing a
disk I/O operation.

2. Before the next timer interrupt, the keyboard handler detects the hot key,
signaling a request for the TSR. The keyboard handler sets TsrRequestFlag
and returns.

3. At time = t + 1/18 second, the timer handler again activates and finds
TsrRequestFlag set. The handler checks other active flags to determine if the
TSR can safely execute. Since Interrupt 13h has not yet completed its disk
operation, the timer handler finds DiskActiveFlag set. The handler therefore
terminates without activating the TSR.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 278 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 278

Chapter 11 Writing Memory-Resident Software 279

4. At time = t + 2/18 second, the timer handler again finds TsrRequestFlag set
and repeats its scan of the active flags. DiskActiveFlag is now clear, but in
the interim, Interrupt 10h has activated as indicated by the flag
VideoActiveFlag. The timer handler accordingly terminates without
activating the TSR.

5. At time = t + 3/18 second, the timer handler repeats the process. This time it
finds all active flags clear, indicating the TSR can safely execute. The timer
handler calls the TSR, which sets its own active flag to ensure it will not
interrupt itself if requested again.

6. The timer and other interrupts continue to function normally while the TSR
executes.

The timer itself can serve as the startup signal if the TSR executes periodically.
Screen clocks that continuously show seconds and minutes are examples of TSRs
that use the timer this way. ALARM.ASM, a program described in the next section,
shows another example of a timer-driven TSR.

Determining Whether to Invoke the TSR
Once a handler receives a request signal for the TSR, it checks the various active
flags maintained by the handlers that monitor system status. If any of the flags are
set, the handler ignores the request and exits. If the flags are clear, the handler
invokes the TSR, usually through a near or far call. Figure 11.1 illustrates how a
timer handler detects a request and then periodically scans various active flags until
all the flags are clear.

A TSR that changes stacks must not interrupt itself. Otherwise, the second
execution would overwrite the stack data belonging to the first. A TSR prevents this
by setting its own active flag before executing, as shown in Figure 11.1. A handler
must check this flag along with the other active flags when determining whether the
TSR can safely execute.

Example of a Simple TSR: ALARM
This section presents a simple alarm clock TSR that demonstrates some of the
material covered so far. The program accepts an argument from the command line
that specifies the alarm setting in military form, such as 1635 for 4:35 P.M. For
simplicity, the argument must consist of four digits, including leading zeros. To set
the alarm at 7:45 A.M., for example, enter the command:

ALARM 0745

The installation section of the program begins with the Install procedure.
Install computes the number of five-second intervals that must elapse before the
alarm sounds and stores this number in the word CountDown. The procedure then

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 279 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 279

280 Programmer’s Guide

obtains the vector for Interrupt 08 (timer) through MS-DOS Function 35h and
stores it in the far pointer OldTimer. Function 25h replaces the vector with the far
address of the new timer handler NewTimer. Once installed, the new timer handler
executes at every timer interrupt. These interrupts occur 18.2 times per second or
91 times every five seconds.

Each time it executes, NewTimer subtracts one from a secondary counter called
Tick91. By counting 91 timer ticks, Tick91 accurately measures a period of five
seconds. When Tick91 reaches zero, it’s reset to 91 and CountDown is
decremented by one. When CountDown reaches zero, the alarm sounds.

;* ALARM.ASM - A simple memory-resident program that beeps the speaker

;* at a prearranged time. Can be loaded more than once for multiple

;* alarm settings. During installation, ALARM establishes a handler

;* for the timer interrupt (Interrupt 08). It then terminates through

;* the terminate-and-stay-resident function (Function 31h). After the

;* alarm sounds, the resident portion of the program retires by setting

;* a flag that prevents further processing in the handler.

 .MODEL tiny ; Create ALARM.COM

 .STACK

 .CODE

 ORG 5Dh ; Location of time argument in PSP,

CountDown LABEL WORD ; converted to number of 5-second

 ; intervals to elapse

 .STARTUP

 jmp Install ; Jump over data and resident code

; Data must be in code segment so it won’t be thrown away with Install code.

OldTimer DWORD ? ; Address of original timer routine

tick_91 BYTE 91 ; Counts 91 clock ticks (5 seconds)

TimerActiveFlag BYTE 0 ; Active flag for timer handler

;* NewTimer - Handler routine for timer interrupt (Interrupt 08).

;* Decrements CountDown every 5 seconds. No other action is taken

;* until CountDown reaches 0, at which time the speaker sounds.

NewTimer PROC FAR

 .IF cs:TimerActiveFlag != 0 ; If timer busy or retired,

 jmp cs:OldTimer ; jump to original timer routine

 .ENDIF

 inc cs:TimerActiveFlag ; Set active flag

 pushf ; Simulate interrupt by pushing flags,

 call cs:OldTimer ; then far-calling original routine

 sti ; Enable interrupts

 push ds ; Preserve DS register

 push cs ; Point DS to current segment for

 pop ds ; further memory access

 dec tick_91 ; Count down for 91 ticks

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 280 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 280

Chapter 11 Writing Memory-Resident Software 281

 .IF zero? ; If 91 ticks have elapsed,

 mov tick_91, 91 ; reset secondary counter and

 dec CountDown ; subtract one 5-second interval

 .IF zero? ; If CountDown drained,

 call Sound ; sound speaker

 inc TimerActiveFlag ; Alarm has sounded--inc flag

 .ENDIF ; again so it remains set

 .ENDIF

 dec TimerActiveFlag ; Decrement active flag

 pop ds ; Recover DS

 iret ; Return from interrupt handler

NewTimer ENDP

;* Sound - Sounds speaker with the following tone and duration:

BEEP_TONE EQU 440 ; Beep tone in hertz

BEEP_DURATION EQU 6 ; Number of clocks during beep,

 ; where 18 clocks = approx 1 second

Sound PROC USES ax bx cx dx es ; Save registers used in this routine

 mov al, 0B6h ; Initialize channel 2 of

 out 43h, al ; timer chip

 mov dx, 12h ; Divide 1,193,180 hertz

 mov ax, 34DCh ; (clock frequency) by

 mov bx, BEEP_TONE ; desired frequency

 div bx ; Result is timer clock count

 out 42h, al ; Low byte of count to timer

 mov al, ah

 out 42h, al ; High byte of count to timer

 in al, 61h ; Read value from port 61h

 or al, 3 ; Set first two bits

 out 61h, al ; Turn speaker on

; Pause for specified number of clock ticks

 mov dx, BEEP_DURATION ; Beep duration in clock ticks

 sub cx, cx ; CX:DX = tick count for pause

 mov es, cx ; Point ES to low memory data

 add dx, es:[46Ch] ; Add current tick count to CX:DX

 adc cx, es:[46Eh] ; Result is target count in CX:DX

 .REPEAT

 mov bx, es:[46Ch] ; Now repeatedly poll clock

 mov ax, es:[46Eh] ; count until the target

 sub bx, dx ; time is reached

 sbb ax, cx

 .UNTIL !carry?

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 281 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 281

282 Programmer’s Guide

 in al, 61h ; When time elapses, get port value

 xor al, 3 ; Kill bits 0-1 to turn

 out 61h, al ; speaker off

 ret

Sound ENDP

;* Install - Converts ASCII argument to valid binary number, replaces

;* NewTimer as the interrupt handler for the timer, then makes program

;* memory-resident by exiting through Function 31h.

;*

;* This procedure marks the end of the TSR's resident section and the

;* beginning of the installation section. When ALARM terminates through

;* Function 31h, the above code and data remain resident in memory. The

;* memory occupied by the following code is returned to DOS.

Install PROC

; Time argument is in hhmm military format. Converts ASCII digits to

; number of minutes since midnight, then converts current time to number

; of minutes since midnight. Difference is number of minutes to elapse

; until alarm sounds. Converts to seconds-to-elapse, divides by 5 seconds,

; and stores result in word CountDown.

DEFAULT_TIME EQU 3600 ; Default alarm setting = 1 hour

 ; (in seconds) from present time

 mov ax, DEFAULT_TIME

 cwd ; DX:AX = default time in seconds

 .IF BYTE PTR CountDown != ' ' ; If not blank argument,

 xor CountDown[0], '00' ; convert 4 bytes of ASCII

 xor CountDown[2], '00' ; argument to binary

 mov al, 10 ; Multiply 1st hour digit by 10

 mul BYTE PTR CountDown[0] ; and add to 2nd hour digit

 add al, BYTE PTR CountDown[1]

 mov bh, al ; BH = hour for alarm to go off

 mov al, 10 ; Repeat procedure for minutes

 mul BYTE PTR CountDown[2] ; Multiply 1st minute digit by 10

 add al, BYTE PTR CountDown[3] ; and add to 2nd minute digit

 mov bl, al ; BL = minute for alarm to go off

 mov ah, 2Ch ; Request Function 2Ch

 int 21h ; Get Time (CX = current hour/min)

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 282 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 282

Chapter 11 Writing Memory-Resident Software 283

 mov dl, dh

 sub dh, dh

 push dx ; Save DX = current seconds

 mov al, 60 ; Multiply current hour by 60

 mul ch ; to convert to minutes

 sub ch, ch

 add cx, ax ; Add current minutes to result

 ; CX = minutes since midnight

 mov al, 60 ; Multiply alarm hour by 60

 mul bh ; to convert to minutes

 sub bh, bh

 add ax, bx ; AX = number of minutes since

 ; midnight for alarm setting

 sub ax, cx ; AX = time in minutes to elapse

 ; before alarm sounds

 .IF carry? ; If alarm time is tomorrow,

 add ax, 24 * 60 ; add minutes in a day

 .ENDIF

 mov bx, 60

 mul bx ; DX:AX = minutes-to-elapse-times-60

 pop bx ; Recover current seconds

 sub ax, bx ; DX:AX = seconds to elapse before

 sbb dx, 0 ; alarm activates

 .IF carry? ; If negative,

 mov ax, 5 ; assume 5 seconds

 cwd

 .ENDIF

 .ENDIF

 mov bx, 5 ; Divide result by 5 seconds

 div bx ; AX = number of 5-second intervals

 mov CountDown, ax ; to elapse before alarm sounds

 mov ax, 3508h ; Request Function 35h

 int 21h ; Get Vector for timer (Interrupt 08)

 mov WORD PTR OldTimer[0], bx ; Store address of original

 mov WORD PTR OldTimer[2], es ; timer interrupt

 mov ax, 2508h ; Request Function 25h

 mov dx, OFFSET NewTimer ; DS:DX points to new timer handler

 int 21h ; Set Vector with address of NewTimer

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 283 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 283

284 Programmer’s Guide

 mov dx, OFFSET Install ; DX = bytes in resident section

 mov cl, 4

 shr dx, cl ; Convert to number of paragraphs

 inc dx ; plus one

 mov ax, 3100h ; Request Function 31h, error code=0

 int 21h ; Terminate-and-stay-resident

Install ENDP

 END

Note the following points about ALARM:

◆ The constant BEEP_TONE specifies the alarm tone. Practical values for the tone
range from approximately 100 to 4,000 hertz.

◆ The Install procedure marks the beginning of the installation section of the
program. Execution begins here when ALARM.COM is loaded. A TSR
generally places its installation code after the resident section. This allows the
terminating TSR to include the installation code with the rest of the memory it
returns to MS-DOS. Since the installation section executes only once, the TSR
can discard it after becoming resident.

◆ You can install ALARM any number of times in quick succession, each time
with a new alarm setting. The timer handler does not restore the original vector
for Interrupt 08 after the alarm sounds. In effect, the multiple installations
remain daisy-chained in memory. The address in OldTimer for one installation
is the address of NewTimer in the preceding installation.

◆ Until a system reboot, NewTimer remains in place as the Interrupt 08 handler,
even after the alarm sounds. To save unnecessary activity, the byte
TimerActiveFlag remains set after the alarm sounds. This forces an
immediate jump to the original handler for all subsequent executions of
NewTimer.

◆ NewTimer and Sound alter registers DS, AX, BX, CX, DX, and ES. To
preserve the original values in these registers, the procedures first push them
onto the stack and then restore the original values before exiting. This ensures
that the process interrupted by NewTimer continues with valid registers after
NewTimer returns.

◆ ALARM requires little stack space. It assumes the current stack is adequate and
makes no attempt to set up a new one. More sophisticated TSRs, however,
should as a matter of course provide their own stacks to ensure adequate stack
depth. The example program presented in “Example of an Advanced TSR:
SNAP,” later in this chapter, demonstrates this safety measure.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 284 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 284

Chapter 11 Writing Memory-Resident Software 285

Using MS-DOS in Active TSRs
This section explains how to write active TSRs that can safely call MS-DOS
functions. The material explores the problems imposed by the nonreentrant nature
of MS-DOS and explains how a TSR can resolve those problems. The solution
consists of four parts:

◆ Understanding how MS-DOS uses stacks

◆ Determining when MS-DOS is active

◆ Determining whether a TSR can safely interrupt an active MS-DOS function

◆ Monitoring the Critical Error flag

Understanding MS-DOS Stacks
MS-DOS functions set up their own stacks, which makes them nonreentrant. If a
TSR interrupts an MS-DOS function and then executes another function that sets up
the same stack, the second function will overwrite everything placed on the stack by
the first function. The problem occurs when the second function returns and the first
is left with unusable stack data. A TSR that calls an MS-DOS function must not
interrupt any function that uses the same stack.

MS-DOS versions 2.0 and later use three internal stacks: an I/O stack, a disk stack,
and an auxiliary stack. The current stack depends on the MS-DOS function.
Functions 01 through 0Ch set up the I/O stack. Functions higher than 0Ch (with few
exceptions) use the disk stack, as do Interrupts 25h and 26h. MS-DOS normally
uses the auxiliary stack only when it executes Interrupt 24h (Critical Error
Handler).

Determining MS-DOS Activity
A TSR’s handlers can determine when MS-DOS is active by consulting a 1-byte
flag called the InDos flag. Every MS-DOS function sets this flag upon entry and
clears it upon termination. During installation, a TSR locates the flag through
Function 34h (Get Address of InDos Flag), which returns the address as ES:BX.
The installation portion then stores the address so the handlers can later find the
flag without again calling Function 34h.

Theoretically, a TSR can wait to execute until the InDos flag is clear, thus
sidestepping the entire issue of interrupting MS-DOS. However, several low-order
functions — such as Function 0Ah (Get Buffered Keyboard Input) — wait idly for
an expected keystroke before they terminate. If a TSR were allowed to execute only
after MS-DOS returned, it too would have to wait for the terminating event.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 285 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 285

286 Programmer’s Guide

The solution lies in determining when the low-order functions 01 through 0Ch are
active. MS-DOS provides another service for this purpose: Interrupt 28h, the Idle
Interrupt.

Interrupting MS-DOS Functions
MS-DOS continually calls Interrupt 28h from the low-order polling functions as
they wait for keyboard input. This signal says that MS-DOS is idle and that a TSR
may interrupt provided it does not overwrite the I/O stack. Put another way, a TSR
can safely interrupt MS-DOS Functions 01 through 0Ch provided it does not call
them.

An active TSR that calls MS-DOS must monitor Interrupt 28h with a handler.
When the handler gains control, it checks the TSR request flag. If the flag indicates
the TSR has been requested and if system hardware is inactive, the handler
executes the TSR. Since control must eventually return to the idle MS-DOS
function which has stored data on the I/O stack, the TSR in this case must not call
any MS-DOS function that also uses the I/O stack. Table 11.1 shows which
functions set up the I/O stack for various versions of MS-DOS.

Table 11.1 MS-DOS Internal Stacks

Function
Critical
Error flag

MS-DOS
2.x

MS-DOS
3.0

MS-DOS
3.1+

01–0Ch Clear
Set

I/O*
Aux*

I/O
Aux

I/O
Aux

33h Clear
Set

Disk*
Disk

Disk
Disk

Caller*
Caller

50h–51h Clear
Set

I/O
Aux

Caller
Caller

Caller
Caller

59h Clear
Set

n/a*
n/a

I/O
Aux

Disk
Disk

5D0Ah Clear
Set

n/a
n/a

n/a
n/a

Disk
Disk

62h Clear
Set

n/a
n/a

Caller
Caller

Caller
Caller

All others Clear
Set

Disk
Disk

Disk
Disk

Disk
Disk

* I/O=I/O stack, Aux = auxiliary stack, Disk = disk stack, Caller = caller’s stack, n/a = function not
available.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 286 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 286

Chapter 11 Writing Memory-Resident Software 287

TSRs that perform tasks of long or indefinite duration should themselves call
Interrupt 28h. For example, a TSR that polls for keyboard input should include an
INT 28h instruction in the polling loop, as shown here:

poll: int 28h ; Signal idle state

 mov ah, 1

 int 16h ; Key waiting?

 jnz poll ; If not, repeat polling loop

 sub ah, ah

 int 16h ; Otherwise, get key

This courtesy gives other TSRs a chance to execute if the InDos flag happens to be
set.

Monitoring the Critical Error Flag
MS-DOS sets the Critical Error flag to a nonzero value when it detects a critical
error. It then invokes Interrupt 24h (Critical Error Handler) and clears the flag
when Interrupt 24h returns. MS-DOS functions higher than 0Ch are illegal during
critical error processing. Therefore, a TSR that calls MS-DOS must not execute
while the Critical Error flag is set.

MS-DOS versions 3.1 and later locate the Critical Error flag in the byte preceding
the InDos flag. A single call to Function 34h (Get Address of InDos Flag) thus
effectively returns the addresses of both flags. For earlier versions of MS-DOS or
for the compatibility version of MS-DOS in OS/2 1.x, a TSR must call Function
34h and then scan the segment returned in the ES register for one of the two
following sequences of instructions:

; Sequence of instructions in DOS Versions 2.0 - 3.0

 cmp ss:[CriticalErrorFlag], 0

 jne @F

 int 28h

; Sequence of instructions in DOS compatibility version for OS/2 1.x

 test [CriticalErrorFlag], 0FFh

 jnz @F

 push ss:[?]

 int 28h

The question mark inside brackets in the preceding PUSH statement indicates that
the operand for the PUSH instruction can be any legal operand.

In either version of MS-DOS, the operand field in the first instruction gives the
flag’s offset. The value in ES determines the segment address. “Example of an
Advanced TSR: SNAP,” later in the chapter, presents a program that shows how to
locate the Critical Error flag with this technique.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 287 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 287

288 Programmer’s Guide

Preventing Interference
This section describes how an active TSR can avoid interfering with the process it
interrupts. Interference occurs when a TSR commits an error or performs an action
that affects the interrupted process after the TSR returns. Examples of interference
range from relatively harmless, such as moving the cursor, to serious, such as
overrunning a stack.

Although a TSR can interfere with another process in many different ways,
protection against interference involves only three steps:

1. Recording a current configuration

2. Changing the configuration so it applies to the TSR

3. Restoring the original configuration before terminating

The example program described on page 293 demonstrates all the noninterference
safeguards described in this section. These safeguards by no means exhaust the
subject of noninterference. More sophisticated TSRs may require more
sophisticated methods. However, noninterference methods generally fall into one of
the following categories:

◆ Trapping errors

◆ Preserving an existing condition

◆ Preserving existing data

Trapping Errors
A TSR committing an error that triggers an interrupt must handle the interrupt to
trap the error. Otherwise, the existing interrupt routine, which belongs to the
underlying process, would attempt to service an error the underlying process did not
commit.

For example, a TSR that accepts keyboard input should include handlers for
Interrupts 23h and 1Bh to trap keyboard break signals. When MS-DOS detects
CTRL+C from the keyboard or input stream, it transfers control to Interrupt 23h
(CTRL+C Handler). Similarly, the BIOS keyboard routine calls Interrupt 1Bh
(CTRL+BREAK Handler) when it detects a CTRL+BREAK key combination. Both
routines normally terminate the current process.

A TSR that calls MS-DOS should also trap critical errors through Interrupt 24h
(Critical Error Handler). MS-DOS functions call Interrupt 24h when they encounter
certain hardware errors. The TSR must not allow the existing interrupt routine to
service the error, since the routine might allow the user to abort service and return
control to MS-DOS. This would terminate both the TSR and the underlying

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 288 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 288

Chapter 11 Writing Memory-Resident Software 289

process. By handling Interrupt 24h, the TSR retains control if a critical error
occurs.

An error-trapping handler differs in two ways from a TSR’s other handlers:

1. It is temporary, in service only while the TSR executes. At startup, the TSR
copies the handler’s address to the interrupt vector table; it then restores the
original vector before returning.

2. It provides complete service for the interrupt; it does not pass control on to the
original routine.

Error-trapping handlers often set a flag to let the TSR know the error has occurred.
For example, a handler for Interrupt 1Bh might set a flag when the user presses
CTRL+BREAK. The TSR can check the flag as it polls for keyboard input, as shown
here:

BrkHandler PROC FAR ; Handler for Interrupt 1Bh

 .

 .

 .

 mov cs:BreakFlag, TRUE ; Raise break flag

 iret ; Terminate interrupt

BrkHandler ENDP

 .

 .

 .

 mov BreakFlag, FALSE ; Initialize break flag

poll: .

 .

 .

 cmp BreakFlag, TRUE ; Keyboard break pressed?

 je exit ; If so, break polling loop

 mov ah, 1

 int 16h ; Key waiting?

 jnz poll ; If not, repeat polling loop

Preserving an Existing Condition
A TSR and its interrupt handlers must preserve register values so that all registers
are returned intact to the interrupted process. This is usually done by pushing the
registers onto the stack before changing them, then popping the original values
before returning.

Setting up a new stack is another important safeguard against interference. A TSR
should usually provide its own stack to avoid the possibility of overrunning the
current stack. Exceptions to this rule are simple TSRs such as the sample program
ALARM that make minimal stack demands.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 289 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 289

290 Programmer’s Guide

A TSR that alters the video configuration should return the configuration to its
original state upon return. Video configuration includes cursor position, cursor
shape, and video mode. The services provided through Interrupt 10h enable a TSR
to determine the existing configuration and alter it if necessary.

However, some applications set video parameters by directly programming the
video controller. When this happens, BIOS remains unaware of the new
configuration and consequently returns inaccurate information to the TSR.
Unfortunately, there is no solution to this problem if the controller’s data registers
provide write-only access and thus cannot be queried directly. For more information
on video controllers, refer to Richard Wilton, Programmer’s Guide to the PC &
PS/2 Video Systems. (See “Books for Further Reading” in the Introduction.)

Preserving Existing Data
A TSR requires its own disk transfer area (DTA) if it calls MS-DOS functions that
access the DTA. These include file control block functions and Functions 11h, 12h,
4Eh, and 4Fh. The TSR must switch to a new DTA to avoid overwriting the one
belonging to the interrupted process. On becoming active, the TSR calls Function
2Fh to obtain the address of the current DTA. The TSR stores the address and then
calls Function 1Ah to establish a new DTA. Before returning, the TSR again calls
Function 1Ah to restore the address of the original DTA.

MS-DOS versions 3.1 and later allow a TSR to preserve extended error
information. This prevents the TSR from destroying the original information if it
commits an MS-DOS error. The TSR retrieves the current extended error data by
calling MS-DOS Function 59h. It then copies registers AX, BX, CX, DX, SI, DI,
DS, and ES to an 11-word data structure in the order given. MS-DOS reserves the
last three words of the structure, which should each be set to zero. Before returning,
the TSR calls Function 5Dh with AL = 0Ah and DS:DX pointing to the data
structure. This call restores the extended error data to their original state.

Communicating Through the Multiplex Interrupt
The Multiplex interrupt (Interrupt 2Fh) provides the Microsoft-approved way for a
program to verify the presence of an installed TSR and to exchange information
with it. MS-DOS version 2.x uses Interrupt 2Fh only as an interface for the resident
print spooler utility PRINT.COM. Later MS-DOS versions standardize calling
conventions so that multiple TSRs can share the interrupt.

A TSR chains to the Multiplex interrupt by setting up a handler. The TSR’s
installation code records the Interrupt 2Fh vector and then replaces it with the
address of the new multiplex handler.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 290 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 290

Chapter 11 Writing Memory-Resident Software 291

The Multiplex Handler
A program communicates with a multiplex handler by calling Interrupt 2Fh with an
identity number in the AH register. As each handler in the chain gains control, it
compares the value in AH with its own identity number. If the handler finds that it
is not the intended recipient of the call, it passes control to the previous handler.
The process continues until control reaches the target handler. When the target
handler finishes its tasks, it returns via an IRET instruction to terminate the
interrupt.

The target handler determines its tasks from the function number in AL. Convention
reserves Function 0 as a request for installation status. A multiplex handler must
respond to Function 0 by setting AL to 0FFh, to inform the caller of the handler’s
presence in memory. The handler should also return other information to provide a
completely reliable identification. For example, it might return in ES:BX a far
pointer to the TSR’s copyright notice. This assures the caller it has located the
intended TSR and not another TSR that has already claimed the identity number in
AH.

Identity numbers range from 192 to 255, since MS-DOS reserves lesser values for
its own use. During installation, a TSR must verify the uniqueness of its number. It
must not set up a multiplex handler identified by a number already in use. A TSR
usually obtains its identity number through one of the following methods:

◆ The programmer assigns the number in the program.

◆ The user chooses the number by entering it as an argument in the command line,
placing it into an environment variable, or by altering the contents of an
initialization file.

◆ The TSR selects its own number through a process of trial and error.

The last method offers the most flexibility. It finds an identity number not currently
in use among the installed multiplex handlers and does not require intervention from
the user.

To use this method, a TSR calls Interrupt 2Fh during installation with AH = 192
and AL = 0. If the call returns AL = 0FFh, the program tests other registers to
determine if it has found a prior installation of itself. If the test fails, the program
resets AL to zero, increments AH to 193, and again calls Interrupt 2Fh. The process
repeats with incrementing values in AH until the TSR locates a prior installation of
itself — in which case it should abort with an appropriate message to the user — or
until AL returns as zero. The TSR can then use the value in AH as its identity
number and proceed with installation.

The SNAP.ASM program in this chapter demonstrates how a TSR can use this
trial-and-error method to select a unique identity number. During installation, the
program calls Interrupt 2Fh to verify that SNAP is not already installed. When
deinstalling, the program again calls Interrupt 2Fh to locate the resident TSR in

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 291 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 291

292 Programmer’s Guide

memory. SNAP’s multiplex handler services the call and returns the address of the
resident code’s program-segment prefix. The calling program can then locate the
resident code and deinstall it, as explained in “Deinstalling a TSR,” following.

Using the Multiplex Interrupt Under MS-DOS Version 2.x
A TSR can use the Multiplex interrupt under MS-DOS version 2.x, with certain
limitations. Under version 2.x, only MS-DOS’s print spooler PRINT, itself a TSR
program, provides an Interrupt 2Fh service. The Interrupt 2Fh vector remains null
until PRINT or another TSR is installed that sets up a multiplex handler.

Therefore, a TSR running under version 2.x must first check the existing Interrupt
2Fh vector before installing a multiplex handler. The TSR locates the current
Interrupt 2Fh handler through Function 35h (Get Interrupt Vector). If the function
returns a null vector, the TSR’s handler will be last in the chain of Interrupt 2Fh
handlers. The handler must terminate with an IRET instruction rather than pass
control to a nonexistent routine.

PRINT in MS-DOS version 2.x does not pass control to the previous handler. If you
intend to run PRINT under version 2.x, the program must be installed before other
TSRs that also handle Interrupt 2Fh. This places PRINT’s multiplex handler last in
the chain of handlers.

Deinstalling a TSR
A TSR should provide a means for the user to remove or “deinstall” it from
memory. Deinstallation returns occupied memory to the system, offering these
benefits:

◆ The freed memory becomes available to subsequent programs that may require
additional memory space.

◆ Deinstallation restores the system to a normal state. Thus, sensitive programs
that may be incompatible with TSRs can execute without the presence of
installed routines.

A deinstallation program must first locate the TSR in memory, usually by
requesting an address from the TSR’s multiplex handler. When it has located the
TSR, the deinstallation program should then compare addresses in the vector table
with the addresses of the TSR’s handlers. A mismatch indicates that another TSR
has chained a handler to the interrupt routine. In this case, the deinstallation
program should deny the request to deinstall. If the addresses of the TSR’s handlers
match those in the vector table, deinstallation can safely continue.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 292 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 292

Chapter 11 Writing Memory-Resident Software 293

You can deinstall the TSR with these three steps:

1. Restore to the vector table the original interrupt vectors replaced by the handler
addresses.

2. Read the segment address stored at offset 2Ch of the resident TSR’s program
segment prefix (PSP). This address points to the TSR’s “environment block,” a
list of environment variables that MS-DOS copies into memory when it loads a
program. Place the block’s address in the ES register and call MS-DOS
Function 49h (Release Memory Block) to return the block’s memory to the
operating system.

3. Place the resident PSP segment address in ES and again call Function 49h. This
call releases the block of memory occupied by the TSR’s code and data.

The example program in the next section demonstrates how to locate a resident TSR
through its multiplex handler, and deinstall it from memory.

Example of an Advanced TSR: SNAP
This section presents SNAP, a memory-resident program that demonstrates most of
the techniques discussed in this chapter. SNAP takes a snapshot of the current
screen and copies the text to a specified file. SNAP accommodates screens with
various column and line counts, such as CGA’s 40-column mode or VGA’s 50-line
mode. The program ignores graphics screens.

Once installed, SNAP occupies approximately 7.5K of memory. When it detects the
ALT+LEFT SHIFT+S key combination, SNAP displays a prompt for a file specification.
The user can type a new filename, accept the previous filename by pressing ENTER,
or cancel the request by pressing ESC.

SNAP reads text directly from the video buffer and copies it to the specified file.
The program sets the file pointer to the end of the file so that text is appended
without overwriting previous data. SNAP copies each line only to the last character,
ignoring trailing spaces. The program adds a carriage return–linefeed sequence
(0D0Ah) to the end of each line. This makes the file accessible to any text editor
that can read ASCII files.

To demonstrate how a program accesses resident data through the Multiplex
interrupt, SNAP can reset the display attribute of its prompt box. After installing
SNAP, run the main program with the /C option to change box colors:

SNAP /Cxx

The argument xx specifies the desired attribute as a two-digit hexadecimal number
— for example, 7C for red on white, or 0F for monochrome high intensity. For a list
of color and monochrome display attributes, refer to the “Tables” section of the
Reference.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 293 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 293

294 Programmer’s Guide

SNAP can deinstall itself, provided another TSR has not been loaded after it.
Deinstall SNAP by executing the main program with the /D option:

SNAP /D

If SNAP successfully deinstalls, it displays the following message:

TSR deinstalled

Building SNAP.EXE
SNAP combines four modules: SNAP.ASM, COMMON.ASM,
HANDLERS.ASM, and INSTALL.ASM. Source files are located on one of your
distribution disks. Each module stores temporary code and data in the segments
INSTALLCODE and INSTALLDATA. These segments apply only to SNAP’s
installation phase; MS-DOS recovers the memory they occupy when the program
exits through the terminate-and-stay-resident function. The following briefly
describes each module:

◆ SNAP.ASM contains the TSR’s main code and data.

◆ COMMON.ASM contains procedures used by other example programs.

◆ HANDLERS.ASM contains interrupt handler routines for Interrupts 08, 09,
10h, 13h, 15h, 28h, and 2Fh. It also provides simple error-trapping handlers for
Interrupts 1Bh, 23h, and 24h. Additional routines set up and deinstall the
handlers.

◆ INSTALL.ASM contains an exit routine that calls the terminate-and-stay-
resident function and a deinstallation routine that removes the program from
memory. The module includes error-checking services and a command-line
parser.

This building-block approach allows you to create other TSRs by replacing
SNAP.ASM and linking with the HANDLERS and INSTALL object modules. The
library of routines accommodates both keyboard-activated and time-
activated TSRs. A time-activated TSR is a program that activates at a
predetermined time of day, similar to the example program ALARM introduced
earlier in this chapter. The header comments for the Install procedure in
HANDLERS.ASM explain how to install a time-activated TSR.

You can write new TSRs in assembly language or any high-level language that
conforms to the Microsoft conventions for ordering segments. Regardless of the
language, the new code must not invoke an MS-DOS function that sets up the I/O
stack (see “Interrupting MS-DOS Functions,” earlier in this chapter). Code in
Microsoft C, for example, must not call getche or kbhit, since these functions in
turn call MS-DOS Functions 01 and 0Bh.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 294 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 294

Chapter 11 Writing Memory-Resident Software 295

Code written in a high-level language must not check for stack overflows.
Compiler-generated stack probes do not recognize the new stack setup when the
TSR executes, and therefore must be disabled. The example program BELL.C,
included on disk with the TSR library routines, demonstrates how to disable stack
checking in Microsoft C using the check_stack pragma.

Outline of SNAP
The following sections outline in detail how SNAP works. Each part of the outline
covers a specific portion of SNAP’s code. Headings refer to earlier sections of this
chapter, providing cross-references to SNAP’s key procedures. For example, the
part of the outline that describes how SNAP searches for its startup signal refers to
the section “Auditing Hardware Events for TSR Requests,” earlier in this chapter.

Figures 11.2 through 11.4 are flowcharts of the SNAP program. Each chart
illustrates a separate phase of SNAP’s operation, from installation through
memory-residency to deinstallation.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 295 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 295

296 Programmer’s Guide

Begin
Program entry point

Install
Set up TSR's interrupt handlers

GetVersion
Determine DOS version

CallMultiplex
Locate and call multiplex handler

GetDosFlags
Get addresses of InDos and
Critical Error flags

FatalError

KeepTsr
Terminate through Function 31h to
make program memory resident

· Call Install

 If error, call FatalError

· Call KeepTsr

· Call GetVersion

· Display error message
· Terminate through Function 4Ch

 If not version 2.0 or higher,
 return with error code

· Call CallMultiplex

· Call GetDosFlags

· Replace interrupt vectors with
 addresses of following handlers:
 Clock
 Video
 DiskIO
 Idle
 Multiplex
 Keybrd
 SkipMiscServ
 KeybrdMonitor
 MiscServ
· Return

- Interrupt 08h
- Interrupt 10h
- Interrupt 13h
- Interrupt 28h
- Interrupt 2Fh
- Interrupt 09h (non-PS/2)
- Interrupt 15h (non-PS/2)

 - Interrupt 09h (PS/2)
 - Interrupt 15h (PS/2)

 If TSR already installed,
 return with error code

Figure 11.2 Flowchart for SNAP.EXE: Installation Phase

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 296 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 296

Chapter 11 Writing Memory-Resident Software 297

Multiplex
Interrupt 2Fh handler (multiplex)

· set ES = code segment (function 0)
· set ES = PSP segment (function 1)

KeybrdMonitor
Interrupt 09 handler
(keyboard) for PS/2
· Set intKeybrd.Flag = TRUE

· Set intVideo.Flag = TRUE

· Set intDiskIO.Flag = TRUE

· Call original 09 handler

· Call original 10h handler

· Call original 13h handler

· Set intKeybrd.Flag = FALSE

· Set intVideo.Flag = FALSE

· Set intDiskIO.Flag = FALSE

· IRET

· IRET

· IRET

· IRET

Video
Interrupt 10h handler (video)

DiskIO
Interrupt 13h handler (disk)

CheckHardware
Check hardware status
· If device being serviced,
 return with carry flag set
· If intKeybrd.Flag = TRUE,
 return with carry flag set
· If intVideo.Flag = TRUE,
 return with carry flag set
· If intDiskIO.Flag = TRUE,
 return with carry flag set
· Else return with carry flag clear

Activate
Set up for far call to TSR
· Preserve stack pointer SS:SP
 and switch stacks

 CtrlBreak
 CtrlC
 CritError

- Interrupt 1Bh
- Interrupt 23h
- Interrupt 24h

· Push registers onto new stack

· Call Snap

· Replace interrupt vectors with far
 addresses of following handlers:

Snap
Begin main body of TSR
· Determine video configuration
· Display screen box and
 prompt for file name
· Open or create specified file
· Copy screen text to file
· Close file

CheckDos
Check DOS status
· If Critical Error flag > 0,
 return with carry flag set
· If InDos > 0 and Idle not active,
 return with carry flag set
· Else return with carry flag clear

· If carry flag set, return

· If carry flag set, return

· Call CheckHardware

· Call Activate

· IRET

CheckRequest
Check TSR request flag
and system status

· call CheckRequest

· If TsrRequestFlag = FALSE,
 return with carry flag set
· If TsrActiveFlag = TRUE,
 return with carry flag set
· Call CheckDos

· Restore original vectors
 for Interrupts 1Bh, 23h, and 24h
· Pop registers from stack
· Restore original stack
· Set TstRequestFlag = FALSE
· Return

· Return

· Return

Clock
Interrupt 08 handler (timer)

· Call CheckRequest
· If carry flag set, return
· Call Activate
· IRET

Keybrd
Interrupt 09 handler
(keyboard) for non-PS/2

· If hot key, set TsrRequestFlag = TRUE

· IRET

· IRET

MiscServ
Interrupt 15h handler
(Misc Systems Services) for PS/2
· If hot key, set TsrRequestFlag = TRUE

Idle
Interrupt 28h handler (DOS Idle)

· If carry flag set, return
· Call CheckRequest

· Call Activate
· IRET

Figure 11.3 Flowchart for SNAP.EXE: Resident Phase

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 297 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 297

298 Programmer’s Guide

Begin
Program entry point

Deinstall
Restore original interrupt vectors

GetVersion
Determine DOS version

CallMultiplex
Locate and call multiplex handler

FatalError

FreeTsr
Free program's allocated block

· Call Deinstall

 If error, call FatalError

· Call FreeTsr

· Exit to DOS

· Call GetVersion

· Display error message
· Terminate through Function 4Ch

 If not version 2.0 or higher,
 return with error code
· Call CallMultiplex

· Compare vectors with addresses
 of following handlers:
 Clock
 Video
 DiskIO
 Idle
 Multiplex
 Keybrd
 SkipMiscServ
 KeybrdMonitor
 MiscServ
 If any comparison fails,
 return with error code
· Restore original vectors for Interrupts
 08h, 09h, 10h, 13h, 15h, 28h and 2 Fh
· Return

- Interrupt 08h
- Interrupt 10h
- Interrupt 13h
- Interrupt 28h
- Interrupt 2Fh
- Interrupt 09h (non-PS/2)
- Interrupt 15h (non-PS/2)

 - Interrupt 09h (PS/2)
 - Interrupt 15h (PS/2)

 If TSR not installed,
 return with error code

Figure 11.4 Flowchart for SNAP.EXE: Deinstallation Phase

Refer to the flowcharts as you read the following outline. They will help you
maintain perspective while exploring the details of SNAP’s operation. Text in the
outline cross-references the charts.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 298 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 298

Chapter 11 Writing Memory-Resident Software 299

Note that information in both the outline and the flowcharts is generic. Except for
references to the SNAP procedure, all descriptions in the outline and the flowcharts
apply to any TSR created with the HANDLERS and INSTALL modules.

Auditing Hardware Events for TSR Requests
To search for its startup signal, SNAP audits the keyboard with an interrupt handler
for either Interrupt 09 (keyboard) or Interrupt 15h (Miscellaneous System
Services). The Install procedure determines which of the two interrupts to
handle based on the following code:

 .IF HotScan == 0 ; If valid scan code given:

 mov ah, HotShift ; AH = hour to activate

 mov al, HotMask ; AL = minute to activate

 call GetTimeToElapse ; Get number of 5-second intervals

 mov CountDown, ax ; to elapse before activation

 .ELSE ; Force use of KeybrdMonitor as

 ; keyboard handler

 cmp Version, 031Eh ; DOS Version 3.3 or higher?

 jb setup ; No? Skip next step

; Test for IBM PS/2 series. If not PS/2, use Keybrd and

; SkipMiscServ as handlers for Interrupts 09 and 15h

; respectively. If PS/2 system, set up KeybrdMonitor as the

; Interrupt 09 handler. Audit keystrokes with MiscServ

; handler, which searches for the hot key by handling calls

; to Interrupt 15h (Miscellaneous System Services). Refer to

; Section 11.2.1 for more information about keyboard handlers.

 mov ax, 0C00h ; Function 0Ch (Get System

 int 15h ; Configuration Parameters)

 sti ; Compaq ROM may leave disabled

 jc setup ; If carry set,

 or ah, ah ; or if AH not 0,

 jnz setup ; services are not supported

; Test bit 4 to see if Intercept is implemented

 test BYTE PTR es:[bx+5], 00010000y

 jz setup

; If so, set up MiscServ as Interrupt 15h handler

 mov ax, OFFSET MiscServ

 mov WORD PTR intMisc.NewHand, ax

 .ENDIF

; Set up KeybrdMonitor as Interrupt 09 handler

 mov ax, OFFSET KeybrdMonitor

 mov WORD PTR intKeybrd.NewHand, ax

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 299 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 299

300 Programmer’s Guide

The following describes the code’s logic:

◆ If the program is running under MS-DOS version 3.3 or higher and if Interrupt
15h supports Function 4Fh, set up handler MiscServ to search for the hot key.
Handle Interrupt 09 with KeybrdMonitor only to maintain the keyboard active
flag.

◆ Otherwise, set up a handler for Interrupt 09 to search for the hot key. Handle
calls to Interrupt 15h with the routine SkipMiscServ, which contains this
single instruction:

jmp cs:intMisc.OldHand

The jump immediately passes control to the original Interrupt 15h routine; thus,
SkipMiscServ has no effect. It serves only to simplify coding in other parts of
the program.

At each keystroke, the keyboard interrupt handler (either Keybrd or
MiscServ) calls the procedure CheckHotKey with the scan code of the current
key. CheckHotKey compares the scan code and shift status with the bytes
HotScan and HotShift. If the current key matches, CheckHotKey returns the
carry flag clear to indicate that the user has pressed the hot key.

If the keyboard handler finds the carry flag clear, it sets the flag
TsrRequestFlag and exits. Otherwise, the handler transfers control to the
original interrupt routine to service the interrupt.

The timer handler Clock reads the request flag at every occurrence of the timer
interrupt. Clock takes no action if it finds a zero value in TsrRequestFlag.
Figures 11.1 and 11.3 depict the relationship between the keyboard and timer
handlers.

Monitoring System Status
Because SNAP produces output to both video and disk, it avoids interrupting either
video or disk operations. The program uses interrupt handlers Video and DiskIO
to monitor Interrupts 10h (video) and 13h (disk). SNAP also avoids interrupting
keyboard use. The instructions at the far label KeybrdMonitor serve as the
monitor handler for Interrupt 09 (keyboard).

The three handlers perform similar functions. Each sets an active flag and then calls
the original routine to service the interrupt. When the service routine returns, the
handler clears the active flag to indicate that the device is no longer in use.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 300 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 300

Chapter 11 Writing Memory-Resident Software 301

The BIOS Interrupt 13h routine clears or sets the carry flag to indicate the
operation’s success or failure. DiskIO therefore preserves the flags register when
returning, as shown here:

DiskIO PROC FAR

 mov cs:intDiskIO.Flag, TRUE ; Set active flag

; Simulate interrupt by pushing flags and far-calling old

; Int 13h routine

 pushf

 call cs:intDiskIO.OldHand

; Clear active flag without disturbing flags register

 mov cs:intDiskIO.Flag, FALSE

 sti ; Enable interrupts

; Simulate IRET without popping flags (since services use

; carry flag)

 ret 2

DiskIO ENDP

The terminating RET 2 instruction discards the original flags from the stack when
the handler returns.

Determining Whether to Invoke the TSR
The procedure CheckRequest determines whether the TSR:

◆ Has been requested.

◆ Can safely interrupt the system.

Each time it executes, the timer handler Clock calls CheckRequest to read the
flag TsrRequestFlag. If CheckRequest finds the flag set, it scans other flags
maintained by the TSR’s interrupt handlers and by MS-DOS. These flags indicate
the current system status. As the flowchart in Figure 11.3 shows, CheckRequest
calls CheckDos (described following) to determine the status of the operating
system. CheckRequest then calls CheckHardware to check hardware status.

CheckHardware queries the interrupt controller to determine if any device is
currently being serviced. It also reads the active flags maintained by the
KeybrdMonitor, Video, and DiskIO handlers. If the controller, keyboard, video,
and disk are all inactive, CheckHardware clears the carry flag and returns.

CheckRequest indicates system status with the carry flag. If the procedure returns
the carry flag set, the caller exits without invoking the TSR. A clear carry signals
that the caller can safely execute the TSR.

Determining MS-DOS Activity
As Figure 11.2 shows, the procedure GetDosFlags locates the InDos flag during
SNAP’s installation phase. GetDosFlags calls Function 34h (Get Address of
InDos Flag) and then stores the flag’s address in the far pointer InDosAddr.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 301 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 301

302 Programmer’s Guide

When called from the CheckRequest procedure, CheckDos reads InDos to
determine whether the operating system is active. Note that CheckDos reads the
flag directly from the address in InDosAddr. It does not call Function 34h to locate
the flag, since it has not yet established whether MS-DOS is active. This follows
from the general rule that interrupt handlers must not call any MS-DOS function.

The next two sections more fully describe the procedure CheckDos.

Interrupting MS-DOS Functions
Figure 11.3 shows that the call to CheckDos can initiate either from Clock (timer
handler) or Idle (Interrupt 28h handler). If CheckDos finds the InDos flag set, it
reacts in different ways, depending on the caller:

◆ If called from Clock, CheckDos cannot know which MS-DOS function is
active. In this case, it returns the carry flag set, indicating that Clock must deny
the request for the TSR.

◆ If called from Idle, CheckDos assumes that one of the low-order polling
functions is active. It therefore clears the carry flag to let the caller know the
TSR can safely interrupt the function.

For more information on this topic, see the section “Interrupting MS-DOS
Functions,” earlier in this chapter.

Monitoring the Critical Error Flag
The procedure GetDosFlags (Figure 11.2) determines the address of the Critical
Error flag. The procedure stores the flag’s address in the far pointer
CritErrAddr.

When called from either the Clock or Idle handlers, CheckDos reads the Critical
Error flag. A nonzero value in the flag indicates that the Critical Error Handler
(Interrupt 24h) is processing a critical error and the TSR must not interrupt. In this
case, CheckDos sets the carry flag and returns, causing the caller to exit without
executing the TSR.

Trapping Errors
As Figure 11.3 shows, Clock and Idle invoke the TSR by calling the procedure
Activate. Before calling the main body of the TSR, Activate sets up the
following handlers:

Handler Name For Interrupt Receives Control When

CtrlBreak 1Bh (CTRL+BREAK Handler) CTRL+BREAK sequence entered at
keyboard

CtrlC 23h (CTRL+C Handler) MS-DOS detects a CTRL+C sequence
from the keyboard or input stream

CritError 24h (Critical Error Handler) MS-DOS encounters a critical error

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 302 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 302

Chapter 11 Writing Memory-Resident Software 303

These handlers trap keyboard break signals and critical errors that would otherwise
trigger the original handler routines. The CtrlBreak and CtrlC handlers contain
a single IRET instruction, thus rendering a keyboard break ineffective. The
CritError handler contains the following instructions:

CritError PROC FAR

 sti

 sub al, al ; Assume DOS 2.x

 ; Set AL = 0 for ignore error

 .IF cs:major != 2 ; If DOS 3.x, set AL = 3

 mov al, 3 ; DOS call fails

 .ENDIF

 iret

CritError ENDP

The return code in AL stops MS-DOS from taking further action when it encounters
a critical error.

As an added precaution, Activate also calls Function 33h (Get or Set
CTRL+BREAK Flag) to determine the current setting of the checking flag.
Activate stores the setting, then calls Function 33h again to turn off break
checking.

When the TSR’s main procedure finishes its work, it returns to Activate, which
restores the original setting for the checking flag. It also replaces the original
vectors for Interrupts 1Bh, 23h, and 24h.

SNAP’s error-trapping safeguards enable the TSR to retain control in the event of
an error. Pressing CTRL+BREAK or CTRL+C at SNAP’s prompt has no effect. If the
user specifies a nonexistent drive — a critical error — SNAP merely beeps the
speaker and returns normally.

Preserving an Existing Condition
Activate records the stack pointer SS:SP in the doubleword OldStackAddr.
The procedure then resets the pointer to the address of a new stack before calling
the TSR. Switching stacks ensures that SNAP has adequate stack depth while it
executes.

The label NewStack points to the top of the new stack buffer, located in the code
segment of the HANDLERS.ASM module. The equate constant STACK_SIZ
determines the size of the stack. The include file TSR.INC contains the declaration
for STACK_SIZ.

Activate preserves the values in all registers by pushing them onto the new stack.
It does not push DS, since that register is already preserved in the Clock or Idle
handler.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 303 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 303

304 Programmer’s Guide

SNAP does not alter the application’s video configuration other than by moving the
cursor. Figure 11.3 shows that Activate calls the procedure Snap, which
executes Interrupt 10h to determine the current cursor position. Snap stores the row
and column in the word OldPos. The procedure restores the cursor to its original
location before returning to Activate.

Preserving Existing Data
Because SNAP does not call an MS-DOS function that writes to the DTA, it does
not need to preserve the DTA belonging to the interrupted process. However, the
code for switching and restoring the DTA is included within IFDEF blocks in the
procedure Activate. The equate constant DTA_SIZ, declared in the TSR.INC file,
governs the assembly of the blocks as well as the size of the new DTA.

It is possible for SNAP to overwrite existing extended error information by
committing a file error. The program does not attempt to preserve the original
information by calling Functions 59h and 5Dh. In certain rare instances, this may
confuse the interrupted process after SNAP returns.

Communicating Through the Multiplex Interrupt
The program uses the Multiplex interrupt (Interrupt 2Fh) to

◆ Verify that SNAP is installed.

◆ Select a unique multiplex identity number.

◆ Locate resident data.

For more information about Interrupt 2Fh, see the section “Communicating through
the Multiplex Interrupt,” earlier in this chapter.

SNAP accesses Interrupt 2Fh through the procedure CallMultiplex, as shown in
Figures 11.2 and 11.4. By searching for a prior installation, CallMultiplex
ensures that SNAP is not installed more than once. During deinstallation,
CallMultiplex locates data required to deinstall the resident TSR.

The procedure Multiplex serves as SNAP’s multiplex handler. When it
recognizes its identity number in AH, Multiplex determines its tasks from the
function number in the AL register. The handler responds to Function 0 by returning
AL equalling 0FFh and ES:DI pointing to an identifier string unique to SNAP.

CallMultiplex searches for the handler by invoking Interrupt 2Fh in a loop,
beginning with a trial identity number of 192 in AH. At the start of each iteration of
the loop, the procedure sets AL to zero to request presence verification from the
multiplex handler. If the handler returns 0FFh in AL, CallMultiplex compares
its copy of SNAP’s identifier string with the text at memory location ES:DI. A
failed match indicates that the multiplex handler servicing the call is not SNAP’s
handler. In this case, CallMultiplex increments AH and cycles back to the
beginning of the loop.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 304 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 304

Chapter 11 Writing Memory-Resident Software 305

The process repeats until the call to Interrupt 2Fh returns a matching identifier
string at ES:DI, or until AL returns as zero. A matching string verifies that SNAP is
installed, since its multiplex handler has serviced the call. A return value of zero
indicates that SNAP is not installed and that no multiplex handler claims the trial
identity number in AH. In this case, SNAP assigns the number to its own handler.

Deinstalling a TSR
During deinstallation, CallMultiplex locates SNAP’s multiplex handler as
described previously. The handler Multiplex receives the verification request and
returns in ES the code segment of the resident program.

Deinstall reads the addresses of the following interrupt handlers from the data
structure in the resident code segment:

Handler Name Description

Clock Timer handler

Keybrd Keyboard handler (non-PS/2)

KeybrdMonitor Keyboard monitor handler (PS/2)

Video Video monitor handler

DiskIO Disk monitor handler

SkipMiscServ Miscellaneous Systems Services handler (non-PS/2)

MiscServ Miscellaneous Systems Services handler (PS/2)

Idle MS-DOS Idle handler

Multiplex Multiplex handler

Deinstall calls MS-DOS Function 35h (Get Interrupt Vector) to retrieve the
current vectors for each of the listed interrupts. By comparing each handler address
with the corresponding vector, Deinstall ensures that SNAP can be safely
deinstalled. Failure in any of the comparisons indicates that another TSR has been
installed after SNAP and has set up a handler for the same interrupt. In this case,
Deinstall returns an error code, stopping the program with the following
message:

Can’t deinstall TSR

If all addresses match, Deinstall calls Interrupt 2Fh with SNAP’s identity
number in AH and AL set to 1. The handler Multiplex responds by returning in
ES the address of the resident code’s PSP. Deinstall then calls MS-DOS
Function 25h (Set Interrupt Vector) to restore the vectors for the original service
routines. This is called “unhooking” or “unchaining” the interrupt handlers.

After unhooking all of SNAP’s interrupt handlers, Deinstall returns with AX
pointing to the resident code’s PSP. The procedure FreeTsr then calls MS-DOS

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 305 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 305

306 Programmer’s Guide

Function 49h (Release Memory) to return SNAP’s memory to the operating system.
The program ends with the message

TSR deinstalled

to indicate a successful deinstallation.

Deinstalling SNAP does not guarantee more available memory space for the next
program. If another TSR loads after SNAP but handles interrupts other than 08, 09,
10h, 13h, 15h, 28h, or 2Fh, SNAP still deinstalls properly. The result is a harmless
gap of deallocated memory formerly occupied by SNAP. MS-DOS can use the free
memory to store the next program’s environment block. However, MS-DOS loads
the program itself above the still-resident TSR.

Filename: LMAPGC11.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 66 Page: 306 of 34 Printed: 03/06/94 06:03 PM
Printed On: Distiller Colorlayer: ? Document Page: 306

307

C H A P T E R 1 2

Mixed-Language Programming

Mixed-language programming allows you to combine the unique strengths of
Microsoft Basic, C, C++, and FORTRAN with your assembly-language routines.
Any one of these languages can call MASM routines, and you can call any of these
languages from within your assembly-language programs. This makes virtually all
the routines from high-level–language libraries available to a mixed-language
program.

MASM 6.1 provides mixed-language features similar to those in high-level
languages. For example, you can use the INVOKE directive to call high-level-
language procedures, and the assembler handles the argument-passing details for
you. You can also use H2INC to translate C header files to MASM include files, as
explained in Chapter 20 of Environment and Tools.

The mixed-language features of MASM 6.1 do not make older methods of defining
mixed-language interfaces obsolete. In most cases, mixed-language programs
written with earlier versions of MASM will assemble and link correctly under
MASM 6.1. (For more information, see Appendix A.)

This chapter explains how to write assembly routines that can be called from high-
level–language modules and how to call high-level language routines from MASM.
You should already understand the languages you want to combine and should
know how to write, compile, and link multiple-module programs with these
languages.

This chapter covers only assembly-language interface with C, C++, Basic, and
FORTRAN; it does not cover mixed-language programming between high-level
languages. The focus here is the Microsoft versions of C, C++, Basic, and
FORTRAN, but the same principles apply to other languages and compilers. Many
of the techniques used in this chapter are explained in the material in Chapter 7 on
writing procedures in assembly language, and in Chapter 8 on multiple-module
programming.

The first section of this chapter discusses naming and calling conventions. The next
section, “Writing an Assembly Procedure for a Mixed-Language Program,”
provides a template for writing an assembly-language procedure that can be called

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 307 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 307

308 Programmer’s Guide

from another module written in a high-level language. This represents the essence
of mixed-language programming. Assembly language is often used for creating fast
secondary routines in a large program written in a high-level language.

The third section describes specific conventions for linking assembly-language
procedures with modules in C, C++, Basic, and FORTRAN. These language-
specific sections also provide details on how the language manages various data
structures so that your MASM programs are compatible with the data from the
high-level language.

Naming and Calling Conventions
Each language has its own set of conventions, which fall into two categories:

◆ The “naming convention” specifies how or if the compiler or assembler alters
the name of an identifier before placing it into an object file.

◆ The “calling convention” determines how a language implements a call to a
procedure and how the procedure returns to the caller.

MASM supports several different conventions. The assembler uses C convention
when you specify a language type (langtype) of C, and Pascal convention for
language types PASCAL, BASIC, or FORTRAN. To the assembler, the
keywords BASIC, PASCAL, and FORTRAN are synonymous. MASM also
supports the SYSCALL and STDCALL conventions, which mix elements of the C
and Pascal conventions.

MASM gives you several ways to set the naming and calling conventions in your
assembly-language program. Using .MODEL with a langtype sets the default for
the module. This can also be done with the OPTION directive. This is equivalent to
the /Gc or /Gd option from the command line. Procedure prototypes and
declarations can specify a langtype to override the default.

When you write mixed-language routines, the easiest way to ensure convention
compatibility is to adopt the conventions of the called procedure’s language.
However, Microsoft languages can change the naming and calling conventions for
different procedures. If your program must call a procedure that uses an argument-
passing method different from that of the default language, prototype the procedure
first with the desired language type. This tells the assembler to override the
conventions of the default language and assume the proper conventions for the
prototyped procedure. “The MASM/High-Level–Language Interface” section in
this chapter explains how to change the default conventions. The following sections
provide more detail on the information summarized in Table 12.1.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 308 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 308

Chapter 12 Mixed-Language Programming 309

Table 12.1 Naming and Calling Conventions

Convention C SYSCALL STDCALL BASIC FORTRAN PASCAL

Leading
underscore

X X

Capitalize all X X X

Arguments
pushed left to
right

X X X

Arguments
pushed right
to left

X X X

Caller stack
cleanup

X X *

:VARARG
allowed

X X X

 * The STDCALL language type uses caller stack cleanup if the :VARARG parameter is used. Otherwise, the called routine must
clean up the stack.

Naming Conventions
“Naming convention” refers to the way a compiler or assembler stores the names
of identifiers. The first two rows of Table 12.1 show how each language type
affects symbol names. SYSCALL leaves symbol names as they appear in the
source code, but C and STDCALL add an underscore prefix. PASCAL, BASIC,
and FORTRAN change symbols to all uppercase.

The following list describes how these naming conventions affect a variable called
Big Time in your source code:

Langtype Specified Characteristics

SYSCALL Leaves the name unmodified. The linker sees the variable as
Big Time.

C, STDCALL The assembler (or compiler) adds a leading underscore to
the name, but does not change case. The linker sees the
variable as _Big Time.

PASCAL, FORTRAN,
BASIC

Converts all names to uppercase. The linker sees the
variable as Big Time.

The C Calling Convention
Specify the C language type for assembly-language procedures called from
programs that assume the C calling convention. Note that such programs are not
necessarily written in C, since other languages can mimic C conventions.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 309 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 309

310 Programmer’s Guide

Argument Passing
With the C calling convention, the caller pushes arguments from right to left as they
appear in the caller’s argument list. The called procedure returns without removing
the arguments from the stack. It is the caller’s responsibility to clean the stack after
the call, either by popping the arguments or by adding an appropriate value to the
stack pointer SP.

Register Preservation
The called routine must return with the original values in BP, SI, DI, DS, and SS. It
must also preserve the direction flag.

Varying Number of Arguments
The additional overhead of cleaning the stack after each call has compensations. It
frees the caller from having to pass a set number of arguments to the called
procedure each time. Because the first argument in the list is always the last one
pushed, it is always on the top of the stack. Thus, it has the same address relative to
the frame pointer, regardless of how many arguments were actually passed.

For example, consider the C library function printf, which accepts different
numbers of arguments. A C program calls the function like this:

printf("Numbers: %f %f %.2f\n", n1, n2, n3);

printf("Also: %f", n4);

The first line passes four arguments (including the string in quotes) and the second
line passes only two arguments. Notice that printf has no reliable way of
determining how many arguments the caller has pushed. Therefore, the function
returns without adjusting the stack. The C calling convention requires the caller to
take responsibility for removing the arguments from the stack, since only the caller
knows how many arguments it passed.

Use INVOKE to call a C-callable function from your assembly-language program,
since INVOKE automatically generates the necessary stack-cleaning code after the
call. You must also prototype the function with the VARARG keyword if
appropriate, as explained in “Procedures,” Chapter 7. Similarly, when you write a
C-callable procedure that accepts a varying number of arguments, include
VARARG in the procedure’s PROC statement.

The Pascal Calling Convention
By default, the langtype for FORTRAN, BASIC, and PASCAL selects the Pascal
calling convention. This convention pushes arguments left to right so that the last
argument is lowest on the stack, and it requires that the called routine remove
arguments from the stack.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 310 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 310

Chapter 12 Mixed-Language Programming 311

Argument Passing
Arguments are placed on the stack in the same order in which they appear in the
source code. The first argument is highest in memory (because it is also the first
argument to be placed on the stack), and the stack grows downward.

Register Preservation
A routine that uses the Pascal calling convention must preserve SI, DI, BP, DS, and
SS. For 32-bit code, the EBX, ES, FS, and GS registers must be preserved as well
as EBP, ESI, and EDI. The direction flag is also cleared upon entry and must be
preserved.

Varying Number of Arguments
Passing a variable number of arguments is not possible with the Pascal calling
convention.

The STDCALL and SYSCALL Calling Conventions
A STDCALL procedure adopts the C name and calling conventions when
prototyped with the VARARG keyword. Refer to the section “Declaring
Parameters with the PROC Directive” in Chapter 7. Without VARARG, the
procedure uses the C naming and Pascal calling conventions. STDCALL provides
compatibility with 32-bit versions of Microsoft compilers.

As Table 12.1 shows, SYSCALL is identical to the C calling convention, but does
not add an underscore prefix to symbols.

Argument Passing
Argument passing order for both STDCALL and SYSCALL is the same as the C
calling convention. The caller pushes the arguments from right to left and must
remove the parameters from the stack after the call. However, STDCALL requires
the called procedure to clean the stack if the procedure does not accept a variable
number of arguments.

Register Preservation
Both conventions require the called procedure to preserve the registers BP, SI, DI,
DS, and SS. Under STDCALL, the direction flag is clear on entry and must be
returned clear.

Varying Number of Arguments
SYSCALL allows a variable number of arguments in the same way as the C
calling convention. STDCALL also mimics the C convention when VARARG
appears in the called procedure’s declaration or definition. It allows a varying
number of arguments and requires the caller to clean the stack. If not declared or

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 311 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 311

312 Programmer’s Guide

defined with VARARG, the called procedure does not accept a variable argument
list and must clean the stack before it returns.

Writing an Assembly Procedure
For a Mixed-Language Program

MASM 6.1 simplifies the coding required for linking MASM routines to high-
level– language routines. You can use the PROTO directive to write procedure
prototypes, and the INVOKE directive to call external routines. MASM simplifies
procedure-related tasks in the following ways:

◆ The PROTO directive improves error checking on argument types.

◆ INVOKE pushes arguments onto the stack and converts argument types to types
expected when possible. These arguments can be referenced by their parameter
label, rather than as offsets of the stack pointer.

◆ The LOCAL directive following the PROC statement saves places on the stack
for local variables. These variables can also be referenced by name, rather than
as offsets of the stack pointer.

◆ PROC sets up the appropriate stack frame according to the processor mode.

◆ The USES keyword preserves registers given as arguments.

◆ The C calling conventions specified in the PROC syntax allow for a variable
number of arguments to be passed to the procedure.

◆ The RET keyword adjusts the stack upward by the number of bytes in the
argument list, removes local variables from the stack, and pops saved registers.

◆ The PROC statement lists parameter names and types. The parameters can be
referenced by name inside the procedure.

The complete syntax and parameter descriptions for these procedure directives are
explained in “Procedures” in Chapter 7. This section provides a template that you
can use for writing a MASM routine to be called from a high-level language.

The template looks like this:

Label PROC [[distance langtype visibility <prologueargs> USES reglist
parmlist]]

LOCAL varlist
.
.
.
RET

Label ENDP

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 312 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 312

Chapter 12 Mixed-Language Programming 313

Replace the italicized words with appropriate keywords, registers, or variables as
defined by the syntax in “Declaring Parameters with the PROC Directive” in
Chapter 7.

The distance (NEAR or FAR) and visibility (PUBLIC, PRIVATE, or EXPORT)
that you give in the procedure declaration override the current defaults. In some
languages, the model can also be specified with command-line options.

The langtype determines the calling convention for accessing arguments and
restoring the stack. For information on calling conventions, see “Naming and
Calling Conventions” earlier in this chapter.

The types for the parameters listed in the parmlist must be given. Also, if any of the
parameters are pointers, the assembler does not generate code to get the value of the
pointer references. You must write this code yourself. An example of how to write
such code is provided in “Declaring Parameters with the PROC Directive” in
Chapter 7.

If you need to code your own stack-frame setup manually, or if you do not want the
assembler to generate the standard stack setup and cleanup, see “Passing
Arguments on the Stack” and “User-Defined Prologue and Epilogue Code” in
Chapter 7.

The MASM/High-Level–Language Interface
Since high-level–language programs require initialization, you must write the main
routine of a mixed-language program in the high-level language, or link with the
startup code supplied by the high-level–language compiler. This gives the assembly
code access to high-level routines or library functions. The next section explains
how to link an assembly-language program with C-language startup code.

For procedures with prototypes, INVOKE makes calls from MASM to high-level–
language programs, much like procedure or function calls in the high-level
language. INVOKE calls procedures and generates the code to push arguments in
the order specified by the procedure’s calling convention, and to remove arguments
from the stack at the end of the procedure.

INVOKE can also do type checking and data conversion for the argument types so
that the procedure receives compatible data. For explanations of how to write
procedure prototypes and several examples of procedure declarations and the
corresponding prototypes, see “Declaring Procedure Prototypes” in Chapter 7.

For programs that mix assembly language and C, the H2INC utility makes it easy to
write prototypes and data declarations for the C procedures you want to call from
MASM. H2INC translates the C prototypes and declarations into the corresponding
MASM prototypes and declarations, which INVOKE can use to call the procedure.
The use of H2INC is explained in Chapter 20 in Environment and Tools.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 313 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 313

314 Programmer’s Guide

Mixed-language programming also allows the main program or a routine to use
external data — data defined in the other module. External data is the data that is
stored in a set place in memory (unlike dynamic and local data, which is allocated
on the stack and heap) and is visible to other modules.

External data is shared by all routines. One of the modules must define the static
data, which causes the compiler to allocate storage for the data. The other modules
that access the data must declare the data as external.

Argument Passing
Each language has its own convention for how an argument is actually passed. If
the argument-passing conventions of your routines do not agree, then a called
routine receives bad data. Microsoft languages support three different methods for
passing an argument:

◆ Near reference. Passes a variable’s near (offset) address, expressed as an offset
from the default data segment. This method gives the called routine direct access
to the variable itself. Any change the routine makes to the parameter is reflected
in the calling routine.

◆ Far reference. Passes a variable’s far (segmented) address. Though slower than
passing a near reference, this method is necessary for passing data that lies
outside the default data segment. (This is not an issue in Basic unless you have
specifically requested far memory.)

◆ Value. Passes only a copy of the variable, not its address. With this method, the
called routine gets a copy of the argument on the stack, but has no access to the
original variable. The copy is discarded when the routine returns, and the
variable retains its original value.

When you pass arguments between routines written in different languages, you
must ensure that the caller and the called routine use the same conventions for
passing and receiving arguments. In most cases, you should check the argument-
passing defaults used by each language and make any necessary adjustments. Most
languages have features that allow you to change argument-passing methods.

Register Preservation
A procedure called from any high-level language should preserve the direction flag
and the values of BP, SI, DI, SS, and DS. Routines called from MASM must not
alter SI, DI, SS, DS, or BP.

Pushing Addresses
Microsoft high-level languages push segment addresses before offsets. This lets the
called routine use the LES and LDS instructions to read far addresses from the
stack. Furthermore, each word of an argument is placed on the stack in order of
significance. Thus, the high word of a long integer is pushed first, followed by the
low word.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 314 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 314

Chapter 12 Mixed-Language Programming 315

Array Storage
Most high-level-language compilers store arrays in row-major order. This means
that all elements of a row are stored consecutively. The first five elements of an
array with four rows and three columns are stored in row-major order as

A[1, 1], A[1, 2], A[1, 3], A[2, 1], A[2, 2]

In column-major order, the column elements are stored consecutively. For example,
this same array would be stored in column-major order as

A[1, 1], A[2, 1], A[3, 1], A[4, 1], A[1, 2], A[2, 2]

The C/MASM Interface
This section summarizes the characteristics of the interface between MASM and
Microsoft C and QuickC compilers. With the default naming and calling
convention, the assembler (or compiler) pushes arguments right to left and adds a
leading underscore to routine names.

Compatible Data Types
This list shows the 16-bit C data types and equivalent data types in MASM 6.1. For
32-bit C compilers, int and unsigned int are equivalent to the MASM types
SDWORD and DWORD, respectively.

C Type Equivalent MASM Type

unsigned char BYTE

char SBYTE

unsigned short, unsigned int WORD

int, short SWORD

unsigned long DWORD

long SDWORD

float REAL4

double REAL8

long double REAL10

Naming Restrictions
C is case-sensitive and does not convert names to uppercase. Since C normally links
with the /NOI command-line option, you should assemble MASM modules with the
/Cx or /Cp option to prevent the assembler from converting names to uppercase.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 315 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 315

316 Programmer’s Guide

Argument-Passing Defaults
C always passes arrays by reference and all other variables (including structures)
by value. C programs in tiny, small, and medium model pass near addresses for
arrays, unless another distance is specified. Compact-, large-, and huge-model
programs pass far addresses by default. To pass by reference a variable type other
than array, use the C-language address-of operator (&).

If you need to pass an array by value, declare the array as a structure member and
pass a copy of the entire structure. However, this practice is rarely necessary and
usually impractical except for very small arrays, since it can make substantial
demands on stack space. If your program must maintain an array through a
procedure call, create a temporary copy of the array in heap and provide the copy to
the procedure by reference.

Changing the Calling Convention
Put _pascal or _fortran in the C function declaration to specify the Pascal calling
convention.

Array Storage
Array declarations give the number of elements. A1[a][b] declares a two-
dimensional array in C with a rows and b columns. By default, the array’s lower
bound is zero. Arrays are stored by the compiler in row-major order. By default,
passing arrays from C passes a pointer to the first element of the array.

String Format
C stores strings as arrays of bytes and uses a null character as the end-of-string
delimiter. For example, consider the string declared as follows:

char msg[] = "string of text"

The string occupies 15 bytes of memory as:

tS r i n g o f t e x t \0

Figure 12.1 C String Format

Since msg is an array of characters, it is passed by reference.

External Data
In C, the extern keyword tells the compiler that the data or function is external.
You can define a static data object in a C module by defining a data object outside
all functions and subroutines. Do not use the static keyword in C with a data object
that you want to be public.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 316 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 316

Chapter 12 Mixed-Language Programming 317

Structure Alignment
By default, C uses word alignment (unpacked storage) for all data objects longer
than 1 byte. This storage method specifies that occasional bytes may be added as
padding, so that word and doubleword objects start on an even boundary. In
addition, all nested structures and records start on a word boundary. MASM aligns
on byte boundaries by default.

When converting .H files with H2INC, you can use the /Zp command-line option to
specify structure alignment. If you do not specify the /Zp option, H2INC uses word-
alignment. Without H2INC, set the alignment to 2 when declaring the MASM
structure, compile the C module with /Zp1, or assemble the MASM module with
/Zp2.

Compiling and Linking
Use the same memory model for both C and MASM.

Returning Values
The assembler returns simple data types in registers. Table 12.2 shows the register
conventions for returning simple data types to a C program.

Table 12.2 Register Conventions for Simple Return Values

Data Type Registers

char AL

short, near, int (16-bit) AX

short, near, int (32-bit) EAX

long, far (16-bit) High-order portion (or segment address) in DX;
low-order portion (or offset address) in AX

long, far (32-bit) High-order portion (or segment address) in EDX;
low-order portion (or offset address) in EAX

Procedures using the C calling convention and returning type float or type double
store their return values into static variables. In multi-threaded programs, this could
mean that the return value may be overwritten. You can avoid this by using the
Pascal calling convention for multi-threaded programs so float or double values are
passed on the stack.

Structures less than 4 bytes long are returned in DX:AX. To return a longer
structure from a procedure that uses the C calling convention, you must copy the
structure to a global variable and then return a pointer to that variable in the AX
register (DX:AX, if you compiled in compact, large, or huge model or if the
variable is declared as a far pointer).

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 317 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 317

318 Programmer’s Guide

Structures, Records, and User-Defined Data Types
You can pass structures, records, and user-defined types as arguments by value or
by reference.

Writing Procedure Prototypes
The H2INC utility simplifies the task of writing prototypes for the C functions you
want to call from MASM. The C prototype converted by H2INC into a MASM
prototype allows INVOKE to correctly call the C function. Here are some
examples of C functions and the MASM prototypes created with H2INC.

/* Function Prototype Declarations to Convert with H2INC */

long checktypes (

 char *name,

 unsigned char a,

 int b,

 float d,

 unsigned int *num);

my_func (float fNum, unsigned int x);

extern my_func1 (char *argv[]);

struct videoconfig _far * _far pascal my_func2 (int, scri);

For these C prototypes, H2INC generates this code:

@proto_0 TYPEDEF PROTO C :PTR SBYTE, :BYTE,

 :SWORD, :REAL4, :PTR WORD

checktypes PROTO @proto_0

@proto_1 TYPEDEF PROTO C :REAL4, :WORD

my_func PROTO @proto_1

@proto_2 TYPEDEF PROTO C :PTR PTR SBYTE

my_func1 PROTO @proto_2

@proto_3 TYPEDEF PROTO FAR PASCAL :SWORD, :scri

my_func2 PROTO @proto_3

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 318 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 318

Chapter 12 Mixed-Language Programming 319

Example
As shown in the following short example, the main module (written in C) calls an
assembly routine, Power2.

#include <stdio.h>

extern int Power2(int factor, int power);

void main()

{

 printf("3 times 2 to the power of 5 is %d\n", Power2(3, 5));

}

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 319 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 319

320 Programmer’s Guide

Figure 12.2 shows how functions that observe the C calling convention use the
stack frame.

Near Function Call

Far Function Call

Parameter n (rightmost)

Parameter n (rightmost)

.

.

.

.

.

.

Parameter 1 (leftmost)

Parameter 1 (leftmost)

Return address (IP)

Return address (IP)

Return address (CS)

Saved frame pointer (BP)

Saved frame pointer (BP)

Local data space

Local data space

Saved SI

Saved SI

Saved DI

Saved DI

High addresses

High addresses

Low addresses

Low addresses

Frame pointer (BP)
points here.

Frame pointer (BP)
points here.

Stack pointer (SP)
points to last item
placed on stack.

Stack pointer (SP)
points to last item
placed on stack.

Stack grows
downward with
each push or call.

Stack grows
downward with
each push or call.

Figure 12.2 C Stack Frame

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 320 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 320

Chapter 12 Mixed-Language Programming 321

The MASM module that contains the Power2 routine looks like this:

.MODEL small, c

Power2 PROTO C factor:SWORD, power:SWORD

 .CODE

Power2 PROC C factor:SWORD, power:SWORD

 mov ax, factor ; Load Arg1 into AX

 mov cx, power ; Load Arg2 into CX

 shl ax, cl ; AX = AX * (2 to power of CX)

 ; Leave return value in AX

 ret

Power2 ENDP

 END

The MASM procedure declaration for the Power2 routine specifies the C
langtype and the parameters expected by the procedure. The langtype specifies the
calling and naming conventions for the interface between MASM and C. The
routine is public by default. When the C module calls Power2, it passes two
arguments, 3 and 5 by value.

Using the C Startup Code
This section explains how to write an assembly-language program that can call C
library functions. It links with the C startup module, which performs the necessary
initialization required by the library functions.

You must follow these steps when writing such a program:

1. Specify the C convention in the .MODEL statement.

2. Include the following (optional) statement to note linkage with the C startup
module:

EXTERN _acrtused:abs

3. Prototype or declare as external all C functions the program references.

4. Include a public procedure called main in your assembly-language module. The
C startup code calls _main (which is why all C programs begin with a main
function). This procedure serves as the effective entry point for your program.

5. Omit an entry point in the program’s END directive. The C startup code serves
as the true entry point when the program runs.

6. Assemble with ML’s /Cx switch to preserve the case of nonlocal names.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 321 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 321

322 Programmer’s Guide

The following example serves as a template for these steps. The program calls the C
run-time function printf to display two variables.

.MODEL small, c ; Step 1: declare C conventions

EXTERN _acrtused:abs ; Step 2: bring in C startup

 .

 .

 .

printf PROTO NEAR, ; Step 3: prototype

 pstring:NEAR PTR BYTE, ; external C

 num1:WORD, num2:VARARG ; routines

 .DATA

format BYTE '%i %i', 13, 0

 .CODE

main PROC PUBLIC ; Step 4: C startup calls here

 .

 .

 .

 INVOKE printf, OFFSET format, ax, bx

 .

 .

 .

 END ; Step 5: no label on END

The C++/MASM Interface
C++ can apply a protocol called a “linkage specification” to mixed-language
procedures. This lets you link C++ code in the same way as C code. All information
in the preceding section applies when linking assembly-language and C++ routines
through the C linkage specification.

The C linkage specification forces the C++ compiler to adopt C conventions —
which are not the same as C++ conventions — for listed routines. Since MASM
does not specifically support C++ conventions, set the C linkage specification in
your C++ code for all mixed-language routines, as shown here:

extern “C” declaration

where declaration is the prototype of an exported C++ function or an imported
assembly-language procedure. You can bracket a list of declarations:

extern "C"

{

 int WriteLine(short attr, char *string);

 void GoExit(int err);

}

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 322 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 322

Chapter 12 Mixed-Language Programming 323

or apply the specification to individual prototypes:

extern "C" int WriteLine(short attr, char *string);

extern "C" void GoExit(int err);

Note the syntax remains the same whether WriteLine and GoExit are exported
C++ functions or imported assembly-language routines. The linkage specification
applies only to called routines, not to external variables. Use the extern keyword
(without the “C”) as you normally would when identifying objects external to the
C++ module.

The FORTRAN/MASM Interface
This section summarizes the specific details important to calling FORTRAN
procedures or receiving arguments from FORTRAN routines that call MASM
routines. It includes a sample MASM and FORTRAN module.

A FORTRAN procedure follows the Pascal calling convention by default. This
convention passes arguments in the order listed, and the calling procedure removes
the arguments from the stack. The naming convention converts all exported names
to uppercase.

Compatible Data Types
This list shows the FORTRAN data types that are equivalent to the MASM 6.1
data types.

FORTRAN Type Equivalent MASM Type

CHARACTER*1 BYTE

INTEGER*1 SBYTE

INTEGER*2 SWORD

REAL*4 REAL4

INTEGER*4 SDWORD

REAL*8, DOUBLE PRECISION REAL8

Naming Restrictions
FORTRAN allows 31 characters for identifier names. A digit or an underscore
cannot be the first character in an identifier name.

Argument-Passing Defaults
By default, FORTRAN passes arguments by reference as far addresses if the
FORTRAN module is compiled in large or huge memory model. It passes them as
near addresses if the FORTRAN module is compiled in medium model. Versions of
FORTRAN prior to Version 4.0 always require large model.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 323 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 323

324 Programmer’s Guide

The FORTRAN compiler passes an argument by value when declared with the
VALUE attribute. This declaration can occur either in a FORTRAN
INTERFACE block (which determines how to pass an argument) or in a function
or subroutine declaration (which determines how to receive an argument).

In FORTRAN you can apply the NEAR (or FAR) attribute to reference
parameters. These keywords override the default. They have no effect when they
specify the same method as the default.

Changing the Calling Convention
A call to a FORTRAN function or subroutine declared with the PASCAL or C
attribute passes all arguments by value in the parameter list (except for parameters
declared with the REFERENCE attribute). This change in default passing method
applies to function and subroutine definitions as well as to the functions and
subroutines described by INTERFACE blocks.

Array Storage
When you declare FORTRAN arrays, you can specify any integer for the lower
bound (the default is 1). The FORTRAN compiler stores all arrays in column-major
order — that is, the leftmost subscript increments most rapidly. For example, the
first seven elements of an array defined as A[3,4] are stored as

A[1,1], A[2,1], A[3,1], A[1,2], A[2,2], A[3,2], A[1,3]

String Format
FORTRAN stores strings as a series of bytes at a fixed location in memory, with no
delimiter at the end of the string. When passing a variable-length FORTRAN string
to another language, you need to devise a method by which the target routine can
find the end of the string.

Consider the string declared as

CHARACTER*14 MSG

MSG = 'String of text'

The string is stored in 14 bytes of memory like this:

tS r i n g o f t e x t

Figure 12.3 FORTRAN String Format

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 324 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 324

Chapter 12 Mixed-Language Programming 325

Strings are passed by reference. Although FORTRAN has a method for passing
length, the variable-length FORTRAN strings cannot be used in a mixed-
language interface because other languages cannot access the temporary variable
that FORTRAN uses to communicate string length. However, fixed-length strings
can be passed if the FORTRAN INTERFACE statement declares the length of the
string in advance.

External Data
FORTRAN routines can directly access external data. In FORTRAN you can
declare data to be external by adding the EXTERN attribute to the data
declaration. You can also access a FORTRAN variable from MASM if it is
declared in a COMMON block.

A FORTRAN program can call an external assembly procedure with the use of the
INTERFACE statement. However, the INTERFACE statement is not strictly
necessary unless you intend to change one of the FORTRAN defaults.

Structure Alignment
By default, FORTRAN uses word alignment (unpacked storage) for all data objects
larger than 1 byte. This storage method specifies that occasional bytes may be
added as padding, so that word and doubleword objects start on an even boundary.
In addition, all nested structures and records start on a word boundary. The MASM
default is byte-alignment, so you should specify an alignment of 2 for MASM
structures or use the /Zp1 option when compiling in FORTRAN.

Compiling and Linking
Use the same memory model for the MASM and FORTRAN modules.

Returning Values
You must use a special convention to return floating-point values, records, user-
defined types, arrays, and values larger than 4 bytes to a FORTRAN module from
an assembly procedure. The FORTRAN module creates space in the stack segment
to hold the actual return value. When the call to the assembly procedure is made, an
extra parameter is passed. This parameter is the last one pushed. The segment
address of the return value is contained in SS.

In the assembly procedure, put the data for the return value at the location pointed
to by the return value offset. Then copy the return-value offset (located at BP + 6)
to AX, and copy SS to DX. This is necessary because the calling module expects
DX:AX to point to the return value.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 325 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 325

326 Programmer’s Guide

Structures, Records, and User-Defined Data Types
The FORTRAN structure variable, defined with the STRUCTURE keyword and
declared with the RECORD statement, is equivalent to the Pascal RECORD and
the C struct. You can pass structures as arguments by value or by reference (the
default).

The FORTRAN types COMPLEX*8 and COMPLEX*16 are not directly
implemented in MASM. However, you can write structures that are equivalent. The
type COMPLEX*8 has two fields, both of which are 4-byte floating-point
numbers; the first contains the real component, and the second contains the
imaginary component. The type COMPLEX is equivalent to the type
COMPLEX*8.

The type COMPLEX*16 is similar to COMPLEX*8. The only difference is that
each field of the former contains an 8-byte floating-point number.

A FORTRAN LOGICAL*2 is stored as a 1-byte indicator value (1=true, 0=false)
followed by an unused byte. A FORTRAN LOGICAL*4 is stored as a 1-byte
indicator value followed by three unused bytes. The type LOGICAL is equivalent
to LOGICAL*4, unless $STORAGE:2 is in effect.

To pass or receive a FORTRAN LOGICAL type, declare a MASM structure with
the appropriate fields.

Varying Number of Arguments
In FORTRAN, you can call routines with a variable number of arguments by
including the VARYING attribute in your interface to the routine, along with the C
attribute. You must use the C attribute because a variable number of arguments is
possible only with the C calling convention. The VARYING attribute prevents
FORTRAN from enforcing a matching number of parameters.

Pointers and Addresses
FORTRAN programs can determine near and far addresses with the LOCNEAR
and LOCFAR functions. Store the result as INTEGER*2 (with the LOCNEAR
function) or as INTEGER*4 (with the LOCFAR function). If you pass the result
of LOCNEAR or LOCFAR to another language, be sure to pass by value.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 326 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 326

Chapter 12 Mixed-Language Programming 327

Example
In the following example, the FORTRAN module calls an assembly procedure that
calculates A*2^B, where A and B are the first and second parameters, respectively.
This is done by shifting the bits in A to the left B times.

 INTERFACE TO INTEGER*2 FUNCTION POWER2(A, B)

 INTEGER*2 A, B

 END

 PROGRAM MAIN

 INTEGER*2 POWER2

 INTEGER*2 A, B

 A = 3

 B = 5

 WRITE (*, *) '3 TIMES 2 TO THE B OR 5 IS ',POWER2(A, B)

 END

To understand the assembly procedure, consider how the parameters are placed on
the stack, as illustrated in Figure 12.4.

Arg 1 segment

Arg 2 segment

Arg 1 offset

Saved BP

Arg 2 offset

Return address
(4 bytes)

High addresses

Low addresses

A
BP+10

BP+6

BP

B
BP+8

BP+4

BP+2

BP+12

Stack grows
downward with
each push or call.

Figure 12.4 FORTRAN Stack Frame

Figure 12.4 assumes that the FORTRAN module is compiled in large model. If you
compile the FORTRAN module in medium model, then each argument is passed as
a 2-byte, not 4-byte, address. The return address is 4 bytes long because procedures
called from FORTRAN must always be FAR.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 327 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 327

328 Programmer’s Guide

The assembler code looks like this:

 .MODEL LARGE, FORTRAN

Power2 PROTO FORTRAN, pFactor:FAR PTR SWORD, pPower:FAR PTR SWORD

 .CODE

Power2 PROC FORTRAN, pFactor:FAR PTR SWORD, pPower:FAR PTR SWORD

 les bx, pFactor ; ES:BX points to factor

 mov ax, es:[bx] ; AX = value of factor

 les bx, pPower ; ES:BX points to power

 mov cx, es:[bx] ; CX = value of power

 shl ax, cl ; Multiply by 2^power

 ret ; Return result in AX

Power2 ENDP

 END

The Basic/MASM Interface
This section explains how to call MASM procedures or functions from Basic and
how to receive Basic arguments for the MASM procedure. Pascal is the default
naming and calling convention, so all lowercase letters are converted to uppercase.
Routines defined with the FUNCTION keyword return values, but routines defined
with SUB do not. Basic DEF FN functions and GOSUB routines cannot be called
from another language.

The information provided pertains to Microsoft’s Basic and QuickBasic compilers.
Differences between the two compilers are noted when necessary.

Compatible Data Types
The following list shows the Basic data types that are equivalent to the MASM 6.1
data types.

Basic Type Equivalent MASM Type

STRING*1 WORD

INTEGER (X%) SWORD

SINGLE (X!) REAL4

LONG (X&),
CURRENCY

SDWORD

DOUBLE (X#) REAL8

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 328 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 328

Chapter 12 Mixed-Language Programming 329

Naming Conventions
Basic recognizes up to 40 characters of a name. In the object code, Basic also drops
any of its reserved characters: %, &, !, #, @, &.

Argument-Passing Defaults
Basic can pass data in several ways and can receive it by value or by near
reference. By default, Basic arguments are passed by near reference as 2-byte
addresses. To pass a near address, pass only the offset; if you need to pass a far
address, pass the segment and offset separately as integer arguments. Pass the
segment address first, unless you have specified C compatibility with the CDECL
keyword.

Basic passes each argument in a call by far reference when CALLS is used to
invoke a routine. You can also use SEG to modify a parameter in a preceding
DECLARE statement so that Basic passes that argument by far reference. To pass
any other variable type by value, apply the BYVAL keyword to the argument in the
DECLARE statement. You cannot pass arrays and user-defined types by value.

DECLARE SUB Test(BYVAL a%, b%, SEG c%)

CALL Test(x%, y%, z%)

CALLS Test(x%, y%, z%)

This CALL statement passes the first argument (a%) by value, the second argument
(b%) by near reference, and the third argument (c%) by far reference. The statement

CALLS Test2(x%, y%, z%)

passes each argument by far reference.

Changing the Calling Convention
Including the CDECL keyword in the Basic DECLARE statement enables the C
calling and naming conventions. This also allows a call to a MASM procedure with
a varying number of arguments.

Array Storage
The DIM statement sets the number of dimensions for a Basic array and also sets
the array’s maximum subscript value. In the array declaration DIM x(a,b), the
upper bounds (the maximum number of values possible) of the array are a and b.
The default lower bound is 0. The default upper bound for an array subscript is 10.

The default for column storage in Basic is column-major order, as in FORTRAN.
For an array defined as DIM Arr%(3,3), reference the last element as
Arr%(3,3). The first five elements of Arr (3,3) are

Arr(0,0), Arr(1,0), Arr(2,0), Arr(0,1), Arr(1,1)

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 329 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 329

330 Programmer’s Guide

When you pass an array from Basic to a language that stores arrays in row-major
order, use the command-line option /R when compiling the Basic module.

Most Microsoft languages permit you to reference arrays directly. Basic uses an
array descriptor, however, which is similar in some respects to a Basic string
descriptor. The array descriptor is necessary because Basic handles memory
allocation for arrays dynamically, and thus may shift the location of the array in
memory.

A reference to an array in Basic is really a near reference to an array descriptor.
Array descriptors are always in DGROUP, even though the data may be in far
memory. Array descriptors contain information about type, dimensions, and
memory locations of data. You can safely pass arrays to MASM routines only if
you follow three rules:

◆ Pass the array’s address by applying the VARPTR function to the first element
of the Basic array and passing the result by value. To pass the far address of the
array, apply both the VARPTR and VARSEG functions and pass each result
by value. The receiving language gets the address of the first element and
considers it to be the address of the entire array. It can then access the array
with its normal array-indexing syntax.

◆ The MASM routine that receives the array should not call back to one of the
calling program’s routines before it has finished processing the array. Changing
data within the caller’s heap — even data unrelated to the array — may change
the array’s location in the heap. This would invalidate any further work the
called routine performs, since the routine would be operating on the array’s old
location.

◆ Basic can pass any member of an array by value. When passing individual array
elements, these restrictions do not apply.

You can apply LBOUND and UBOUND to a Basic array to determine lower and
upper bounds, and then pass the results to another routine. This way, the size of the
array does not need to be determined in advance.

String Format
Basic maintains a 4-byte string descriptor for each string, as shown in the
following. The first field of the string descriptor contains a 2-byte integer indicating
the length of the actual string text. The second field contains the offset address of
this text within the caller’s data segment.

String length (two bytes) Address (relative to DS)

Figure 12.5 Basic String Descriptor Format

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 330 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 330

Chapter 12 Mixed-Language Programming 331

An assembly-language procedure can store a Basic string descriptor as a simple
structure, like this:

DESC STRUCT

 len WORD ? ; Length of string

 off WORD ? ; Offset of string

DESC ENDS

string BYTE "This text referenced by a string descriptor"

sdesc DESC (LENGTHOF string, string)

Version 7.0 or later of the Microsoft Basic Compiler provides new functions that
access string descriptors. These functions simplify the process of sharing Basic
string data with routines written in other languages.

Earlier versions of Basic offer the LEN (Length) and SADD (String Address)
functions, which together obtain the information stored in a string descriptor. LEN
returns the length of a string in bytes. SADD returns the offset address of a string in
the data segment. The caller must provide both pieces of information so the called
procedure can locate and read the entire string. The address returned by SADD is
declared as type INTEGER but is actually equivalent to a C near pointer.

If you need to pass the far address of a string, use the SSEGADD (String Segment
Address) function of Microsoft Basic version 7.0 or later. You can also determine
the segment address of the first element with VARSEG.

External Data
Declaring global data in Basic follows the same two-step process as in other
languages:

1. Declare shareable data in Basic with the COMMON statement.

2. Identify the shared variables in your assembly-language procedures with the
EXTERN keyword. Place the EXTERN statement outside of a code or data
segment when declaring far data.

Structure Alignment
Basic packs user-defined types. For MASM structures to be compatible, select
byte-alignment.

Compiling and Linking
Always use medium model in assembly-language procedures linked with Basic
modules. If you are listing other libraries on the LINK command line, specify Basic
libraries first. (There are differences between the QBX and command-line
compilation. See your Basic documentation.)

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 331 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 331

332 Programmer’s Guide

Returning Values
Basic follows the usual convention of returning values in AX or DX:AX. If the
value is not floating point, an array, or a structured type, or if it is less than 4 bytes
long, then the 2-byte integers should be returned from the MASM procedure in AX
and 4-byte integers should be returned in DX:AX. For all other types, return the
near offset in AX.

User-Defined Data Types
The Basic TYPE statement defines structures composed of individual fields. These
types are equivalent to the C struct, FORTRAN record (declared with the
STRUCTURE keyword), and Pascal Record types.

You can use any of the Basic data types except variable-length strings or dynamic
arrays in a user-defined type. Once defined, Basic types can be passed only by
reference.

Varying Number of Arguments
You can vary the number of arguments in Basic when you change the calling
convention with CDECL. To call a function with a varying number of arguments,
you also need to suppress the type checking that normally forces a call to be made
with a fixed number of arguments. In Basic, you can remove this type checking by
omitting a parameter list from the DECLARE statement.

Pointers and Addresses
VARSEG returns a variable’s segment address, and VARPTR returns a variable’s
offset address. These intrinsic Basic functions enable your program to pass near or
far addresses.

Example
This example calls the Power2 procedure in the MASM 6.1 module.

DEFINT A-Z

DECLARE FUNCTION Power2 (A AS INTEGER, B AS INTEGER)

PRINT "3 times 2 to the power of 5 is ";

PRINT Power2(3, 5)

END

The first argument, A, is higher in memory than B because Basic pushes arguments
in the same order in which they appear.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 332 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 332

Chapter 12 Mixed-Language Programming 333

Figure 12.6 shows how the arguments are placed on the stack.

Arg 1 address

Arg 2 address

Return address
(4 bytes)

Saved BP

High addresses

Low addresses

BP+8A

BP+6B

BP+4

BP+2

BP

Stack grows
downward with
each push or call.

Figure 12.6 Basic Stack Frame

The assembly procedure can be written as follows:

 .MODEL medium

Power2 PROTO PASCAL, factor:PTR WORD, power:PTR WORD

 .CODE

Power2 PROC PASCAL, factor:PTR WORD, power:PTR WORD

 mov bx, WORD PTR factor ; BX points to factor

 mov ax, [bx] ; Load factor into AX

 mov bx, WORD PTR power ; BX points to power

 mov cx, [bx] ; Load power into CX

 shl ax, cl ; AX = AX * (2 to power of CX)

 ret

Power2 ENDP

 END

Note that each parameter must be loaded in a two-step process because the address
of each is passed rather than the value. The return address is 4 bytes long because
procedures called from Basic must be FAR.

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 333 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 333

334 Programmer’s Guide

Filename: LMAPGC12.DOC Project:
Template: MSGRIDA1.DOT Author: Mike Eddy Last Saved By: Ruth L Silverio
Revision #: 71 Page: 334 of 28 Printed: 03/06/94 06:04 PM
Printed On: Distiller Colorlayer: ? Document Page: 334

335

C H A P T E R 1 3

Writing 32-Bit Applications

This chapter is an introduction to 32-bit programming for the 80386. The guidelines
in this chapter also apply to the 80486 processor, which is basically a faster 80386
with the equivalent of a 80387 floating-point processor. Since you are already
familiar with 16-bit real-mode programming, this chapter covers the differences
between 16-bit programming and 32-bit protected-mode programming.

The 80386 processor (and its successors such as the 80486) can run in real mode,
virtual-86 mode, and in protected mode. In real and virtual-86 modes, the 80386
can run 8086/8088 programs. In protected mode, it can run 80286 programs. The
386 also extends the features of protected mode to include 32-bit operations and
segments larger than 64K.

The MS-DOS operating system directly supports 8086/8088 programs, which it
runs either in real mode or virtual-86 mode. Native 32-bit 80386 programs can be
run by using a “DOS extender,” by using the WINMEM32.DLL facility of
Microsoft Windows 3.x, or by running a native 32-bit operating system, such as
Microsoft Windows NT. You can use MASM to generate object code (OMF or
COFF) for 32-bit programs. To do this, you will need a software development kit
such as the Windows SDK for the target environment. Such kits include the linker
and other components specific to your chosen operating environment.

32-Bit Memory Addressing
The 80386 has six segment registers. Four of these are familiar to 8086/8088
programmers: CS (Code Segment), SS (Stack Segment), DS (Data Segment), and
ES (Extra Segment). The two additional registers, FS and GS, are used as data
segment registers.

Memory addresses on 80x86 machines consist of two parts — a segment and an
offset. In real-mode programs, the segment is a 16-bit number and the offset is a
16-bit number. Effective addresses are calculated by multiplying the segment by 16
and adding the offset to it. In protected mode, the segment value is not used directly

Filename: LMAPGC13.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 27 Page: 335 of 6 Printed: 03/06/94 06:05 PM
Printed On: Distiller Colorlayer: ? Document Page: 335

336 Programmer’s Guide

as a number, but instead is an index to a table of “selectors.” Each selector
describes a block of memory, including attributes such as the size and location of
the block, and the access rights the program has to it (read, write, execute). The
effective address is calculated by adding the offset to the base address of the
memory block described by the selector.

All segment registers are 16 bits wide. The offset in a 32-bit protected-mode
program is itself 32 bits wide, which means that a single segment can address up to
4 gigabytes of memory. Because of this large range, there is little need to use
segment registers to extend the range of addresses in 32-bit programs. If all six
segment registers are initially set to the same value, then the rest of the program can
ignore them and treat the processor as if it used a 32-bit linear address space. This
is called 0:32, or flat, addressing. (The full segmented 32-bit addressing mode, in
which the segment registers can contain different values, is called 16:32
addressing.) Flat addressing is used by the Windows NT operating system.

EAX

EBX

ECX

EDX ESP

EBP

EDI

ESI

AX

BX

CX

DX SP

BP

DI

SI

AH AL

BH BL

CH CL

DH DL

CS

SS

DS

ES

FS

GS

Traditional 8088/realmode registers

New 386 registers

Figure 13.1 32-Bit Register Set

MASM Directives for 32-Bit Programming
If you use the simplified segment directives, a 32-bit program is surprisingly similar
to a program for MS-DOS. Here are the differences:

◆ Supply the .386 directive, which enables the 32-bit programming features of the
386 and its successors. The .386 directive must precede the .MODEL directive.

Filename: LMAPGC13.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 27 Page: 336 of 6 Printed: 03/06/94 06:05 PM
Printed On: Distiller Colorlayer: ? Document Page: 336

Chapter 13 Writing 32-Bit Applications 337

◆ For flat-model programming, use the directive

.MODEL flat, stdcall

which tells the assembler to assume flat model (0:32) and to use the Windows
NT standard calling convention for subroutine calls.

◆ Precede your data declarations with the .DATA directive.

◆ Precede your instruction codes with the .CODE directive.

◆ At the end of the source file, place an END directive.

Sample Program
The following sample is a 32-bit assembly language subroutine, such as might be
called from a 32-bit C program written for the Windows NT operating system. The
program illustrates the use of a variety of directives to make assembly language
easier to read and maintain. Note that with 32-bit flat model programming, there is
no longer any need to refer to segment registers, since these are artifacts of
segmented addressing.

;* szSearch - An example of 32-bit assembly programming using MASM 6.1

;*

;* Purpose: Search a buffer (rgbSearch) of length cbSearch for the

;* first occurrence of szTok (null terminated string).

;*

;* Method: A variation of the Boyer-Moore method

;* 1. Determine length of szTok (n)

;* 2. Set array of flags (rgfInTok) to TRUE for each character

;* in szTok

;* 3. Set current position of search to rgbSearch (pbCur)

;* 4. Compare current position to szTok by searching backwards

;* from the nth position. When a comparison fails at

;* position (m), check to see if the current character

;* in rgbSearch is in szTok by using rgfInTok. If not,

;* set pbCur to pbCur+(m)+1 and restart compare. If

;* pbCur reached, increment pbCur and restart compare.

;* 5. Reset rgfInTok to all 0 for next instantiation of the

;* routine.

 .386

 .MODEL flat, stdcall

FALSE EQU 0

TRUE EQU NOT FALSE

Filename: LMAPGC13.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 27 Page: 337 of 6 Printed: 03/06/94 06:05 PM
Printed On: Distiller Colorlayer: ? Document Page: 337

338 Programmer’s Guide

 .DATA

; Flags buffer - data initialized to FALSE. We will

; set the appropriate flags to TRUE during initialization

; of szSearch and reset them to FALSE before exit.

rgfInTok BYTE 256 DUP (FALSE);

 .CODE

PBYTE TYPEDEF PTR BYTE

szSearch PROC PUBLIC USES esi edi,

 rgbSearch:PBYTE,

 cbSearch:DWORD,

 szTok:PBYTE

; Initialize flags buffer. This tells us if a character is in

; the search token - Note how we use EAX as an index

; register. This can be done with all extended registers.

 mov esi, szTok

 xor eax, eax

 .REPEAT

 lodsb

 mov BYTE PTR rgfInTok[eax], TRUE

 .UNTIL (!AL)

; Save count of szTok bytes in EDX

 mov edx, esi

 sub edx, szTok

 dec edx

; ESI will always point to beginning of szTok

 mov esi, szTok

; EDI will point to current search position

; and will also contain the return value

 mov edi, rgbSearch

; Store pointer to end of rgbSearch in EBX

 mov ebx, edi

 add ebx, cbSearch

 sub ebx, edx

Filename: LMAPGC13.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 27 Page: 338 of 6 Printed: 03/06/94 06:05 PM
Printed On: Distiller Colorlayer: ? Document Page: 338

Chapter 13 Writing 32-Bit Applications 339

; Initialize ECX with length of szTok

 mov ecx, edx

 .WHILE (ecx != 0)

 dec ecx ; Move index to current

 mov al, [edi+ecx] ; characters to compare

; If the current byte in the buffer doesn't exist in the

; search token, increment buffer pointer to current position

; +1 and start over. This can skip up to 'EDX'

; bytes and reduce search time.

 .IF !(rgfInTok[eax])

 add edi, ecx

 inc edi ; Initialize ECX with

 mov ecx, edx ; length of szTok

; Otherwise, if the characters match, continue on as if

; we have a matching token

 .ELSEIF (al == [esi+ecx])

 .CONTINUE

; Finally, if we have searched all szTok characters,

; and land here, we have a mismatch and we increment

; our pointer into rgbSearch by one and start over.

 .ELSEIF (!ecx)

 inc edi

 mov ecx, edx

 .ENDIF

; Verify that we haven't searched beyond the buffer.

 .IF (edi > ebx)

 mov edi, 0 ; Error value

 .BREAK

 .ENDIF

 .ENDW

; Restore flags in rgfInTok to 0 (for next time).

 mov esi, szTok

 xor eax, eax

 .REPEAT

 lodsb

 mov BYTE PTR rgfInTok[eax], FALSE

 .UNTIL !AL

; Put return value in eax

 mov eax, edi

 ret

szSearch ENDP

end

Filename: LMAPGC13.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 27 Page: 339 of 6 Printed: 03/06/94 06:05 PM
Printed On: Distiller Colorlayer: ? Document Page: 339

340 Programmer’s Guide

Filename: LMAPGC13.DOC Project:
Template: MSGRIDA1.DOT Author: Terri Sharkey Last Saved By: Ruth L Silverio
Revision #: 27 Page: 340 of 6 Printed: 03/06/94 06:05 PM
Printed On: Distiller Colorlayer: ? Document Page: 340

341

A P P E N D I X A

Differences Between
MASM 6.1 and 5.1

For the many users who come to version 6.1 of the Microsoft Macro Assembler
directly from the popular MASM 5.1, this appendix describes the differences
between the two versions. Version 6.1 contains significant changes, including:

◆ An integrated development environment called Programmer’s WorkBench
(PWB) from which you can write, edit, debug, and execute code.

◆ Expanded functionality for structures, unions, and type definitions.

◆ New directives for generating loops and decision statements, and for declaring
and calling procedures.

◆ Simplified methods for applying public attributes to variables and routines in
multiple-module programs.

◆ Enhancements for writing and using macros.

◆ Flat-model support for Windows NT and new instructions for the 80486
processor.

The OPTION M510 directive (or the /Zm command-line switch) assures nearly
complete compatibility between MASM 6.1 and MASM 5.1. However, to take full
advantage of the enhancements in MASM 6.1, you will need to rewrite some code
written for MASM 5.1.

The first section of this appendix describes the new or enhanced features in MASM
6.1. The second section, “Compatibility Between MASM 5.1 and 6.1,” explains
how to:

◆ Minimize the number of required changes with the OPTION directive.

◆ Rewrite your existing assembly code, if necessary, to take advantage of the
assembler’s enhancements.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 341 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 341

342 Programmer’s Guide

New Features of Version 6.1
This section gives an overview of the new features of MASM 6.1 and provides
references to more detailed information elsewhere in the documentation. For full
explanations and coding examples, see the documentation listed in the cross-
references.

The Assembler, Environment, and Utilities
Most of the executable files provided with MASM 6.1 are new or revised. For a
complete list of these files, read the PACKING.TXT file on the distribution disk.
The book Getting Started also provides information about setting up the
environment, assembler, and Help system.

The Assembler
The macro assembler, named ML.EXE, can assemble and link in one step. Its new
32-bit operation gives ML.EXE the ability to handle much larger source files than
MASM 5.1. The command-line options are new. For example, the /Fl and /Sc
options generate instruction timings in the listing file. Command-line options are
case-sensitive and must be separated by spaces.

For backward compatibility with MASM 5.1 makefiles, MASM 6.1 includes the
MASM.EXE utility. MASM.EXE translates MASM 5.1 command-line options to
the new MASM 6.1 command-line options and calls ML.EXE. See the Reference
book for details.

H2INC
H2INC converts C include files to MASM include files. It translates data structures
and declarations but does not translate executable code. For more information, see
Chapter 20 of Environment and Tools.

NMAKE
NMAKE replaces the MAKE utility. NMAKE provides new functions for
evaluating target files and more flexibility with macros and command-line options.
For more information, see Environment and Tools.

Integrated Environment
PWB is an integrated development environment for writing, developing, and
debugging programs. For information on PWB and the CodeView debugging
application, see Environment and Tools.

Online Help
MASM 6.1 incorporates the Microsoft Advisor Help system. Help provides a vast
database of online help about all aspects of MASM, including the syntax and

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 342 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 342

Appendix A Differences Between MASM 6.1 and 5.1 343

timings for processor and coprocessor instructions, directives, command-line
options, and support programs such as LINK and PWB.

For information on how to set up the help system, see Getting Started. You can
invoke the help system from within PWB or from the QuickHelp program (QH).

HELPMAKE
You can use the HELPMAKE utility to create additional help files from ASCII text
files, allowing you to customize the online help system. For more information, see
Environment and Tools.

Other Programs
MASM 6.1 contains the most recent versions of LINK, LIB, BIND, CodeView, and
the mouse driver. The CREF program is not included in MASM 6.1. The Source
Browser provides the information that CREF provided under MASM 5.1. For more
information on the Source Browser, see Chapter 5 of Environment and Tools or
Help.

Segment Management
This section lists the changes and additions to memory-model support and directives
that relate to memory model.

Predefined Symbols
The following predefined symbols (also called predefined equates) provide
information about simplified segments:

Predefined Symbol Value

@stack DGROUP for near stacks, STACK for far stacks

@Interface Information about language parameters

@Model Information about the current memory model

@Line The source line in the current file

@Date The current date

@FileCur The current file

@Time The current time

@Environ The current environment variables

For more information about predefined symbols, see “Predefined Symbols” in
Chapter 1.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 343 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 343

344 Programmer’s Guide

Enhancements to the ASSUME Directive
MASM automatically generates ASSUME values for the code segment register
(CS). It is no longer necessary to include lines such as

ASSUME CS:MyCodeSegment

in your programs. In addition, the ASSUME directive can include ERROR,
FLAT, or register:type. MASM 6.1 issues a warning when you specify ASSUME
values for CS other than the current segment or group.

For more information, see “Setting the ASSUME Directive for Segment Registers”
in Chapter 2 and “Defining Register Types with ASSUME” in Chapter 3.

Relocatable Offsets
For compatibility with applications for Windows, the LROFFSET operator can
calculate a relocatable offset, which is resolved by the loader at run time. See Help
for details.

Flat Model
MASM 6.1 supports the flat-memory model of Windows NT, which allows
segments as large as 4 gigabytes. All other memory models limit segment size to
64K for MS-DOS and Windows. For more information about memory models, see
“Defining Basic Attributes with .MODEL” in Chapter 2.

Data Types
MASM 6.1 supports an improved data typing. This section summarizes the
improved forms of data declarations in MASM 6.1.

Defining Typed Variables
You can now use the type names as directives to define variables. Initializers are
unsigned by default. The following example lines are equivalent:

var1 DB 25

var1 BYTE 25

Signed Types
You can use the SBYTE, SWORD, and SDWORD directives to declare signed
data. For more information about these directives, see “Allocating Memory for
Integer Variables” in Chapter 4.

Floating-Point Types
MASM 6.1 provides the REAL4, REAL8, and REAL10 directives for declaring
floating-point variables. For information on these type directives, see “Declaring
Floating-Point Variables and Constants” in Chapter 6 .

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 344 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 344

Appendix A Differences Between MASM 6.1 and 5.1 345

Qualified Types
Type definitions can now include distance and language type attributes. Procedures,
procedure prototypes, and external declarations let you specify the type as a
qualified type. A complete description of qualified types is provided in the section
“Data Types” in Chapter 1.

Structures
Changes to structures since MASM 5.1 include:

◆ Structures can be nested.

◆ The names of structure fields need not be unique. As a result, you must qualify
references to field names.

◆ Initialization of structure variables can continue over multiple lines provided the
last character in the line before the comment field is a comma.

◆ Curly braces and angle brackets are equivalent.

For example, this code works in MASM 6.1:

SCORE STRUCT

 team1 BYTE 10 DUP (?)

 score1 BYTE ?

 team2 BYTE 10 DUP (?)

 score2 BYTE ?

 SCORE ENDS

 first SCORE {"BEARS", 20, ; This comment is allowed.

 "CUBS", 10 }

 mov al, [bx].score.team1 ; Field name must be qualified

 ; with structure name.

You can use OPTION OLDSTRUCTS or OPTION M510 to enable MASM 5.1
behavior for structures. See “Compatibility between MASM 5.1 and 6.1,” later in
this appendix. For more information on structures and unions, see “Structures and
Unions” in Chapter 5.

Unions
MASM 6.1 allows the definition of unions with the UNION directive. Unions
differ from structures in that all fields within a union occupy the same data space.
For more information, see “Structures and Unions” in Chapter 5.

Types Defined with TYPEDEF
The TYPEDEF directive defines a type for use later in the program. It is most
useful for defining pointer types. For more information on defining types, see “Data
Types” in Chapter 1, and “Defining Pointer Types with TYPEDEF” in Chapter 3.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 345 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 345

346 Programmer’s Guide

Names of Identifiers
MASM 6.1 accepts identifier names up to 247 characters long. All characters are
significant, whereas under MASM 5.1, names are significant to 31 characters only.
For more information on identifiers, see “Identifiers” in Chapter 1.

Multiple-Line Initializers
In MASM 6.1, a comma at the end of a line (except in the comment field) implies
that the line continues. For example, the following code is legal in MASM 6.1:

longstring BYTE "This string ",

 "continues over two lines."

bitmasks BYTE 80h, 40h, 20h, 10h,

 08h, 04h, 02h, 01h

For more information, see “Statements” in Chapter 1.

Comments in Extended Lines
MASM 5.1 allows a backslash (\) as the line-continuation character if it is the last
nonspace character in the line. MASM 6.1 permits a comment to follow the
backslash.

Determining Size and Length of Data Labels
The LENGTHOF operator returns the number of data items allocated for a data
label. MASM 6.1 also provides the SIZEOF operator. When applied to a type,
SIZEOF returns the size attribute of the type expression. When applied to a data
label, SIZEOF returns the number of bytes used by the initializer in the label’s
definition. In this case, SIZEOF for a variable equals the number of bytes in the
type multiplied by LENGTHOF for the variable.

MASM 6.1 recognizes the LENGTH and SIZE operators for backward
compatibility. For a description of the behavior of SIZE under OPTION M510,
see “Length and Size of Labels with OPTION M510,” later in this appendix. For
obsolete behavior with the LENGTH operator, see also “LENGTH Operator
Applied to Record Types,” page 356.

For information on LENGTHOF and SIZEOF, see the following sections in
chapter 5: “Declaring and Referencing Arrays,” “Declaring and Initializing
Strings,” “Declaring Structure and Union Variables,” and “Defining Record
Variables.”

HIGHWORD and LOWWORD Operators
These operators return the high and low words for a given 32-bit operand. They are
similar to the HIGH and LOW operators of MASM 5.1 except that HIGHWORD
and LOWWORD can take only constants as operands, not relocatables (labels).

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 346 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 346

Appendix A Differences Between MASM 6.1 and 5.1 347

PTR and CodeView
Under MASM 5.1, applying the PTR operator to a data initializer determines the
size of the data displayed by CodeView. You can still use PTR in this manner in
MASM 6.1, but it does not affect CodeView typing. Defining pointers with the
TYPEDEF directive allows CodeView to generate correct information. See
“Defining Pointer Types with TYPEDEF” in Chapter 3.

Procedures, Loops, and Jumps
With its significant improvements for procedure and jump handling, MASM 6.1
closely resembles high-level – language implementations of procedure calls. MASM
6.1 generates the code to correctly handle argument passing, check type
compatibility between parameters and arguments, and process a variable number of
arguments. MASM 6.1 can also automatically recast jump instructions to correct
for insufficient jump distance.

Function Prototypes and Calls
The PROTO directive lets you prototype procedures in the same way as high-level
languages. PROTO enables type-checking and type conversion of arguments when
calling the procedure with INVOKE. For more information, see “Declaring
Procedure Prototypes” in Chapter 7.

The INVOKE directive sets up code to call a procedure and correctly pass
arguments according to the prototype. MASM 6.1 also provides the VARARG
keyword to pass a variable number of arguments to a procedure with INVOKE.
For more information about INVOKE and VARARG, see “Calling Procedures
with INVOKE” and “Declaring Parameters with the PROC Directive” in
Chapter 7.

The ADDR keyword is new since MASM 5.1. When used with INVOKE, it
provides the address of a variable, in the same way as the address-of operator (&)
in C. This lets you conveniently pass an argument by reference rather than value.
See “Calling Procedures with INVOKE” in Chapter 7.

High-Level Flow-Control Constructions
MASM 6.1 contains several directives that generate code for loops and decisions
depending on the status of a conditional statement. The conditions are tested at run
time rather than at assembly time.

Directives new since MASM 5.1 include .IF, .ELSE, .ELSEIF, .REPEAT,
.UNTIL, .UNTILCXZ, .WHILE, and .ENDW. MASM 6.1 also provides the
associated .BREAK and .CONTINUE directives for loops and IF statements.
For more information, see “Loops” in Chapter 7 and “Decision Directives” on
page 171.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 347 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 347

348 Programmer’s Guide

Automatic Optimization for Unconditional Jumps
MASM 6.1 automatically determines the smallest encoding for direct unconditional
jumps. See “Unconditional Jumps” in Chapter 7.

Automatic Lengthening for Conditional Jumps
If a conditional jump cannot reach its target destination, MASM automatically
recasts the code to use an unconditional jump to the target. See “Jump Extending,”
page 169.

User-Defined Stack Frame Setup and Cleanup
The prologue code generated immediately after a PROC statement sets up the stack
for parameters and local variables. The epilogue code handles stack cleanup.
MASM 6.1 allows user-defined prologues and epilogues, as described in
“Generating Prologue and Epilogue Code” in Chapter 7.

Simplifying Multiple-Module Projects
MASM 6.1 simplifies the sharing of code and data among modules and makes the
use of include files more efficient.

EXTERNDEF in Include Files
MASM 5.1 requires that you declare public and external all data and routines used
in more than one module. With MASM 6.1, a single EXTERNDEF directive
accomplishes the same task. EXTERNDEF lets you put global data declarations
within an include file, making the data visible to all source files that include the file.
For more information, see “Using EXTERNDEF” in Chapter 8.

Search Order for Include Files
MASM 6.1 searches for include files in the directory of the main source file rather
than in the current directory. Similarly, it searches for nested include files in the
directory of the include file. You can specify additional paths to search with the /I
command-line option. For more information on include files, see “Organizing
Modules” in Chapter 8.

Enforcing Case Sensitivity
In MASM 5.1, sensitivity to case is influenced only by command-line options such
as /MX, not the language type given with the .MODEL directive. In MASM 6.1,
the language type takes precedence over the command-line options in specifying
case sensitivity.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 348 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 348

Appendix A Differences Between MASM 6.1 and 5.1 349

Alternate Names for Externals
The syntax for EXTERN allows you to specify an alternate symbol name, which
the linker can use to resolve an external reference to an unused symbol. This
prevents linkage with unneeded library code, as explained in “Using EXTERN with
Library Routines,” Chapter 8.

Expanded State Control
Several directives in MASM 6.1 enable or disable various aspects of the assembler
control. These include 80486 coprocessor instructions and use of compatibility
options.

The OPTION Directive
The new OPTION directive allows you to selectively define the assembler’s
behavior, including its compatibility with MASM 5.1. See “Using the OPTION
Directive” in Chapter 1 and “Compatibility between MASM 5.1 and 6.1,” later in
this appendix.

The .NO87 Directive
The .NO87 directive disables all coprocessor instructions. For more information,
see Help.

The .486 and .486P Directives
MASM 6.1 can assemble instructions specific to the 80486, enabled with the .486
directive. The .486P directive enables 80486 instructions at the highest privilege
level (recommended for systems-level programs only). For more information, see
Help.

The PUSHCONTEXT and POPCONTEXT Directives
The directive PUSHCONTEXT saves the assembly environment, and
POPCONTEXT restores it. The environment includes the segment register
assumes, the radix, the listing and CREF flags, and the current processor and
coprocessor. Note that .NOCREF (the MASM 6.1 equivalent to .XCREF) still
determines whether information for a given symbol will be added to Browser
information and to the symbol table in the listing file. For more information on
listing files, see Appendix C or Help.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 349 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 349

350 Programmer’s Guide

New Processor Instructions
MASM 6.1 supports these instructions for the 80486 processor:

80486 Instruction Description

BSWAP Byte swap

CMPXCHG Compare and exchange

INVD Invalidate data cache

INVLPG Invalidate Translation Lookaside Buffer entry

WBINVD Write back and invalidate data cache

XADD Exchange and add

For full descriptions of these instructions, see the Reference or Help.

Renamed Directives
Although MASM 6.1 still supports the old names in MASM 5.1, the following
directives have been renamed for language consistency:

MASM 6.1 MASM 5.1

.DOSSEG DOSSEG

.LISTIF .LFCOND

.LISTMACRO .XALL

.LISTMACROALL .LALL

.NOCREF .XCREF

.NOLIST .XLIST

.NOLISTIF .SFCOND

.NOLISTMACRO .SALL

ECHO %OUT

EXTERN EXTRN

FOR IRP

FORC IRPC

REPEAT REPT

STRUCT STRUC

SUBTITLE SUBTTL

Specifying 16-Bit and 32-Bit Instructions
MASM 6.1 supports all instructions that work with the extended 32-bit registers of
the 80386/486. For certain instructions, you can override the default operand size

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 350 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 350

Appendix A Differences Between MASM 6.1 and 5.1 351

with the W (word) and the D (doubleword) suffixes. For details, see the Reference
or Help.

Macro Enhancements
There are significant enhancements to macro functions in MASM 6.1. Directives
provide for a variable number of arguments, loop constructions, definitions of text
equates, and macro functions.

Variable Arguments
MASM 5.1 ignores extra arguments passed to macros. In MASM 6.1, you can pass
a variable number of arguments to a macro by appending the VARARG keyword
to the last macro parameter in the macro definition. The macro can then reference
additional arguments relative to the last declared parameter. This procedure is
explained in “Returning Values with Macro Functions” in Chapter 9.

Required and Default Macro Arguments
With MASM 6.1, you can use REQ or the := operator to specify required or
default arguments. See “Specifying Required and Default Parameters” in
Chapter 9.

New Directives for Macro Loops
Within a macro definition, WHILE repeats assembly as long as a condition
remains true. Other macro loop directives, IRP, IRPC, and REPT, have been
renamed FOR, FORC, and REPEAT. For more information, see “Defining
Repeat Blocks with Loop Directives” in Chapter 9.

Text Macros
The EQU directive retains its old functionality, but MASM 6.1 also incorporates a
TEXTEQU directive for defining text macros. TEXTEQU allows greater
flexibility than EQU. For example, TEXTEQU can assign to a label the value
calculated by a macro function. For more information, see “Text Macros” in
Chapter 9.

The GOTO Directive for Macros
Within a macro definition, GOTO transfers assembly to a line labeled with a
leading colon(:). For more information on GOTO, see Help.

Macro Functions
At assembly time, macro functions can determine and return a text value using
EXITM. Predefined macro string functions concatenate strings, return the size of a
string, and return the position of a substring within a string. For information on
writing your own macro functions, see “Returning Values with Macro Functions” in
Chapter 9.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 351 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 351

352 Programmer’s Guide

Predefined Macro Functions
MASM 6.1 provides the following predefined text macro functions:

Symbol Value Returned

@CatStr A concatenated string

@InStr The position of one string within another

@SizeStr The size of a string

@SubStr A substring

For more information on predefined macros, see “String Directives and Predefined
Functions” in Chapter 9.

MASM 6.1 Programming Practices
MASM 6.1 provides many features that make it easier for you to write assembly
code. If you are familiar with MASM 5.1 programming, you may find it helpful to
adopt the following list of new programming practices for programming with
MASM 6.1. The list summarizes many of the changes covered in the following
section, “Compatibility Between MASM 5.1 and 6.1.”

◆ Select identifier names that do not begin with the dot operator (.).

◆ Use the dot operator (.) only to reference structure fields, and the plus operator
(+) when not referencing structures.

◆ Different structures can have the same field names. However, the assembler
does not allow ambiguous references. You must include the structure type when
referring to field names common to two or more structures.

◆ Separate macro arguments with commas, not spaces.

◆ Avoid adding extra ampersands in macros. For a list of the new rules about
using ampersands in macros, see “Substitution Operator” in Chapter 9 and
“OPTION OLDMACROS,” page 372.

◆ By default, code labels defined with a colon are local. Place two colons after
code labels if you want to reference the label outside the procedure.

Compatibility Between MASM 5.1 and 6.1
MASM 6.1 provides a “compatibility mode,” making it easy for you to transfer
existing MASM 5.1 code to the new version. You invoke the compatibility mode
through the OPTION M510 directive or the /Zm command-line switch. This
section explains the changes you may need to make to get your MASM 5.1 code to
run under MASM 6.1 in compatibility mode.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 352 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 352

Appendix A Differences Between MASM 6.1 and 5.1 353

Rewriting Code for Compatibility
In some cases, MASM 6.1 with OPTION M510 does not support MASM 5.1
behavior. In several cases, this is because bugs in MASM 5.1 were corrected. To
update your code to MASM 6.1, use the instructions in this section. This usually
requires only minor changes.

Many of the topics listed here will not apply to your code. This section discusses
topics in order of likelihood, beginning with the most common. In addition, you
may have conflicts between identifier names and new reserved words. OPTION
NOKEYWORD resolves errors generated from the use of reserved words as
identifiers. See “OPTION NOKEYWORD,” page 376, for more information.

Bug Fixes Since MASM 5.1
This section lists the differences between MASM 5.1 and MASM 6.1 due to bug
corrections since MASM 5.1.

Invalid Use of LOCK, REPNE, and REPNZ
Except in compatibility mode, MASM 6.1 flags illegal uses of the instruction
prefixes LOCK, REPNE, and REPNZ. The error generated for invalid uses of the
LOCK, REPNE, and REPNZ prefixes is error A2068:

instruction prefix not allowed

Table A.1 summarizes the correct use of the instruction prefixes. It lists each string
instruction with the type of repeat prefix it uses, and indicates whether the
instruction works on a source, a destination, or both.

Table A.1 Requirements for String Instructions

Instruction Repeat Prefix Source/Destination Register Pair

MOVS REP Both DS:SI, ES:DI

SCAS REPE/REPNE Destination ES:DI

CMPS REPE/REPNE Both DS:SI, ES:DI

LODS -- Source DS:SI

STOS REP Destination ES:DI

INS REP Destination ES:DI

OUTS REP Source DS:SI

No Closing Quotation Marks in Macro Arguments
In MASM 5.1, you can use both single and double quotation marks (' and ") to
begin strings in macro arguments. The assembler does not generate an error or
warning if the string does not end with quotation marks on a macro call. Instead,

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 353 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 353

354 Programmer’s Guide

MASM 5.1 considers the remainder of the line to be part of the macro argument
containing the opening quote, as if there were a closing quotation mark at the end of
the line.

By default, MASM 6.1 now generates error A2046:

missing single or double quotation mark in string

so all single and double quotation marks in macro arguments must be matched.

To correct such errors in MASM 6.1, either end the string with a closing quotation
mark as shown in the following example, or use the macro escape character (!) to
treat the quotation mark literally.

; MASM 5.1 code

MyMacro "all this in one argument

; Default MASM 6.1 code

MyMacro "all this in one argument"

Making a Scoped Label Public
MASM 5.1 considers code labels defined with a single colon inside a procedure to
be local to that procedure if the module contains a .MODEL directive with a
language type. Although the label is local, MASM 5.1 does not generate an error if
it is also declared PUBLIC. MASM 6.1 generates error A2203:

cannot declare scoped code label as PUBLIC

If you want to make a label PUBLIC, it must not be local. You can use the double
colon operator to define a non-scoped label, as shown in this example:

 PUBLIC publicLabel

publicLabel:: ; Non-scoped label MASM 6.1

Byte Form of BT, BTS, BTC, and BTR Instructions
MASM 5.1 allows a byte argument for the 80386 bit-test instructions, but encodes
it as a word argument. The byte form is not supported by the processor.

MASM 6.1 does not support this behavior and generates error A2024:

invalid operand size for instruction

Rewrite your code to use a word-sized argument.

Default Values for Record Fields
In MASM 5.1, default values for record fields can range down to –2n, where n is
the number of bits in the field. This results in the loss of the sign bit.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 354 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 354

Appendix A Differences Between MASM 6.1 and 5.1 355

MASM 6.1 allows a range of –2n–1 to 2n–1 for default values. Illegal initializers
generate error A2071:

initializer too large for specified size

Design Change Issues
MASM 6.1 includes design changes that make the language more consistent. These
changes are not affected by the OPTION directive, discussed later in this
appendix. Therefore, the changes require revisions in your code. In most cases, the
necessary revisions are minor and the circumstances requiring changes are rare.

Operands of Different Size
MASM 5.1 does not require operands to agree in size, as the following code
illustrates:

 .DATA?

 var1 DB ?

 var2 DB ?

 .CODE

 .

 .

 .

 mov var1, ax ; Copy AX to word at var1

The operands for the MOV instruction do not match in size, yet the instruction
assembles correctly. It places the contents of AL into var1 and AH into var2,
moving a word of data in one step. If the code defined var1 as a word value, the
instruction

 mov var1, al

would also assemble correctly, copying AL into the low byte of var1 while leaving
the high byte unaffected. Except at warning level 0, MASM 5.1 issues a warning to
inform you of the size mismatch, but both scenarios are legal.

MASM 6.1 does not accept instructions with operands that do not agree in size.
You must specifically “coerce” the size of the memory operand, like this:

 mov BYTE PTR var1, al

Conflicting Structure Declarations
MASM 5.1 allows you to declare two or more structures with the same name. Each
declaration replaces the previous declaration. However, the field names from
previous declarations still remain in the assembler’s list of declared values.

MASM 6.1 does not allow conflicting declarations of a structure. It generates errors
A2160 through A2165 for each conflicting declaration. The errors note a specific

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 355 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 355

356 Programmer’s Guide

conflict, such as conflicting number of fields, conflicting names of fields, or
conflicting initializers.

Forward References to Text Macros Outside of Expressions
MASM 5.1 allows forward references to text macros in specialized cases. MASM
6.1 with OPTION M510 also permits forward references, but only when the text
macro is referenced in an expression. To revise your code, place all macro
definitions at the beginning of the file.

HIGH and LOW Applied to Relocatable Operands
In some cases, MASM 5.1 accepts HIGH and LOW applied to relocatable
memory expressions. For example, MASM 5.1 allows this code sequence:

; MASM 5.1 code

EXTRN var1:WORD

var2 DW 0

 mov al, LOW var1 ; These two instructions yield the

 mov ah, HIGH var1 ; same as mov ax, OFFSET var1

However, the instruction

 mov ax, LOW var2

is not legal. MASM 6.1 generates error A2105:

HIGH and LOW require immediate operands

The OFFSET operator is required on these operands in MASM 6.1, as shown in
the following. Rewrite your code if necessary.

; MASM 6.1 code

 mov al, LOW OFFSET var1

 mov ah, HIGH OFFSET var2

OFFSET Applied to Group Names and Indirect Memory Operands
In MASM 6.1, you cannot apply OFFSET to a group name, indirect argument, or
procedure argument. Doing so generates error A2098:

invalid operand for OFFSET

LENGTH Operator Applied to Record Types
In MASM 5.1, the LENGTH operator, when applied to a record type, returns the
total number of bits in a record definition.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 356 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 356

Appendix A Differences Between MASM 6.1 and 5.1 357

In MASM 6.1, the statement LENGTH recordName returns error A2143:

expected data label

Rewrite your code if necessary. The new SIZEOF operator returns information
about records in MASM 6.1. For more information, see “Defining Record
Variables” in Chapter 5.

Signed Comparison of Hexadecimal Values Using GT, GE, LE, or LT
The rules for two’s-complement comparisons have changed. In MASM 5.1, the
expression

0FFFFh GT -1

is false because the two’s-complement values are equal. However, because
hexadecimal numbers are now treated as unsigned, the expression is true in MASM
6.1. To update, rewrite the affected code.

RET Used with a Constant in Procedures with Epilogues
By default in MASM 6.1, the RET instruction followed by a constant suppresses
automatic generation of epilogue code. MASM 5.1 ignores the operand and
generates the epilogue. Remove the argument if necessary. See “Generating
Prologue and Epilogue Code” in Chapter 7.

Code Labels at Top of Procedures with Prologues
By default in MASM 5.1, a code label defined on the same line as the first
procedure instruction refers to the first byte of the prologue.

In MASM 6.1, a code label defined at the beginning of a procedure refers to the
first byte of the procedure after the prologue. If you need to label the start of the
prologue code, place the label before the PROC statement. For more information,
see “Generating Prologue and Epilogue Code” in Chapter 7.

Use of % as an Identifier Character
MASM 5.1 allows % as an identifier character. This behavior leads to ambiguities
when % is used as the expansion operator in macros. Since % is not allowed as a
character in MASM 6.1 identifiers, you must change the names of any identifiers
containing the % character. For a list of legal identifier characters, see “Identifiers”
in Chapter 1.

ASSUME CS Set to Wrong Value
With MASM 6.1 you do not need to use the ASSUME statement for the CS
register. Instead, MASM 6.1 generates an automatic ASSUME statement for the
code segment register to the current segment or group, as explained in “Setting the
ASSUME Directive for Segment Registers” in Chapter 2. Additionally, MASM 6.1

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 357 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 357

358 Programmer’s Guide

does not allow explicit ASSUME statements for CS that contradict the
automatically set ASSUME statement.

MASM 5.1 allows CS to be assumed to the current segment, even if that segment is
a member of a group. With MASM 6.1, this results in warning A4004:

cannot ASSUME CS

To avoid this warning with MASM 6.1, delete the ASSUME statement for CS.

Code Requiring Two-Pass Assembly
Unlike version 5.1, MASM 6.1 does most of its work on its first pass, then
performs as many subsequent passes as necessary. In contrast, MASM 5.1 always
assembles in two source passes. As a result, you may need to revise or delete some
pass-dependent constructs under MASM 6.1.

Two-Pass Directives
To assure compatibility, MASM 6.1 supports 5.1 directives referring to two passes.
These include .ERR1, .ERR2, IF1, IF2, ELSEIF1, and ELSEIF2. For second-
pass constructs, you must specify OPTION SETIF2, as discussed in “OPTION
SETIF2,” page 377. Without OPTION SETIF2, the IF2 and .ERR2 directives
cause error A2061:

[[ELSE]]IF2/.ERR2 not allowed : single-pass assembler

MASM 6.1 handles first-pass constructs differently. It treats the .ERR1 directive
as .ERR, and the IF1 directive as IF.

The following examples show you how you can rewrite typical pass-sensitive code
for MASM 6.1:

◆ Declare var external only if not defined in current module:

; MASM 5.1:

 IF2

 IFNDEF var

 EXTRN var:far

 ENDIF

 ENDIF

; MASM 6.1:

 EXTERNDEF var:far

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 358 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 358

Appendix A Differences Between MASM 6.1 and 5.1 359

◆ Include a file of definitions only once to speed assembly:

; MASM 5.1:

 IF1

 INCLUDE file1.inc

 ENDIF

; MASM 6.1:

 INCLUDE FILE1.INC

◆ Generate a %OUT or .ERR message only once:

; MASM 5.1:

 IF2

 %OUT This is my message

 ENDIF

 IF2

 .ERRNZ A NE B

 ENDIF

; MASM 6.1:

 ECHO This is my message

 .ERRNZ A NE B <ASSERTION FAILURE: A NE B>

◆ Generate an error if a symbol is not defined but may be forward referenced:

; MASM 5.1:

 IF2

 .ERRNDEF var

 ENDIF

; MASM 6.1:

 .ERRNDEF var

For information on conditional directives, see “Conditional Directives,” Chapter 1.

IFDEF and IFNDEF with Forward-Referenced Identifiers
If you use a symbol name that has not yet been defined in an IFDEF or IFNDEF
expression, MASM 6.1 returns FALSE for the IFDEF expression and TRUE for
the IFNDEF expression. When OPTION M510 is enabled, the assembler
generates warning A6005:

expression condition may be pass-dependent

To resolve the warning, place the symbol definition before the conditional test.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 359 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 359

360 Programmer’s Guide

Address Spans as Constants
The value of offsets calculated on the first assembly pass may not be the same as
those calculated on later passes. Therefore, you should avoid comparisons with an
address span, as in the following examples:

IF (OFFSET var1 - OFFSET var2) EQ 10

WHILE dx LT (OFFSET var1 - OFFSET var2)

REPEAT OFFSET var1 - OFFSET var2

However, the DUP operator allows such an expression as its count value. The
assembler evaluates the DUP count on every pass, so even expressions involving
forward references assemble correctly.

You can also use expressions containing span distances with the .ERR directives,
since the assembler evaluates these directives after calculating all offsets:

.ERRE OFFSET var1 - OFFSET var2 - 10,

.TYPE with Forward References
MASM 5.1 evaluates .TYPE on both assembly passes. This means it yields zero on
the first pass and nonzero on the second pass, if applied to an expression that
forward-references a symbol.

MASM 6.1 evaluates .TYPE only on the first assembly pass. As a result, if the
operand references a symbol that has not yet been defined, .TYPE yields a value of
zero. This means that .TYPE, if used in a conditional-assembly construction, may
yield different results in MASM 6.1 than in MASM 5.1.

Obsolete Features No Longer Supported
The following two features are no longer supported by MASM 6.1. Because both
are obscure features provided by early versions of the assembler, they probably do
not affect your MASM 5.1 code.

The ESC Instruction
MASM 6.1 no longer supports the ESC instruction, which was used to send hand-
coded commands to the coprocessor. Because MASM 6.1 recognizes and assembles
the full set of coprocessor mnemonics, the ESC instruction is not necessary. Using
the ESC instruction generates error A2205:

ESC instruction is obsolete: ignored

To update MASM 5.1 code, use the coprocessor instructions instead of ESC.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 360 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 360

Appendix A Differences Between MASM 6.1 and 5.1 361

The MSFLOAT Binary Format
MASM 6.1 does not support the .MSFLOAT directive, which provided the
Microsoft Binary Format (MSB) for floating-point numbers in variable initializers.
Using the .MSFLOAT directive generates error A2204:

.MSFLOAT directive is obsolete: ignored

Use IEEE format or, if MSB format is necessary, initialize variables with
hexadecimal values. See “Storing Numbers in Floating-Point Format” in Chapter 6.

Using the OPTION Directive
The OPTION directive lets you control compatibility with MASM 5.1 code. This
section explains the differences in MASM 5.1 and MASM 6.1 behavior that the
OPTION directive can influence.

The OPTION M510 directive (or /Zm command-line option) initiates all aspects of
5.1 compatibility mode. You can select from among specific characteristics of
MASM 5.1 behavior with the OPTION arguments discussed in following sections.
Each section also explains how to revise your code if you want to remove OPTION
directives from your MASM 5.1 code.

Note If your code includes both .MODEL and OPTION M510, the OPTION
M510 statement must appear first. Wherever this appendix suggests using
OPTION M510 in your code, you can set the /Zm command-line option instead.

OPTION M510
This section discusses the M510 argument to the OPTION directive, which selects
the MASM 5.1 compatibility mode. In this mode, MASM 6.1 implements MASM
5.1 behavior relating to macros, offsets, scope of code labels, structures, identifier
names, identifier case, and other behaviors.

The OPTION M510 directive automatically sets the following:

OPTION OLDSTRUCTS ; MASM 5.1 structures

OPTION OLDMACROS ; MASM 5.1 macros

OPTION DOTNAME ; Identifiers may begin with a dot (.)

OPTION SETIF2:TRUE ; Two-pass code activates on every pass

If you do not have a .386, 386P .486, or 486P directive in your module, then
OPTION M510 adds:

OPTION EXPR16 ; 16-bit expression precision

 ; See "OPTION EXPR16," following

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 361 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 361

362 Programmer’s Guide

If you do not have a .MODEL directive in your module, OPTION M510 adds:

OPTION OFFSET:SEGMENT ; OFFSET operator defaults to

 ; segment-relative

 ; See "OPTION OFFSET," following

If you do not have a .MODEL directive with a language specifier in your module,
OPTION M510 also adds:

OPTION NOSCOPED ; Code labels are not local inside

 ; procedures

 ; See "OPTION NOSCOPED," following

OPTION PROC:PRIVATE ; Labels defined with PROC are not

 ; public by default

 ; See "OPTION PROC," following

If you want to remove OPTION M510 from your code (or /Zm from the command
line), add the OPTION directive arguments to your module according to the
conditions stated earlier.

There may be compatibility issues affecting your code that are supported under
OPTION M510, but are not covered by the other OPTION directive arguments.
Once you have modified your source code so it no longer requires behavior
supported by OPTION M510, you can replace OPTION M510 with other
OPTION directive arguments. These compatibility issues are discussed in
following sections.

Once you have replaced OPTION M510 with other forms of the OPTION
directive and your code works correctly, try removing the OPTION directives, one
at a time. Make appropriate source modifications as necessary, until your code uses
only MASM 6.1 defaults.

Reserved Keywords Dependent on CPU Mode with OPTION M510
With OPTION M510, keywords and instructions not available in the current CPU
mode (such as ENTER under .8086) are not treated as keywords. This also means
the USE32, FLAT, FAR32, and NEAR32 segment types and the 80386/486
registers are not keywords with a processor selection less than .386.

If you remove OPTION M510, any reserved word used as an identifier generates a
syntax error. You can either rename the identifiers or use OPTION
NOKEYWORD. For more information on OPTION NOKEYWORD, see
“OPTION NOKEYWORD,” later in this appendix.

Invalid Use of Instruction Prefixes with OPTION M510
Code without OPTION M510 generates errors for all invalid uses of the
instruction prefixes. OPTION M510 suppresses some of these errors to match

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 362 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 362

Appendix A Differences Between MASM 6.1 and 5.1 363

MASM 5.1 behavior. MASM 5.1 does not check for illegal usage of the instruction
prefixes LOCK, REP, REPE, REPZ, REPNE, and REPNZ.

Illegal usage of these prefixes results in error A2068:

instruction prefix not allowed

For more information on these instruction prefixes, see “Overview of String
Instructions” in Chapter 5. See also “Bug Fixes from MASM 5.1,” earlier in this
appendix.

Size of Constant Operands with OPTION M510
In MASM 5.1, a large constant value that can fit only in the processor’s default
word (4 bytes for .386 and .486, 2 bytes otherwise) is assigned a size attribute of
the default word size. The value of the constant affects the number of bytes changed
by the instruction. For example,

; Legal only with OPTION M510

 mov [bx], 0100h

is legal in OPTION M510 mode. Since 0100h cannot fit in a byte, the assembler
interprets the value as a word.

Without OPTION M510, the assembler never assigns a size automatically. You
must state it explicitly with the PTR operator, as shown in the following example:

; Without OPTION M510

 mov [bx], WORD PTR 0100h

Code Labels when Defining Data with OPTION M510
MASM 5.1 allows a code label definition in a data definition statement if that
statement does not also define a data label. MASM 6.1 also allows such definitions
if OPTION M510 is enabled; otherwise it is illegal.

; Legal only with OPTION M510

MyCodeLabel: DW 0

SEG Operator with OPTION M510
In MASM 5.1, the SEG operator returns a label’s segment address unless the frame
is explicitly specified, in which case it returns the segment address of the frame. A
statement such as SEG DGROUP:var always returns DGROUP, whereas SEG var
always returns the segment address of var. OPTION M510 forces this same
behavior in MASM 6.1.

If you do not use OPTION M510, the behavior of the SEG operator is determined
by the OPTION OFFSET directive, as described in “OPTION OFFSET,” later in
this appendix.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 363 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 363

364 Programmer’s Guide

In MASM 6.1, the value returned by the SEG operator applied to a nonexternal
variable depends on compatibility mode:

◆ Without OPTION M510, SEG returns the address of the frame (the segment,
group, or the value assumed to the segment register) if one has been explicitly
set.

◆ With OPTION M510, SEG returns the group if one has been specified. In the
absence of a defined group, SEG returns the segment where the variable is
defined.

Expression Evaluation with OPTION M510
By default, MASM 6.1 changes the way expressions are evaluated. In MASM 5.1,

var-2[bx]

is parsed as

(var-2)[bx]

Without OPTION M510, you must rewrite the statement, since the assembler
parses it as

var-(2[bx])

which generates an error.

Length and Size of Labels with OPTION M510
With OPTION M510, you can apply the LENGTH and SIZE operators to any
label. For a code label, SIZE returns a value of 0FFFFh for NEAR and 0FFFEh
for FAR. LENGTH always returns a value of 1. For strings, SIZE and LENGTH
both return 1.

Without OPTION M510, SIZE returns values of 0FF01h, 0FF02h, 0FF04h,
0FF05h, and 0FF06h for SHORT, NEAR16, NEAR32, FAR16, and FAR32
labels, respectively. LENGTH returns 1 except when used with DUP, in which
case it returns the outermost count. For arrays initialized with DUP, SIZE returns
the length multiplied by the size of the type.

The LENGTHOF and SIZEOF operators in MASM 6.1 handle arrays much more
consistently. These operators return the number of data items and the number of
bytes in an initializer. For a description of SIZEOF and LENGTHOF, see the
following sections in Chapter 5: “Declaring and Referencing Arrays,” “Declaring
and Initializing Strings,” “Defining Structure and Union Variables,” and “Defining
Record Variables.”

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 364 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 364

Appendix A Differences Between MASM 6.1 and 5.1 365

Comparing Types Using EQ and NE with OPTION M510
With OPTION M510, the assembler converts types to a constant value before
comparisons with EQ and NE. Code types are converted to values of 0FFFFh
(near) or 0FFFEh (far). If OPTION M510 is not enabled, the assembler converts
types to constants only when comparing them with constants. Thus, MASM 6.1
recognizes only equivalent qualified types as equal expressions.

For existing MASM 5.1 code, these distinctions affect only the use of the TYPE
operator in conjunction with EQ and NE. The following example illustrates how
the assembler compares types with and without compatibility mode:

MYSTRUCT STRUC

 f1 DB 0

 f2 DB 0

MYSTRUCT ENDS

; With OPTION M510

val = (TYPE MYSTRUCT) EQ WORD ; True: 2 EQ 2

val = 2 EQ WORD ; True: 2 EQ 2

val = WORD EQ WORD ; True: 2 EQ 2

val = SWORD EQ WORD ; True: 2 EQ 2

; Without OPTION M510

val = (TYPE MYSTRUCT) EQ WORD ; False: MyStruct NE WORD

val = 2 EQ WORD ; True: 2 EQ 2

val = WORD EQ WORD ; True: WORD EQ WORD

val = SWORD EQ WORD ; False: SWORD NE WORD

Use of Constant and PTR as a Type with OPTION M510
You can use a constant as the left operand to PTR in compatibility mode.
Otherwise, you must use a type expression. With OPTION M510, a constant must
have a value of 1 (BYTE), 2 (WORD), 4 (DWORD), 6 (FWORD), 8
(QWORD) or 10 (TBYTE). The assembler treats the constant as the

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 365 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 365

366 Programmer’s Guide

parenthesized type. Note that the TYPE operator yields a type expression, but the
SIZE operator yields a constant.

; With OPTION M510

MyData DW 0

 mov WORD PTR [bx], 10 ; Legal

 mov (TYPE MyData) PTR [bx], 10 ; Legal

 mov (SIZE MyData) PTR [bx], 10 ; Legal

 mov 2 ptr [bx], 10 ; Legal

; Without OPTION M510

MyData WORD 0

 mov WORD PTR [bx], 10 ; Legal

 mov (TYPE MyData) PTR [bx], 10 ; Legal

; mov (SIZE MyData) PTR [bx], 10 ; Illegal

; mov 2 PTR [bx], 10 ; Illegal

Structure Type Cast on Expressions with OPTION M510
In compatibility mode, use the PTR operator to type-cast a constant to a structure
type. This is most often done in data initializers to affect the CodeView information
of the data label. Without OPTION M510, the assembler generates an error.

MYSTRC STRUC

 f1 DB 0

MYSTRC ENDS

MyPtr DW MYSTRC PTR 0 ; Illegal without OPTION M510

In MASM 6.1, the initializer type does not influence CodeView’s type information.

Hidden Coercion of OFFSET Expression Size with OPTION M510
When programming for the 80386 or 80486, the size of an OFFSET expression
can be 2 bytes for a symbol in a USE16 segment, or 4 bytes for a symbol in a
USE32 or FLAT segment. With OPTION M510, you can use a 32-bit OFFSET
expression in a 16-bit context. Without OPTION M510, you must use the
LOWWORD operator to convert the offset size.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 366 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 366

Appendix A Differences Between MASM 6.1 and 5.1 367

.386

; With OPTION M510

seg32 SEGMENT USE32

MyLabel WORD 0

seg32 ENDS

seg16 SEGMENT USE16 'code' ; With OPTION M510:

 mov ax, OFFSET MyLabel ; Legal

 mov ax, LOWWORD OFFSET MyLabel ; Legal

 mov eax, OFFSET MyLabel ; Legal

seg16 ENDS

; Without OPTION M510

seg32 SEGMENT USE32

MyLabel WORD 0

seg32 ENDS

seg16 SEGMENT USE16 'code' ; Without OPTION M510:

; mov ax, OFFSET MyLabel ; Illegal

 mov ax, LOWWORD offset MyLabel ; Legal

 mov eax, OFFSET MyLabel ; Legal

seg16 ENDS

Specifying Radixes with OPTION M510
If the current radix in your code is greater than 10 decimal, MASM 6.1 allows the
radix specifiers B (binary) and D (decimal) only in compatibility mode. You must
change B to Y for binary, and D to T for decimal, since both B and D are
legitimate hexadecimal values, making numbers such as 12D ambiguous. If you
want to keep B and D as radix specifiers when the current radix is greater than 10,
you must specify OPTION M510. For more information about radixes, see
“Integer Constants and Constant Expressions” in Chapter 1.

Naming Conventions with OPTION M510
By default, MASM 5.1 does not write the names of public variables in uppercase to
the object file, even when a language type of PASCAL, FORTRAN, or BASIC is
specified.

Unless you use OPTION M510, these language types in MASM 6.1 write
identifier names in uppercase, even with the /Cp or /Cx command-line options.
When you link with /NOI, case must match in the object files to resolve externals.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 367 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 367

368 Programmer’s Guide

Length Significance of Symbol Names with OPTION M510
With MASM 5.1, only the first 31 characters of a symbol name are considered
significant, and only the first 31 characters of a public or external symbol name are
placed in the object file.

Without OPTION M510, the entire name is considered significant. The maximum
number of characters placed in the object file is controlled with the /Hnumber
command-line option, with a default of 247 (the maximum length of an identifier in
MASM 6.1).

String Defaults in Structure Variables with OPTION M510
In compatibility mode, a constant initializer can override a structure field initialized
with a string value. Without OPTION M510, only another string or a list can
override a string initializer. To update your code, surround the constant override
value with angle brackets or curly braces to indicate a list with one element.

MTSTRUCT STRUCT

MyString BYTE "This is a string"

MTSTRUCT ENDS

; With OPTION M510

MyInst MTSTRUCT <0>

; Without OPTION M510, either of these statements is correct

MyInst MTSTRUCT <<0>>

MyInst MTSTRUCT {<0>}

Effects of the ? Initializer in Data Definitions with OPTION M510
As described in “Declaring and Initializing Strings” in Chapter 5, the assembler
treats the ? initializer as either zero or as an unspecified value. In compatibility
mode, however, the assembler always treats the ? initializer as zero unless it is used
with the DUP operator. In this case, the assembler allocates space, but does not
initialize it with any value.

Current Address Operator with OPTION M510
In compatibility mode, the current address operator ($) applied to a structure returns
the offset of the first byte of the structure. When OPTION M510 is not enabled, $
returns the offset of the current field in the structure.

Segment Association for FAR Externals with OPTION M510
In MASM 5.1, you must place an EXTRN directive for a variable in the same
segment that holds the variable. For far data, this often entails opening and closing
a segment just to place the EXTRN statement.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 368 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 368

Appendix A Differences Between MASM 6.1 and 5.1 369

MASM 6.1 offers much greater flexibility in where EXTERN and EXTERNDEF
statements can appear, as described in “Positioning External Declarations” in
Chapter 8. However, in compatibility mode, MASM 6.1 emulates the behavior of
MASM 5.1.

Defining Aliases Using EQU with OPTION M510
In MASM 5.1, you can equate one symbol with another. These equates are called
“aliases.”

Unless you specify OPTION M510, MASM 6.1 does not allow aliases defined
with EQU. An immediate expression or text must appear as the right operand of an
EQU directive. Change aliases to use the TEXTEQU directive, described in “Text
Macros” in Chapter 9. This change may cause an expression to evaluate differently.

The following examples illustrate the differences between MASM 5.1 code,
MASM 6.1 code with OPTION M510, and MASM 6.1 code without OPTION
M510:

; MASM 5.1 code

var1 EQU 3

var2 EQU var1 ; var2 taken as an alias

 ; var2 references var1 anywhere var2 is

 ; used as a symbol

; MASM 6.1 with OPTION M510

var1 EQU 3

var2 EQU var1 ; var2 taken as a var2 EQU <var1>

 ; var2 substituted for var1 whenever

 ; text macros substituted

; MASM 6.1 without OPTION M510

var1 EQU 3

var2 EQU var1 ; Treated as var2 EQU 3

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 369 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 369

370 Programmer’s Guide

Difference in Text Macro Expansions with OPTION M510
MASM 6.1 recursively expands text macros used as values, whereas MASM 5.1
simply replaces the text macro with its value. The following example illustrates the
difference:

; With OPTION M510

tm1 EQU <contains tm2>

tm2 EQU <value>

tm3 CATSTR tm1 ; == <contains tm2>

; Without OPTION M510

tm3 CATSTR tm1 ; == <contains value>

Conditional Directives and Missing Operands with OPTION M510
MASM 5.1 considers a missing argument to be a zero. MASM 6.1 requires an
argument unless OPTION M510 is enabled.

OPTION OLDSTRUCTS
This section describes changes in MASM 6.1 that apply to structures. With
OPTION OLDSTRUCTS or OPTION M510:

◆ You can use plus operator (+) in structure field references.

◆ Labels and structure field names cannot have the same name with OPTION
OLDSTRUCTS.

Plus Operator Not Allowed with Structures
By default, each reference to structure member names must use the dot operator (.)
to separate the structure variable name from the field name. You cannot use the dot
operator as the plus operator (+) or vice versa.

To convert your code so that it does not need OPTION OLDSTRUCTS:

◆ Qualify all structure field references.

◆ Change all uses of the dot operator (.) that occur outside of structure references
to use the plus operator (+).

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 370 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 370

Appendix A Differences Between MASM 6.1 and 5.1 371

If you remove OPTION OLDSTRUCTS from your code, the assembler generates
errors for all lines requiring change. Using the dot operator in any context other
than for a structure field results in error A2166:

structure field expected

Unqualified structure references result in error A2006:

undefined symbol : identifier

The following example illustrates how to change MASM 5.1 code from the old
structure references to the new type in MASM 6.1:

; OPTION OLDSTRUCTS (simulates MASM 5.1)

structname STRUC

a BYTE ?

b WORD ?

structname ENDS

structinstance structname <>

 mov ax, [bx].b ; This code assembles

 mov al, structinstance.a ; correctly only with

 mov ax, [bx].4 ; OPTION OLDSTRUCTS

 ; or OPTION M510

; OPTION NOOLDSTRUCTS (the MASM 6.1 default)

structname STRUCT

a BYTE ?

b WORD ?

structname ENDS

structinstance structname <>

 mov ax, [bx].structname.b ; Add qualifying type

 mov al, structinstance.a ; No change needed

 mov ax, [bx]+4 ; Change dot to plus

; Alternative methods in MASM 6.1

; Either this:

 ASSUME bx:PTR structname

 mov ax, [bx]

; or this:

 mov ax, (structname PTR[bx]).b

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 371 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 371

372 Programmer’s Guide

Duplicate Structure Field Names
With the default, OPTION NOOLDSTRUCTS, label and structure field names
may have the same name. With OPTION OLDSTRUCTS (the MASM 5.1
default), labels and structure fields cannot have the same name. For more
information, see “Structures and Unions” in Chapter 5.

OPTION OLDMACROS
This section describes how MASM 5.1 and 6.1 differ in their handling of macros.
Without OPTION OLDMACROS or OPTION M510, MASM 6.1 changes the
behavior of macros in several ways. If you want the MASM 5.1 macro behavior,
add OPTION OLDMACROS or OPTION M510 to your MASM 5.1 code.

Separating Macro Arguments with Commas
MASM 5.1 allows white spaces or commas to separate arguments to macros.
MASM 6.1 with OPTION NOOLDMACROS (the default) requires commas
between arguments. For example, in the macro call

MyMacro var1 var2 var3, var4

OPTION OLDMACROS causes the assembler to treat all four items as separate
arguments. With OPTION NOOLDMACROS, the assembler treats

var1 var2 var3

as one argument, since the items are not separated with commas. To convert your
macro code, replace spaces between macro arguments with a single comma.

New Behavior with Ampersands in Macros
The default OPTION NOOLDMACROS causes the assembler to interpret
ampersands (&) within a macro differently than does MASM 5.1. MASM 5.1
requires one ampersand for each level of macro nesting. OPTION OLDMACROS
emulates this behavior.

Without OPTION OLDMACROS, MASM 6.1 removes ampersands only once no
matter how deeply nested the macro. To update your MASM 5.1 macros, follow
this simple rule: replace every sequence of ampersands with a single ampersand.
The only exception is when macro parameters immediately precede and follow the
ampersand, and both require substitution. In this case, use two ampersands. For a
description of the new rules, see “Substitution Operator” in Chapter 9.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 372 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 372

Appendix A Differences Between MASM 6.1 and 5.1 373

This example shows how to update a MASM 5.1 macro:

; OPTION OLDMACROS (emulates MASM 5.1 behavior)

createNames macro arg

 irp tail, <Next, Last>

 irp num, <1, 2>

 ; Define more names of the form: abcNext1?

arg&&tail&&&num&&&? label BYTE

 ENDM

 ENDM

ENDM

; OPTION NOOLDMACROS (the MASM 6.1 default)

createNames macro arg

 for tail, <Next, Last> ; FOR is the MASM 6.1

 for num, <1, 2> ; synonym for irp

 ; Define more names of the form: abcNext1?

arg&&tail&&num&? label BYTE

 ENDM

 ENDM

ENDM

OPTION DOTNAME
MASM 5.1 allows names of identifiers to begin with a period. The MASM 6.1
default is OPTION NODOTNAME. Adding OPTION DOTNAME to your code
enables the MASM 5.1 behavior.

If you don’t want to use this directive in your source code, rename the identifiers
whose names begin with a period.

OPTION EXPR16
MASM 5.1 treats expressions as 16-bit words if you do not specify .386 or .386P
directives. MASM 6.1 by default treats expressions as 32-bit words, regardless of
the CPU type. You can force MASM 6.1 to use the smaller expression size with the
OPTION EXPR16 statement.

Unless your MASM 5.1 code specifies .386 or .386P, OPTION M510 also sets
16-bit expression size. You can selectively disable this by following OPTION
M510 with the OPTION EXPR32 directive, which sets the size back to 32 bits.
You cannot have both OPTION EXPR32 and OPTION EXPR16 in your
program.

It may not be easy to determine the effect of changing from 16-bit internal
expression size to 32-bit size. In most cases, the 32-bit word size does not affect the
MASM 5.1 code. However, problems may arise because of differences in

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 373 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 373

374 Programmer’s Guide

intermediate values during evaluation of expressions. You can compare the files for
differences by generating listing files with the /Fl and /Sa command-line options
with and without OPTION EXPR16.

OPTION OFFSET
The information in this section is relevant only if your MASM 5.1 code does not
use the .MODEL directive. With no .MODEL, MASM 5.1 computes offsets from
the start of the segment, whereas MASM 6.1 computes offsets from the start of the
group. (With .MODEL, MASM 5.1 also computes offsets from the start of the
group.)

To force MASM 6.1 to emulate 5.1 behavior, specify either OFFSET:SEGMENT
or OPTION M510. Both directives cause the assembler to compute offsets relative
to the segment if you do not include .MODEL.

To selectively enable MASM 6.1 behavior, place the directive OPTION
OFFSET:GROUP after OPTION M510. In this case, you should ensure each
OFFSET statement has a segment override where appropriate. The following
example shows how OPTION OFFSET:SEGMENT affects code written for
MASM 5.1:

OPTION OFFSET:SEGMENT

MyGroup GROUP MySeg

MySeg SEGMENT 'data'

MyLabel LABEL BYTE

 DW OFFSET MyLabel ; Relative to MySeg

 DW OFFSET MyGroup:MyLabel ; Relative to MyGroup

 DW OFFSET MySeg:MyLabel ; Relative to MySeg

MySeg ENDS

In the preceding example, the first OFFSET statement computes the offset of
MyLabel relative to MySeg. Without OFFSET:SEGMENT, MASM 6.1 returns
the offset relative to MyGroup. To maintain the correct behavior with
OFFSET:GROUP, specify a segment override, as shown in the following. The
other two OFFSET statements already include overrides, and so do not require
modification.

OPTION OFFSET:GROUP

MyGroup GROUP MySeg

MySeg SEGMENT 'data'

MyLabel LABEL BYTE

 DW OFFSET MySeg:MyLabel ; Relative to MySeg

 DW OFFSET MyGroup:MyLabel ; Relative to MyGroup

 DW OFFSET MySeg:MyLabel ; Relative to MySeg

MySeg ENDS

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 374 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 374

Appendix A Differences Between MASM 6.1 and 5.1 375

When not in compatibility mode, the OPTION OFFSET directive determines
whether the SEG operator returns a value relative to the group or segment. With
OPTION M510, SEG is always segment-relative by default, regardless of the
current value of OPTION OFFSET.

OPTION NOSCOPED
The information in this section applies only if the .MODEL directive in your
MASM 5.1 code does not specify a language type. Without a language type,
MASM 5.1 assumes code labels in procedures have no “scope” — that is, the labels
are not local to the procedure. When not in compatibility mode, MASM 6.1 always
gives scope to code labels, even without a language type.

To force MASM 5.1 behavior, specify either OPTION M510 or OPTION
NOSCOPED in your code. To selectively enable MASM 6.1 behavior, place the
directive OPTION SCOPED after OPTION M510.

To determine which labels require change, assemble the module without the
OPTION NOSCOPED directive. For each reference to a label that is not local,
the assembler generates error A2006:

undefined symbol : identifier

OPTION PROC
The information in this section applies only if the .MODEL directive in your
MASM 5.1 code does not specify a language type. Without a language type,
MASM 5.1 makes procedures private to the module. By default, MASM 6.1 makes
procedures public. You can explicitly change the default visibility to private with
either OPTION M510, OPTION PROC:PRIVATE, or OPTION
PROC:EXPORT.

To selectively enable MASM 6.1 behavior, place the directive OPTION
PROC:PUBLIC after OPTION M510. You can override the default by adding
the PUBLIC or PRIVATE keyword to selected procedures. The following
example shows how to change MASM 5.1 code to keep a procedure private:

; MASM 5.1 (OPTION PROC:PRIVATE)

MyProc PROC NEAR

; MASM 6.1 (OPTION PROC:PUBLIC)

MyProc PROC NEAR PRIVATE

This is necessary only to avoid naming conflicts between public names in multiple
modules or libraries. The symbol table in a listing file shows the visibility (public,
private, or export) of each procedure.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 375 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 375

376 Programmer’s Guide

OPTION NOKEYWORD
MASM 6.1 has several new keywords that MASM 5.1 does not recognize as
reserved. To resolve any conflicts, you can:

◆ Rename any offending symbols in your code.

◆ Selectively disable keywords with the OPTION NOKEYWORD directive.

The second option lets you retain the offending symbol names in your code by
forcing MASM 6.1 to not recognize them as keywords. For example,

OPTION NOKEYWORD:<INVOKE STRUCT>

removes the keywords INVOKE and STRUCT from the assembler’s list of
reserved words. However, you cannot then use the keywords in their intended
function, since the assembler no longer recognizes them.

The following list shows MASM 6.1 reserved words new since MASM 5.1:

.BREAK .UNTILCXZ FRSTORD

.CONTINUE .WHILE FRSTORW

.DOSSEG ADDR FSAVED

.ELSE ALIAS FSAVEW

.ELSEIF BSWAP FSTENVD

.ENDIF CARRY? FSTENVW

.ENDW CMPXCHG GOTO

.EXIT ECHO HIGHWORD

.IF EXTERN INVD

.LISTALL EXTERNDEF INVLPG

.LISTIF FAR16 INVOKE

.LISTMACRO FAR32 IRETDF

.LISTMACROALL FLAT IRETF

.NO87 FLDENVD LENGTHOF

.NOCREF FLDENVW LOOPD

.NOLIST FNSAVED LOOPED

.NOLISTIF FNSAVEW LOOPEW

.NOLISTMACRO FNSTENVD LOOPNED

.REPEAT FNSTENVW LOOPNEW

.STARTUP FOR LOOPNZD

.UNTIL FORC LOOPNZW

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 376 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 376

Chapter 1 Chapter Head 377

LOOPW PUSHCONTEXT SWORD

LOOPZW PUSHD SYSCALL

LOWWORD PUSHW TEXTEQU

LROFFSET REAL10 TR3

NEAR16 REAL4 TR4

NEAR32 REAL8 TR5

OPATTR REPEAT TYPEDEF

OPTION SBYTE UNION

OVERFLOW? SDWORD VARARG

PARITY? SIGN? WBINVD

POPAW SIZEOF WHILE

POPCONTEXT STDCALL XADD

PROTO STRUCT ZERO?

PUSHAW SUBTITLE

OPTION SETIF2
By default, MASM 6.1 does not recognize pass-dependent constructs. Both the
OPTION M510 and OPTION SETIF2 statements force MASM 6.1 to handle
MASM 5.1 constructs that activate on the second assembly pass, such as .ERR2,
IF2, and ELSEIF2.

Invoke the option like this:

OPTION SETIF2: {TRUE | FALSE}

When set to TRUE, OPTION SETIF2 forces all second-pass constructs to
activate on every assembly pass. When set to FALSE, second-pass constructs do
not activate on any pass. OPTION M510 implies OPTION SETIF2:TRUE.

Changes to Instruction Encodings
MASM 6.1 contains changes to the encodings for several instructions. In some
cases, the changes help optimize code size.

Coprocessor Instructions
For the 8087 coprocessor, MASM 5.1 adds an extra NOP before the no-wait
versions of coprocessor instructions. MASM 6.1 does not. In the rare case that the
missing NOP affects timing, insert NOP.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 377 of 38 Printed: 03/06/94 05:43 PM

378 Programmer’s Guide

For the 80287 coprocessor or better, MASM 5.1 inserts FWAIT before certain
instructions. MASM 6.1 does not prefix any 80287, 80387, or 80486 coprocessor
instruction with FWAIT, except for wait forms of instructions that have a no-wait
form.

RET Instruction
MASM 5.1 generates a 3-byte encoding for RET, RETN, or RETF instructions
with an operand value of zero, unless the operand is an external absolute. In this
case, MASM 5.1 ignores the parameter and generates a 1-byte encoding.

MASM 6.1 does the opposite. It ignores a zero operand for the return instructions
and generates a 1-byte encoding, unless the operand is an external absolute. In this
case, MASM 6.1 generates a 3-byte encoding.

Thus, you can suppress epilogue code in a procedure but still specify the default
size for RET by coding the return as

 ret 0

Arithmetic Instructions
Versions 5.1 and 6.1 differ in the way they encode the arithmetic instructions ADC,
ADD, AND, CMP, OR, SUB, SBB, and XOR, under the following conditions:

◆ The first operand is either AX or EAX.

◆ The second operand is a constant value between 0 and 127.

For the AX register, there is no size or speed difference between the two encodings.
For the EAX register, the encoding in MASM 6.1 is 2 bytes smaller. The OPTION
NOSIGNEXTEND directive forces the MASM 5.1 behavior for AND, OR,
and XOR.

Filename: LMAPGAPA.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 378 of 38 Printed: 03/06/94 05:43 PM
Printed On: Distiller Colorlayer: ? Document Page: 378

379

A P P E N D I X B

BNF Grammar

This appendix provides a complete description of symbols, operators, and directives
for MASM 6.1. It uses the Backus-Naur Form (BNF) for grammar notation. You
can use BNF grammar to determine the exact syntax for any language component
and find all available options for any MASM command.

BNF definitions consist of “nonterminals” and “terminals.” Nonterminals are
placeholders within a BNF definition, defined elsewhere in the BNF grammar.
Terminals are endpoints in a BNF definition, consisting of MASM 6.1 keywords. In
this Appendix, all nonterminals appear in italics type and all terminals appear in
bold type.

BNF Conventions
The conventions use different font attributes for different items in the BNF. The
symbols and formats are as follows:

Attribute Description

nonterminal Italic type indicates nonterminals.

RESERVED Terminals in boldface type are literal reserved words and
symbols that must be entered as shown. Characters in this
context are always case insensitive.

[[]] Objects enclosed in double brackets ([[]]) are optional. The
brackets do not actually appear in the source code.

| A vertical bar indicates a choice between the items on each
side of the bar.

.8086 Underlined items indicate the default option if one is given.

default typeface Characters in the set described or listed can be used as
terminals in MASM statements.

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 379 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 379

380 Programmer’s Guide

How to Use the BNF Grammar
To illustrate the use of the BNF, Figure B.1 diagrams the definition of the
TYPEDEF directive, starting with the nonterminal typedefDir.

The entries under each horizontal brace in Figure B.1 are terminals (such as
NEAR16, NEAR32, FAR16, and FAR32) or nonterminals (such as qualifier,
qualifiedType, distance, and protoSpec) that can be further defined. Each italicized
nonterminal in the typedefDir definition is also an entry in the BNF. Three vertical
dots indicate a branching definition for a nonterminal that, for the sake of
simplicity, this figure does not illustrate.

The BNF grammar allows recursive definitions. For example, the grammar uses
qualifiedType as a possible definition for qualifiedType, which is also a component
of the definition for qualifier.

typedefDir

typeId TYPEDEF qualifier

qualifiedType | PROTO protospec

nearfar | NEAR16 | NEAR32 | FAR16 | FAR32

NEAR | FAR

[[distance]][[langType]][[protoArgList]]| typeID

...

...

...
...

...
...

type |[[distance]] PTR[[qualifiedType]]

Figure B.1 BNF Definition of the TYPEDEF Directive

Nonterminal Definition

;; endOfLine
| comment

=Dir id = immExpr ;;

addOp + | -

aExpr term
| aExpr && term

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 380 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 380

Appendix B BNF Grammar 381

Nonterminal Definition

altId id

arbitraryText charList

asmInstruction mnemonic [[exprList]]

assumeDir ASSUME assumeList ;;
| ASSUME NOTHING ;;

assumeList assumeRegister
| assumeList , assumeRegister

assumeReg register : assumeVal

assumeRegister assumeSegReg
| assumeReg

assumeSegReg segmentRegister : assumeSegVal

assumeSegVal frameExpr
| NOTHING | ERROR

assumeVal qualifiedType
| NOTHING | ERROR

bcdConst [[sign]] decNumber

binaryOp == | != | >= | <= | > | < | &

bitDef bitFieldId : bitFieldSize [[= constExpr]]

bitDefList bitDef
| bitDefList , [[;;]] bitDef

bitFieldId id

bitFieldSize constExpr

blockStatements directiveList
| .CONTINUE [[.IF cExpr]]
| .BREAK [[.IF cExpr]]

bool TRUE | FALSE

byteRegister AL | AH | BL | BH | CL | CH | DL | DH

cExpr aExpr
| cExpr || aExpr

character Any character with ordinal in the range 0–255
except linefeed (10)

charList character
| charList character

className string

commDecl [[nearfar]] [[langType]] id : commType
[[: constExpr]]

commDir COMM commList ;;

comment ; text ;;

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 381 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 381

382 Programmer’s Guide

Nonterminal Definition

commentDir COMMENT delimiter
text
text delimiter text ;;

commList commDecl
| commList , commDecl

commType type
| constExpr

constant digits [[radixOverride]]

constExpr expr

contextDir PUSHCONTEXT contextItemList ;;
| POPCONTEXT contextItemList ;;

contextItem ASSUMES | RADIX | LISTING | CPU | ALL

contextItemList contextItem
| contextItemList , contextItem

controlBlock whileBlock
| repeatBlock

controlDir controlIf
| controlBlock

controlElseif .ELSEIF cExpr ;;
directiveList
[[controlElseif]]

controlIf .IF cExpr ;;
directiveList
[[controlElseif]]
[[.ELSE ;;
directiveList]]
.ENDIF ;;

coprocessor .8087 | .287 | .387 | .NO87

crefDir crefOption ;;

crefOption .CREF
| .XCREF [[idList]]
| .NOCREF [[idList]]

cxzExpr expr
| ! expr
| expr == expr
| expr != expr

dataDecl DB | DW | DD | DF | DQ | DT | dataType | typeId

dataDir [[id]] dataItem ;;

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 382 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 382

Appendix B BNF Grammar 383

Nonterminal Definition

dataItem dataDecl scalarInstList
| structTag structInstList
| typeId structInstList
| unionTag structInstList
| recordTag recordInstList

dataType BYTE | SBYTE | WORD | SWORD | DWORD
| SDWORD | FWORD | QWORD | TBYTE
| REAL4 | REAL8 | REAL10

decdigit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

decNumber decdigit
| decNumber decdigit

delimiter Any character except whiteSpaceCharacter

digits decdigit
| digits decdigit
| digits hexdigit

directive generalDir
| segmentDef

directiveList directive
| directiveList directive

distance nearfar
| NEAR16 | NEAR32 | FAR16 | FAR32

e01 e01 orOp e02
| e02

e02 e02 AND e03
| e03

e03 NOT e04
| e04

e04 e04 relOp e05
| e05

e05 e05 addOp e06
| e06

e06 e06 mulOp e07
| e06 shiftOp e07
| e07

e07 e07 addOp e08
| e08

e08 HIGH e09
| LOW e09
| HIGHWORD e09
| LOWWORD e09
| e09

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 383 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 383

384 Programmer’s Guide

Nonterminal Definition

e09 OFFSET e10
| SEG e10
| LROFFSET e10
| TYPE e10
| THIS e10
| e09 PTR e10
| e09 : e10
| e10

e10 e10 . e11
| e10 [[expr]]
| e11

e11 (expr)
| [[expr]]
| WIDTH id
| MASK id
| SIZE sizeArg
| SIZEOF sizeArg
| LENGTH id
| LENGTHOF id
| recordConst
| string
| constant
| type
| id
| $
| segmentRegister
| register
| ST
| ST (expr)

echoDir ECHO arbitraryText ;;
%OUT arbitraryText ;;

elseifBlock elseifStatement ;;
directiveList
[[elseifBlock]]

elseifStatement ELSEIF constExpr
| ELSEIFE constExpr
| ELSEIFB textItem
| ELSEIFNB textItem
| ELSEIFDEF id
| ELSEIFNDEF id
| ELSEIFDIF textItem , textItem
| ELSEIFDIFI textItem , textItem
| ELSEIFIDN textItem , textItem
| ELSEIFIDNI textItem , textItem
| ELSEIF1
| ELSEIF2

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 384 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 384

Appendix B BNF Grammar 385

Nonterminal Definition

endDir END [[immExpr]] ;;

endpDir procId ENDP ;;

endsDir id ENDS ;;

equDir textMacroId EQU equType ;;

equType immExpr
| textLiteral

errorDir errorOpt ;;

errorOpt .ERR [[textItem]]
| .ERRE constExpr [[optText]]
| .ERRNZ constExpr [[optText]]
| .ERRB textItem [[optText]]
| .ERRNB textItem [[optText]]
| .ERRDEF id [[optText]]
| .ERRNDEF id [[optText]]
| .ERRDIF textItem , textItem [[optText]]
| .ERRDIFI textItem , textItem [[optText]]
| .ERRIDN textItem , textItem [[optText]]
| .ERRIDNI textItem , textItem [[optText]]
| .ERR1 [[textItem]]
| .ERR2 [[textItem]]

exitDir .EXIT [[expr]] ;;

exitmDir: EXITM
| EXITM textItem

exponent E [[sign]] decNumber

expr SHORT e05
| .TYPE e01
| OPATTR e01
| e01

exprList expr
| exprList , expr

externDef [[langType]] id [[(altId)]] : externType

externDir externKey externList ;;

externKey EXTRN | EXTERN | EXTERNDEF

externList externDef
| externList , [[;;]] externDef

externType ABS
| qualifiedType

fieldAlign constExpr

fieldInit [[initValue]]
| structInstance

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 385 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 385

386 Programmer’s Guide

Nonterminal Definition

fieldInitList fieldInit
| fieldInitList , [[;;]] fieldInit

fileChar delimiter

fileCharList fileChar
| fileCharList fileChar

fileSpec fileCharList
| textLiteral

flagName ZERO? | CARRY? | OVERFLOW?
| SIGN? | PARITY?

floatNumber [[sign]] decNumber . [[decNumber]] [[exponent]]
| digits R
| digits r

forcDir FORC | IRPC

forDir FOR | IRP

forParm id [[: forParmType]]

forParmType REQ
| = textLiteral

frameExpr SEG id
| DGROUP : id
| segmentRegister : id
| id

generalDir modelDir | segOrderDir | nameDir
| includeLibDir | commentDir
| groupDir | assumeDir
| structDir | recordDir | typedefDir
| externDir | publicDir | commDir | protoTypeDir
| equDir | =Dir | textDir
| contextDir | optionDir | processorDir
| radixDir
| titleDir | pageDir | listDir
| crefDir | echoDir
| ifDir | errorDir | includeDir
| macroDir | macroCall | macroRepeat | purgeDir
| macroWhile | macroFor | macroForc
| aliasDir

gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
| BP | EBP | SP | ESP | DI | EDI | SI | ESI

groupDir groupId GROUP segIdList

groupId id

hexdigit a | b | c | d | e | f
| A | B | C | D | E | F

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 386 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 386

Appendix B BNF Grammar 387

Nonterminal Definition

id alpha
| id alpha
| id decdigit

idList id
| idList , id

ifDir ifStatement ;;
directiveList
[[elseifBlock]]
[[ELSE ;;
directiveList]]
ENDIF ;;

ifStatement IF constExpr
| IFE constExpr
| IFB textItem
| IFNB textItem
| IFDEF id
| IFNDEF id
| IFDIF textItem , textItem
| IFDIFI textItem , textItem
| IFIDN textItem , textItem
| IFIDNI textItem , textItem
| IF1
| IF2

immExpr expr

includeDir INCLUDE fileSpec ;;

includeLibDir INCLUDELIB fileSpec ;;

initValue immExpr
| string
| ?
| constExpr DUP (scalarInstList)
| floatNumber
| bcdConst

inSegDir [[labelDef]] inSegmentDir

inSegDirList inSegDir
| inSegDirList inSegDir

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 387 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 387

388 Programmer’s Guide

Nonterminal Definition

inSegmentDir instruction
| dataDir
| controlDir
| startupDir
| exitDir
| offsetDir
| labelDir
| procDir [[localDirList]] [[inSegDirList]] endpDir
| invokeDir
| generalDir

instrPrefix REP | REPE | REPZ | REPNE | REPNZ | LOCK

instruction [[instrPrefix]] asmInstruction

invokeArg register :: register
| expr
| ADDR expr

invokeDir INVOKE expr [[, [[;;]] invokeList]] ;;

invokeList invokeArg
| invokeList , [[;;]] invokeArg

keyword Any reserved word

keywordList keyword
| keyword keywordList

labelDef id :
| id ::
| @@:

labelDir id LABEL qualifiedType ;;

langType C | PASCAL | FORTRAN | BASIC
| SYSCALL | STDCALL

listDir listOption ;;

listOption .LIST
| .NOLIST | .XLIST
| .LISTALL
| .LISTIF | .LFCOND
| .NOLISTIF | .SFCOND
| .TFCOND
| .LISTMACROALL | .LALL
| .NOLISTMACRO | .SALL
| .LISTMACRO | .XALL

localDef LOCAL idList ;;

localDir LOCAL parmList ;;

localDirList localDir
| localDirList localDir

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 388 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 388

Appendix B BNF Grammar 389

Nonterminal Definition

localList localDef
| localList localDef

macroArg % constExpr
| % textMacroId
| % macroFuncId (macroArgList)
| string
| arbitraryText
| < arbitraryText >

macroArgList macroArg
| macroArgList , macroArg

macroBody [[localList]]
macroStmtList

macroCall id macroArgList ;;
| id (macroArgList)

macroDir id MACRO [[macroParmList]] ;;
macroBody
ENDM ;;

macroFor forDir forParm , < macroArgList > ;;
macroBody
ENDM ;;

macroForc forcDir id , textLiteral ;;
macroBody
ENDM ;;

macroFuncId id

macroId macroProcId
| macroFuncId

macroIdList macroId
| macroIdList , macroId

macroLabel id

macroParm id [[: parmType]]

macroParmList macroParm
| macroParmList , [[;;]] macroParm

macroProcId id

macroRepeat repeatDir constExpr ;;
macroBody
ENDM ;;

macroStmt directive
| exitmDir
| : macroLabel
| GOTO macroLabel

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 389 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 389

390 Programmer’s Guide

Nonterminal Definition

macroStmtList macroStmt ;;
| macroStmtList macroStmt ;;

macroWhile WHILE constExpr ;;
macroBody
ENDM ;;

mapType ALL | NONE | NOTPUBLIC

memOption TINY | SMALL | MEDIUM | COMPACT
| LARGE | HUGE | FLAT

mnemonic Instruction name

modelDir .MODEL memOption [[, modelOptlist]] ;;

modelOpt langType
| stackOption

modelOptlist modelOpt
| modelOptlist , modelOpt

module [[directiveList]] endDir

mulOp * | / | MOD

nameDir NAME id ;;

nearfar NEAR | FAR

nestedStruct structHdr [[id]] ;;
structBody
ENDS ;;

offsetDir offsetDirType ;;

offsetDirType EVEN
| ORG immExpr
| ALIGN [[constExpr]]

offsetType GROUP | SEGMENT | FLAT

oldRecordFieldList [[constExpr]]
| oldRecordFieldList , [[constExpr]]

optionDir OPTION optionList ;;

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 390 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 390

Appendix B BNF Grammar 391

Nonterminal Definition

optionItem CASEMAP : mapType
| DOTNAME | NODOTNAME
| EMULATOR | NOEMULATOR
| EPILOGUE : macroId
| EXPR16 | EXPR32
| LANGUAGE : langType
| LJMP | NOLJMP
| M510 | NOM510
| NOKEYWORD : < keywordList >
| NOSIGNEXTEND
| OFFSET : offsetType
| OLDMACROS | NOOLDMACROS
| OLDSTRUCTS | NOOLDSTRUCTS
| PROC : oVisibility
| PROLOGUE : macroId
| READONLY | NOREADONLY
| SCOPED | NOSCOPED
| SEGMENT : segSize
| SETIF2 : bool

optionList optionItem
| optionList , [[;;]] optionItem

optText , textItem

orOp OR | XOR

oVisibility PUBLIC | PRIVATE | EXPORT

pageDir PAGE [[pageExpr]] ;;

pageExpr +
| [[pageLength]] [[, pageWidth]]

pageLength constExpr

pageWidth constExpr

parm parmId [[: qualifiedType]]
| parmId [[constExpr]] [[: qualifiedType]]

parmId id

parmList parm
| parmList , [[;;]] parm

parmType REQ
| = textLiteral
| VARARG

pOptions [[distance]] [[langType]] [[oVisibility]]

primary expr binaryOp expr
| flagName
| expr

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 391 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 391

392 Programmer’s Guide

Nonterminal Definition

procDir procId PROC [[pOptions]] [[< macroArgList >]]
[[usesRegs]] [[procParmList]]

processor .8086
| .186
| .286 | .286C | .286P
| .386 | .386C | .386P
| .486 | .486P

processorDir processor ;;
| coprocessor ;;

procId id

procParmList [[, [[;;]] parmList]]
[[, [[;;]] parmId :VARARG]]

protoArg [[id]] : qualifiedType

protoArgList [[, [[;;]] protoList]]
[[, [[;;]] [[id]] :VARARG]]

protoList protoArg
| protoList , [[;;]] protoArg

protoSpec [[distance]] [[langType]] [[protoArgList]]
| typeId

protoTypeDir id PROTO protoSpec

pubDef [[langType]] id

publicDir PUBLIC pubList ;;

pubList pubDef
| pubList , [[;;]] pubDef

purgeDir PURGE macroIdList

qualifiedType type
| [[distance]] PTR [[qualifiedType]]

qualifier qualifiedType
| PROTO protoSpec

quote “
| ‘

radixDir .RADIX constExpr ;;

radixOverride h | o | q | t | y
| H | O | Q | T | Y

recordConst recordTag { oldRecordFieldList }
| recordTag < oldRecordFieldList >

recordDir recordTag RECORD bitDefList ;;

recordFieldList [[constExpr]]
| recordFieldList , [[;;]] [[constExpr]]

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 392 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 392

Appendix B BNF Grammar 393

Nonterminal Definition

recordInstance { [[;;]] recordFieldList [[;;]] }
| < oldRecordFieldList >
| constExpr DUP (recordInstance)

recordInstList recordInstance
| recordInstList , [[;;]] recordInstance

recordTag id

register specialRegister
| gpRegister
| byteRegister

regList register
| regList register

relOp EQ | NE | LT | LE | GT | GE

repeatBlock .REPEAT ;;
blockStatements ;;
untilDir ;;

repeatDir REPEAT | REPT

scalarInstList initValue
| scalarInstList , [[;;]] initValue

segAlign BYTE | WORD | DWORD | PARA | PAGE

segAttrib PUBLIC
| STACK
| COMMON
| MEMORY
| AT constExpr
| PRIVATE

segDir .CODE [[segId]]
| .DATA
| .DATA?
| .CONST
| .FARDATA [[segId]]
| .FARDATA? [[segId]]
| .STACK [[constExpr]]

segId id

segIdList segId
| segIdList , segId

segmentDef segmentDir [[inSegDirList]] endsDir
| simpleSegDir [[inSegDirList]] [[endsDir]]

segmentDir segId SEGMENT [[segOptionList]] ;;

segmentRegister CS | DS | ES | FS | GS | SS

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 393 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 393

394 Programmer’s Guide

Nonterminal Definition

segOption segAlign
| segRO
| segAttrib
| segSize
| className

segOptionList segOption
| segOptionList segOption

segOrderDir .ALPHA | .SEQ | .DOSSEG | DOSSEG

segRO READONLY

segSize USE16 | USE32 | FLAT

shiftOp SHR | SHL

sign - | +

simpleExpr (cExpr)
| primary

simpleSegDir segDir ;;

sizeArg id
| type
| e10

specialChars : | . | [[|]] | (|) | < | > | { | }
| + | - | / | * | & | % | !
| ’ | \ | = | ; | , | “
| whiteSpaceCharacter
| endOfLine

specialRegister CR0 | CR2 | CR3
| DR0 | DR1 | DR2 | DR3 | DR6 | DR7
| TR3 | TR4 | TR5 | TR6 | TR7

stackOption NEARSTACK | FARSTACK

startupDir .STARTUP ;;

stext stringChar
| stext stringChar

string quote [[stext]] quote

stringChar quote quote
| Any character except quote

structBody structItem ;;
| structBody structItem ;;

structDir structTag structHdr [[fieldAlign]]
[[, NONUNIQUE]] ;;
structBody
structTag ENDS ;;

structHdr STRUC | STRUCT | UNION

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 394 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 394

Appendix B BNF Grammar 395

Nonterminal Definition

structInstance < [[fieldInitList]] >
| { [[;;]] [[fieldInitList]] [[;;]] }
| constExpr DUP (structInstList)

structInstList structInstance
| structInstList , [[;;]] structInstance

structItem dataDir
| generalDir
| offsetDir
| nestedStruct

structTag id

term simpleExpr
| ! simpleExpr

text textLiteral
| text character
| ! character text
| character
| ! character

textDir id textMacroDir ;;

textItem textLiteral
| textMacroId
| % constExpr

textLen constExpr

textList textItem
| textList , [[;;]] textItem

textLiteral < text >;;

textMacroDir CATSTR [[textList]]
| TEXTEQU [[textList]]
| SIZESTR textItem
| SUBSTR textItem , textStart [[, textLen]]
| INSTR [[textStart ,]] textItem , textItem

textMacroId id

textStart constExpr

titleDir titleType arbitraryText ;;

titleType TITLE | SUBTITLE | SUBTTL

type structTag
| unionTag
| recordTag
| distance
| dataType
| typeId

typedefDir typeId TYPEDEF qualifier

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 395 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 395

396 Programmer’s Guide

Nonterminal Definition

typeId id

unionTag id

untilDir .UNTIL cExpr ;;
.UNTILCXZ [[cxzExpr]] ;;

usesRegs USES regList

whileBlock .WHILE cExpr ;;
blockStatements ;;
.ENDW

whiteSpaceCharacter ASCII 8, 9, 11–13, 26, 32

Filename: LMAPGAPB.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 396 of 18 Printed: 03/06/94 05:45 PM
Printed On: Distiller Colorlayer: ? Document Page: 396

397

A P P E N D I X C

Generating and Reading
Assembly Listings

A listing file shows precisely how the assembler translates your source file into
machine code. The listing documents the assembler’s assumptions, memory
allocations, and optimizations.

MASM creates an assembly listing of your source file whenever you do one of the
following:

◆ Select the appropriate option in PWB.

◆ Use one of the related source code directives.

◆ Specify the /Fl option on the MASM command line.

The assembly listing contains both the statements in the source file and the binary
code (if any) generated for each statement. The listing also shows the names and
values of all labels, variables, and symbols in your file.

The assembler creates tables for macros, structures, unions, records, segments,
groups, and other symbols, and places the tables at the end of the assembly listing.
Only the types of symbols encountered in the program are included. For example, if
your program has no macros, the symbol table does not have a macros section.

Generating Listing Files
To generate a listing file from within PWB, follow these steps:

1. From the Options menu, choose MASM Options.

2. In the MASM Options dialog box, choose Set Debug or Release Options.

The dialog box for Set Debug or Release Options lists the choices summarized in
Table C.1. This table also shows the equivalent source code directives and
command-line options.

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 397 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 397

398 Programmer’s Guide

Table C.1 Options for Generating or Modifying Listing Files

To generate this
information: In PWB1, select:

In source
code, enter:

From command
line, enter:

Default listing — includes
all assembled lines

Generate Listing File .LIST (default) /Fl

Turn off all source
listings (overrides all listing
directives)

Generate Listing File
(turn off)

.NOLIST
(synonym = .SFCOND)

—

List all source lines,
including false conditionals
and generated code

Include All Source Lines .LISTALL /Fl /Sa

Show instruction timings List Instruction
Timings

— /Fl /Sc

Show assembler-generated
code

List Generated
Instructions

— /Fl /Sg

Include false conditionals2 List False
Conditionals

.LISTIF
(synonym = .LFCOND)

/Fl /Sx

Suppress listing of any
subsequent conditional
blocks whose condition is
false

List False Conditionals
(turn off)

.NOLISTIF
(synonym = .SFCOND)

—

Toggle between .LISTIF
and .NOLISTIF

— .TFCOND —

Suppress symbol table
generation

Generate Symbol Table
(turn off the default)

— /Fl /Sn

List all processed macro
statements

— .LISTMACROALL
(synonym = .LALL)

—

List only instructions, data,
and segment directives in
macros

— .LISTMACRO
(default)
(synonym = .XALL)

—

Turn off all listing during
macro expansion

— .NOLISTMACRO
(synonym = .SALL)

—

Specify title for each page
(use only once per file)

— TITLE name /St name

Specify subtitle for page — SUBTITLE name /Ss name

Designate page length and
line width, increment
section number, or generate
page breaks

— PAGE
[[length,width]][[+]]

/Sp length
/Sl width

Generate first-pass listing — — /Ep

1 Select MASM Options from the Options menu, then choose Set Dialog Options from the MASM Options dialog box.
2 See “Conditional Directives” in Chapter 1

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 398 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 398

Appendix C Generating and Reading Assembly Listings 399

Precedence of Command-Line Options and Listing Directives
Since command-line options and source code directives can specify opposite
behavior for the same listing file option, the assembler interprets the commands
according to the following precedence levels. Selecting PWB options is equivalent
to specifying /Fl /Sx on the command line:

◆ /Sa overrides any source code directives that suppress listing.

◆ Source code directives override all command-line options except /Sa.

◆ .NOLIST overrides other listing directives such as .NOLISTIF and
.LISTMACROALL.

◆ The /Sx, /Ss, /Sp, and /Sl options set initial values for their respective features.
Directives in the source file can override these command-line options.

Reading the Listing File
The first half of the listing shows macros from the include file DOS.MAC, structure
declarations, and data. After the .DATA directive, the columns on the left show
offsets and initialized byte values within the data segment.

Instructions begin after the .CODE directive. The three columns on the left show
offsets, instruction timings, and binary code generated by the assembler. The
columns on the right list the source statements exactly as they appear in the source
file or as expanded by a macro. Various symbols and abbreviations in the middle
column provide information about the code, as explained in the following section.
The subsequent section, “Symbols and Abbreviations,” explains the meanings of
listing symbols.

Generated Code
The assembler lists the code generated from the statements of a source file. With
the /Sc command-line switch, which generates instruction timings, each line has this
syntax:

offset [[timing]] [[code]]

The offset is the offset from the beginning of the current code segment. The timing
shows the number of cycles the processor needs to execute the instruction. The
value of timing reflects the CPU type; for example, specifying the .386 directive
produces instruction timings for the 80386 processor. If the statement generates
code or data, code shows the numeric value in hexadecimal notation if the value is
known at assembly time. If the value is calculated at run time, the assembler
indicates what action is necessary to compute the value.

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 399 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 399

400 Programmer’s Guide

When assembling under the default .8086 directive, timing includes an effective
address value if the instruction accesses memory. The 80186/486 processors do not
use effective address values. For more information on effective address timing, see
the “Processor” section in the Reference book.

Error Messages
If any errors occur during assembly, each error message and error number appears
directly below the statement where the error occurred. An example of an error line
and message is:

mov ax, [dx][di]

listtst.asm(77): error A2031: must be index or base register

Symbols and Abbreviations
The assembler uses the symbols and abbreviations shown in Table C.2 to indicate
addresses that need to be resolved by the linker or values that were generated in a
special way. The example in this section illustrates many of these symbols.

The example listing was produced using “List Generated Instructions” and “List
Instruction Timings” in PWB. These options correspond to the ML command-line
switches /Fl /Sg /Sc.

Table C.2 Symbols and Abbreviations in Listings

Character Meaning

C Line from include file

= EQU or equal-sign (=) directive

nn[xx] DUP expression: nn copies of the value xx

---- Segment/group address (linker must resolve)

R Relocatable address (linker must resolve)

* Assembler-generated code

E External address (linker must resolve)

n Macro-expansion nesting level (+ if more than 9)

| Operator size override

& Address size override

nn: Segment override in statement

nn/ REP or LOCK prefix instruction

Table C.3 explains the five symbols that may follow timing values in your listing.
The Reference book will help you determine correct timings for those values
marked with a symbol.

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 400 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 400

Appendix C Generating and Reading Assembly Listings 401

Table C.3 Symbols in Timing Column

Symbol Meaning

m Add cycles depending on next executed instruction.

n Add cycles depending on number of iterations or size of data.

p Different timing value in protected mode.

+ Add cycles depending on operands or combination of the preceding.

, Separates two values for “jump taken” and “jump not taken.”

Microsoft (R) Macro Assembler Version 6.10 09/20/00 12:00:00

listtst.asm Page 1 - 1

 .MODEL small, c

 .386

 .DOSSEG

 .STACK 256

 INCLUDE dos.mac

 C StrDef MACRO name1, text

 C name1 BYTE &text

 C BYTE 13d, 10d, '$'

 C l&name1 EQU LENGTHOF name1

 C ENDM

 C

 C Display MACRO string

 C mov ah, 09h

 C mov dx, OFFSET string

 C int 21h

 C ENDM

 = 0020 num EQU 20h

 COLOR RECORD b:1, r:3=1, i:1=1, f:3=7

 = 35 value TEXTEQU %3 + num

 = 32 tnum TEXTEQU %num

 = 04 strpos TEXTEQU @InStr(, <person>,

<son>)

 PutStr PROTO pMsg:PTR BYTE

 0004 DATE STRUCT

 0000 01 month BYTE 1

 0001 01 day BYTE 1

 0002 0000 year WORD ?

 DATE ENDS

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 401 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 401

402 Programmer’s Guide

 0002 U1 UNION

 0000 0028 fsize WORD 40

 bsize BYTE 60

 U1 ENDS

 0000 .DATA

 0000 00000000 ddData DWORD ?

 0004 1F text COLOR <>

 0005 01 14 07C9 today DATE <01, 20, 1993>

 0009 00 flag BYTE 0

 000A 001E [buffer WORD 30 DUP (0)

 0000

]

 StrDef ending, "Finished."

 0046 46 69 6E 69 73 68 1 ending BYTE "Finished."

 65 64 2E

 004F 0D 0A 24 1 BYTE 13d, 10d, '$'

 = 0009 1 lending EQU LENGTHOF ending

 0052 54 68 69 73 20 69 Msg BYTE "This is a

string","0"

 73 20 61 20

 73 74 72 69

 6E 67 30

 float TYPEDEF REAL4

 FPBYTE TYPEDEF FAR PTR BYTE

 0063 ---- 0052 R FPMSG FPBYTE Msg

 PBYTE TYPEDEF PTR BYTE

 NPWORD TYPEDEF NEAR PTR WORD

 PVOID TYPEDEF PTR

 PPBYTE TYPEDEF PTR PBYTE

 0000 .CODE

 .STARTUP

 0000 *@Startup:

 0000 2 B8 ---- R * mov ax, DGROUP

 0003 2p 8E D8 * mov ds, ax

 0005 2 8C D3 * mov bx, ss

 0007 2 2B D8 * sub bx, ax

 0009 3 C1 E3 04 * shl bx, 004h

 000C 2p 8E D0 * mov ss, ax

 000E 2 03 E3 * add sp, bx

 EXTERNDEF work:NEAR

 0010 7m E8 0000 E call work

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 402 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 402

Appendix C Generating and Reading Assembly Listings 403

 INVOKE PutStr, ADDR msg

 0013 2 68 0052 R * push OFFSET Msg

 0016 7m E8 0029 * call PutStr

 0019 2 83 C4 02 * add sp, 00002h

 001C 2 B8 ---- R mov ax, @data

 001F 2p 8E C0 mov es, ax

 0021 2 B0 63 mov al, 'c'

 0023 4 26: 8B 0E mov cx, es:num

 0020

 0028 2 BF 0052 mov di, 82

 002B 7n F2/ AE repne scasb

 002D 4 66| A1 0000 R mov eax, ddData

 0031 6 67& FE 03 inc BYTE PTR [ebx]

 EXTERNDEF morework:NEAR

 0034 7m E8 0000 E call morework

 Display ending

 0037 2 B4 09 1 mov ah, 09h

 0039 2 BA 0046 R 1 mov dx, OFFSET ending

 003C 37 CD 21 1 int 21h

 .EXIT

 003E 2 B4 4C * mov ah, 04Ch

 0040 37 CD 21 * int 021h

 0042 PutStr PROC pMsg:PTR BYTE

 0042 2 55 * push bp

 0043 4 8B EC * mov bp, sp

 0045 2 B4 02 mov ah, 02H

 0047 4 8B 7E 04 mov di, pMsg

 004A 4 8A 15 mov dl, [di]

 mov ax, [dx][di]

listtst.asm(77): error A2031: must be index or base register

 .WHILE (dl)

 004C 7m EB 10 * jmp @C0001

 0059 *@C0002:

 0059 37 CD 21 int 21h

 005B 2 47 inc di

 005C 4 8A 15 mov dl, [di]

 .ENDW

 005E *@C0001:

 005E 2 0A D2 * or dl, dl

 0060 7m,3 75 F7 * jne @C0002

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 403 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 403

404 Programmer’s Guide

 ret

 0062 4 5D * pop bp

 0063 10m C3 * ret 00000h

 0064 PutStr ENDP

 END

Reading Tables in a Listing File
The tables at the end of a listing file list the macros, structures, unions, records,
segments, groups, and symbols that appear in a source file. These tables are not
printed in the previous sample listing, but are summarized as follows.

Macro Table
Lists all macros in the main file or the include files. Differentiates between macro
functions and macro procedures.

Structures and Unions Table
Provides the size in bytes of the structure or union and the offset of each field. The
type of each field is also given.

Record Table
“Width” gives the number of bits of the entire record. “Shift” provides the offset in
bits from the low-order bit of the record to the low-order bit of the field. “Width”
for fields gives the number of bits in the field. “Mask” gives the maximum value of
the field, expressed in hexadecimal notation. “Initial” gives the initial value
supplied for the field.

Type Table
The “Size” column in this table gives the size of the TYPEDEF type in bytes, and
the “Attr” column gives the base type for the TYPEDEF definition.

Segment and Group Table
“Size” specifies whether the segment is 16 bit or 32 bit. “Length” gives the size of
the segment in bytes. “Align” gives the segment alignment (WORD, PARA, and
so on). “Combine” gives the combine type (PUBLIC, STACK, and so on).
“Class” gives the segment’s class (CODE, DATA, STACK, or CONST).

Procedures, Parameters, and Locals
Gives the types and offsets from BP of all parameters and locals defined in each
procedure, as well as the size and memory location of each procedure.

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 404 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 404

Appendix C Generating and Reading Assembly Listings 405

Symbol Table
All symbols (except names for macros, structures, unions, records, and segments)
are listed in a symbol table at the end of the listing. The “Name” column lists the
names in alphabetical order. The “Type” column lists each symbol’s type.

The length of a multiple-element variable, such as an array or string, is the length of
a single element, not the length of the entire variable.

If the symbol represents an absolute value defined with an EQU or equal sign (=)
directive, the “Value” column shows the symbol’s value. The value may be another
symbol, a string, or a constant numeric value (in hexadecimal), depending on the
type. If the symbol represents a variable or label, the “Value” column shows the
symbol’s hexadecimal offset from the beginning of the segment in which it is
defined.

The “Attr” column shows the attributes of the symbol. The attributes include the
name of the segment (if any) in which the symbol is defined, the scope of the
symbol, and the code length. A symbol’s scope is given only if the symbol is
defined using the EXTERN and PUBLIC directives. The scope can be external,
global, or communal. The “Attr” column is blank if the symbol has no attribute.

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 405 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 405

406 Programmer’s Guide

Filename: LMAPGAPC.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 406 of 10 Printed: 03/06/94 05:47 PM
Printed On: Distiller Colorlayer: ? Document Page: 406

407

A P P E N D I X D

MASM Reserved Words

This appendix lists the reserved words recognized by MASM. They are divided
primarily by their use in the language. The primary categories are:

◆ Operands and symbols

◆ Registers

◆ Operators and directives

◆ Processor instructions

◆ Coprocessor instructions

Reserved words in MASM 6.1 are reserved under all CPU modes. Words enabled
in .8086 mode, the default, can be used in all higher CPU modes. To use words
from subcategories such as “Special Operands for the 80386” (later in this
appendix) requires .386 mode or higher.

You can disable the recognition of any reserved word specified in this appendix by
setting the NOKEYWORD option for the OPTION directive. Once disabled, the
word can be used in any way as a user-defined symbol (provided the word is a valid
identifier). If you want to remove the STR instruction, the MASK operator, and the
NAME directive, for instance, from the set of words MASM recognizes as
reserved, add this statement to your program:

OPTION NOKEYWORD:<STR MASK NAME>

Words in this appendix identified with an asterisk (*) are new since MASM 5.1.

Operands and Symbols
The words on the two lists in this section are the operands to certain directives.
They have special meaning to the assembler. The words on the first list are not
reserved words. They can be used in every way as normal identifiers, without
affecting their use as operands to directives. The assembler interprets their use from
context.

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 407 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 407

408 Programmer’s Guide

Even though the words on the first list are not reserved, they should not be defined
to be text macros or text macro functions. If they are, they will not be recognized in
their special contexts. The assembler does not give a warning if such a redefinition
occurs.

ABS LARGE NOTHING

ALL LISTING* NOTPUBLIC*

ASSUMES LJMP* OLDMACROS*

AT LOADDS* OLDSTRUCTS*

CASEMAP* M510* OS_DOS*

COMMON MEDIUM PARA

COMPACT MEMORY PRIVATE*

CPU* NEARSTACK* PROLOGUE*

DOTNAME* NODOTNAME* RADIX*

EMULATOR* NOEMULATOR* READONLY*

EPILOGUE* NOKEYWORD* REQ*

ERROR* NOLJMP* SCOPED*

EXPORT* NOM510* SETIF2*

EXPR16* NONE SMALL

EXPR32* NONUNIQUE* STACK

FARSTACK* NOOLDMACROS* TINY

FLAT NOOLDSTRUCTS* USE16

FORCEFRAME NOREADONLY* USE32

HUGE NOSCOPED* USES

LANGUAGE* NOSIGNEXTEND*

These operands are reserved words. Reserved words are not case sensitive.

$ DWORD PASCAL

? FAR QWORD

@B FAR16* REAL4*

@F FORTRAN REAL8*

ADDR* FWORD REAL10*

BASIC NEAR SBYTE*

BYTE NEAR16* SDWORD*

C OVERFLOW?* SIGN?*

CARRY?* PARITY?* STDCALL*

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 408 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 408

Appendix D MASM Reserved Words 409

SWORD* TBYTE WORD

SYSCALL* VARARG* ZERO?*

Special Operands for the 80386/486
FLAT* NEAR32* FAR32*

Predefined Symbols
Unlike most MASM reserved words, predefined symbols are case sensitive.

@CatStr* @Environ* @Model*

@code @fardata @SizeStr*

@CodeSize @fardata? @stack*

@Cpu @FileCur* @SubStr*

@CurSeg @FileName @Time*

@data @InStr* @Version

@DataSize @Interface* @WordSize

@Date* @Line*

Registers
AH CS DX SI

AL CX EAX SP

AX DH EBP SS

BH DI EBX ST

BL DL ECX TR3*

BP DR0 EDI TR4*

BX DR1 EDX TR5*

CH DR2 ES TR6

CL DR3 ESI TR7

CR0 DR6 ESP

CR2 DR7 FS

CR3 DS GS

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 409 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 409

410 Programmer’s Guide

Operators and Directives
.186 .ERRDIFI .TYPE

.286 .ERRE .UNTIL*

.286C .ERRIDN .UNTILCXZ*

.286P .ERRIDNI .WHILE*

.287 .ERRNB .XALL

.386 .ERRNDEF .XCREF

.386C .ERRNZ .XLIST

.386P .EXIT* ALIAS*

.387 .FARDATA ALIGN

.486* .FARDATA? ASSUME

.486P* .IF* CATSTR

.8086 .LALL COMM

.8087 .LFCOND COMMENT

.ALPHA .LIST DB

.BREAK* .LISTALL* DD

.CODE .LISTIF* DF

.CONST .LISTMACRO* DOSSEG

.CONTINUE* .LISTMACROALL* DQ

.CREF .MODEL DT

.DATA .NO87* DUP

.DATA? .NOCREF* DW

.DOSSEG* .NOLIST* ECHO*

.ELSE* .NOLISTIF* ELSE

.ELSEIF* .NOLISTMACRO* ELSEIF

.ENDIF* .RADIX ELSEIF1

.ENDW* .REPEAT* ELSEIF2

.ERR .SALL ELSEIFB

.ERR1 .SEQ ELSEIFDEF

.ERR2 .SFCOND ELSEIFDIF

.ERRB .STACK ELSEIFDIFI

.ERRDEF .STARTUP* ELSEIFE

.ERRDIF .TFCOND ELSEIFIDN

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 410 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 410

Appendix D MASM Reserved Words 411

ELSEIFIDNI IFIDN POPCONTEXT*

ELSEIFNB IFIDNI PROC

ELSEIFNDEF IFNB PROTO*

END IFNDEF PTR

ENDIF INCLUDE PUBLIC

ENDM INCLUDELIB PURGE

ENDP INSTR PUSHCONTEXT*

ENDS INVOKE* RECORD

EQ IRP REPEAT*

EQU IRPC REPT

EVEN LABEL SEG

EXITM LE SEGMENT

EXTERN* LENGTH SHORT

EXTERNDEF* LENGTHOF* SIZE

EXTRN LOCAL SIZEOF*

FOR* LOW SIZESTR

FORC* LOWWORD* STRUC

GE LROFFSET* STRUCT*

GOTO* LT SUBSTR

GROUP MACRO SUBTITLE*

GT MASK SUBTTL

HIGH MOD TEXTEQU*

HIGHWORD* .MSFLOAT THIS

IF NAME TITLE

IF1 NE TYPE

IF2 OFFSET TYPEDEF*

IFB OPATTR* UNION*

IFDEF OPTION* WHILE*

IFDIF ORG WIDTH

IFDIFI %OUT

IFE PAGE

Processor Instructions
Processor instructions are not case sensitive.

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 411 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 411

412 Programmer’s Guide

8086/8088 Processor Instructions
AAA JB LES

AAD JBE LODS

AAM JC LODSB

AAS JCXZ LODSW

ADC JE LOOP

ADD JG LOOPE

AND JGE LOOPEW*

CALL JL LOOPNE

CBW JLE LOOPNEW*

CLC JMP LOOPNZ

CLD JNA LOOPNZW*

CLI JNAE LOOPW*

CMC JNB LOOPZ

CMP JNBE LOOPZW*

CMPS JNC MOV

CMPSB JNE MOVS

CMPSW JNG MOVSB

CWD JNGE MOVSW

DAA JNL MUL

DAS JNLE NEG

DEC JNO NOP

DIV JNP NOT

ESC JNS OR

HLT JNZ OUT

IDIV JO POP

IMUL JP POPF

IN JPE PUSH

INC JPO PUSHF

INT JS RCL

INTO JZ RCR

IRET LAHF RET

JA LDS RETF

JAE LEA RETN

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 412 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 412

Appendix D MASM Reserved Words 413

ROL SCASW STOSW

ROR SHL SUB

SAHF SHR TEST

SAL STC WAIT

SAR STD XCHG

SBB STI XLAT

SCAS STOS XLATB

SCASB STOSB XOR

80186 Processor Instructions
BOUND INSW OUTSW

ENTER LEAVE POPA

INS OUTS PUSHA

INSB OUTSB PUSHW*

80286 Processor Instructions
ARPL SIDT VERR

LAR SLDT VERW

LSL SMSW

SGDT STR

80286 and 80386 Privileged-Mode Instructions
CLTS LIDT LMSW

LGDT LLDT LTR

80386 Processor Instructions
BSF CMPSD LFS

BSR CWDE LGS

BT INSD LODSD

BTC IRETD LOOPD*

BTR IRETDF* LOOPED*

BTS IRETF* LOOPNED*

CDQ JECXZ LOOPNZD*

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 413 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 413

414 Programmer’s Guide

LOOPZD* SETBE SETNL

LSS SETC SETNLE

MOVSD SETE SETNO

MOVSX SETG SETNP

MOVZX SETGE SETNS

OUTSD SETL SETNZ

POPAD SETLE SETO

POPFD SETNA SETP

PUSHAD SETNAE SETPE

PUSHD* SETNB SETPO

PUSHFD SETNBE SETS

SCASD SETNC SETZ

SETA SETNE SHLD

SETAE SETNG SHRD

SETB SETNGE STOSD

80486 Processor Instructions
BSWAP* INVD* WBINVD*

CMPXCHG* INVLPG* XADD*

Instruction Prefixes
LOCK REPE REPNZ

REP REPNE REPZ

Coprocessor Instructions
Coprocessor instructions are not case sensitive.

8087 Coprocessor Instructions
F2XM1 FBSTP FCOMPP

FABS FCHS FDECSTP

FADD FCLEX FDISI

FADDP FCOM FDIV

FBLD FCOMP FDIVP

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 414 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 414

Appendix D MASM Reserved Words 415

FDIVR FLDL2T FRSTORW*

FDIVRP FLDLG2 FSAVE

FENI FLDLN2 FSAVEW*

FFREE FLDPI FSCALE

FIADD FLDZ FSQRT

FICOM FMUL FST

FICOMP FMULP FSTCW

FIDIV FNCLEX FSTENV

FIDIVR FNDISI FSTENVW*

FILD FNENI FSTP

FIMUL FNINIT FSTSW

FINCSTP FNOP FSUB

FINIT FNSAVE FSUBP

FIST FNSAVEW* FSUBR

FISTP FNSTCW FSUBRP

FISUB FNSTENV FTST

FISUBR FNSTENVW* FWAIT

FLD FNSTSW FXAM

FLD1 FPATAN FXCH

FLDCW FPREM FXTRACT

FLDENV FPTAN FYL2X

FLDENVW* FRNDINT FYL2XP1

FLDL2E FRSTOR

80287 Privileged-Mode Instruction
FSETPM

80387 Instructions
FCOS FRSTORD* FUCOM

FLDENVD* FSAVED* FUCOMP

FNSAVED* FSIN FUCOMPP

FNSTENVD* FSINCOS

FPREM1 FSTENVD*

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 415 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 415

Appendix D MASM Reserved Words 417

Filename: LMAPGAPD.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 4 Page: 417 of 10 Printed: 03/06/94 05:48 PM
Printed On: Distiller Colorlayer: ? Document Page: 417

417

A P P E N D I X E

Default Segment Names

If you use simplified segment directives by themselves, you do not need to know the
names assigned for each segment. However, it is possible to mix full segment
definitions with simplified segment directives, in which case you need to know the
segment names.

Table E.1 shows the default segment names created by each directive.

If you use .MODEL, a _TEXT segment is always defined, even if all .CODE
directives specify a name. The default segment name used as part of far-code
segment names is the filename of the module. The default name associated with the
.CODE directive can be overridden, as can the default names for .FARDATA and
.FARDATA?.

The segment and group table at the end of listings always shows the actual segment
names. However, the GROUP and ASSUME statements generated by the
.MODEL directive are not shown in listing files. For a program that uses all
possible segments, group statements equivalent to the following would be
generated:

DGROUP GROUP _DATA, CONST, _BSS, STACK

For the tiny model, these ASSUME statements would be generated:

ASSUME cs:DGROUP, ds:DGROUP, ss:DGROUP

For small and compact models with NEARSTACK, these ASSUME statements
would be generated:

ASSUME cs: _TEXT, ds:DGROUP, ss:DGROUP

Filename: LMAPGAPE.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 417 of 4 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 417

418 Programmer’s Guide

For medium, large, and huge models with NEARSTACK, these ASSUME
statements would be generated:

ASSUME cs:name_TEXT, ds:DGROUP, ss:DGROUP

Table E.1 Default Segments and Types for Standard Memory Models

Model Directive Name Align Combine Class Group

Tiny .CODE _TEXT WORD PUBLIC 'CODE' DGROUP

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

Small .CODE _TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP*

Medium .CODE name_TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP*

Compact .CODE _TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP*

Filename: LMAPGAPE.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 418 of 4 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 418

Appendix E Default Segment Names 419

Table E.1 (continued)

Model Directive Name Align Combine Class Group

Large or huge .CODE name_TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP*

Flat .CODE _TEXT DWORD PUBLIC 'CODE'

.FARDATA _DATA DWORD PUBLIC 'DATA'

.FARDATA? _BSS DWORD PUBLIC 'BSS'

.DATA _DATA DWORD PUBLIC 'DATA'

.CONST CONST DWORD PUBLIC 'CONST'

.DATA? _BSS DWORD PUBLIC 'BSS'

.STACK STACK DWORD PUBLIC 'STACK'

* unless the stack type is FARSTACK

Filename: LMAPGAPE.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 419 of 4 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 419

420 Programmer’s Guide

Filename: LMAPGAPE.DOC Project:
Template: MSGRIDA1.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 420 of 4 Printed: 03/06/94 05:51 PM
Printed On: Distiller Colorlayer: ? Document Page: 420

421

Glossary

8087, 80287, or 80387 coprocessor Intel chips that
perform high-speed floating-point and binary coded
decimal number processing. Also called math
coprocessors. Floating-point instructions are
supported directly by the 80486 processor.

arg In PWB, a function modifier that introduces
an argument or an editing function. The argument
may be of any type and is passed to the next
function as input. For example, the PWB command
Arg textarg Copy passes the text argument
textarg to the function Copy.

A argument A value passed to a procedure or
address The memory location of a data item or function. See “parameter.”
procedure. The expression can represent just the
offset (in which case the default segment is
assumed), or it can be in segment:offset format.

array An ordered set of continuous elements of the
same type.

ASCII (American Standard Code for Information
Interchange) A widely used coding scheme where
1-byte numeric values represent letters, numbers,
symbols, and special characters. There are 256
possible codes. The first 128 codes are
standardized; the remaining 128 are special
characters defined by the computer manufacturer.

address constant In an assembly-language
instruction, an immediate operand derived by
applying the SEG or OFFSET operator to an
identifier.

address range A range of memory bounded by
two addresses.

addressing modes The various ways a memory assembler A program that converts a text file
address or device I/O address can be generated.
See “far address,” “near address.”

containing mnemonically coded microprocessor
instructions into the corresponding binary machine
code. MASM is an assembler. See “compiler.”

aggregate types Data types containing more than
one element, such as arrays, structures, and unions. assembly language A programming language in

which each line of source code corresponds to a
specific microprocessor instruction. Assembly
language gives the programmer full access to the
computer’s hardware and produces the most
compact, fastest executing code. See “high-level
language.”

animate A debugging feature in which each line in
a running program is highlighted as it executes.
The Animate command from the CodeView
debugger Run menu turns on animation.

API (application programming interface) A set of
system-level routines that can be used in an
application program for tasks such as basic
input/output and file management. In a graphics-
oriented operating environment like Microsoft
Windows, high-level support for video graphics
output is part of the Windows graphical API.

assembly mode The mode in which the CodeView
debugger displays the assembly-language
equivalent of the high-level code being executed.
CodeView obtains the assembly-language code by
disassembling the executable file. See “source
mode.”

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 421 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 421

422 base address

B specific value of a variable, or for a combination of
these two conditions.

base address The starting address of a stack
frame. Base addresses are usually stored in the BP
register.

buffer A reserved section of memory that holds
data temporarily, most often during input/output
operations.

base name The portion of the filename that
precedes the extension. For example, SAMPLE is
the base name of the file SAMPLE.ASM.

byte The smallest unit of measure for computer
memory and data storage. One byte consists of 8
bits and can store one 8-bit character (a letter,
number, punctuation mark, or other symbol). It can
represent unsigned values from 0 to 255 or signed
values between –128 and +127.

BCD (binary coded decimal) A way of
representing decimal digits where 4 bits of 1 byte
are a decimal digit, coded as the equivalent binary
number.

Cbinary Referring to the base-2 counting system,
whose digits are 0 and 1. C calling convention The convention that follows

the C standard for calling a procedure—that is,
pushing arguments onto the stack from right to left
(in reverse order from the way they appear in the
argument list). The C calling convention permits a
variable number of arguments to be passed.

binary expression A Boolean expression
consisting of two operands joined by a binary
operator and resolving to a binary number.

binary file A file that contains numbers in binary
form (as opposed to ASCII characters representing
the same numbers). For example, a program file is
a binary file.

chaining (to an interrupt) Installing an interrupt
handler that shares control of an interrupt with
other handlers. Control passes from one handler to
the next until a handler breaks the chain by
terminating through an IRET instruction. See
“interrupt handler,” “hooking (an interrupt).”

binary operator A Boolean operator that takes two
arguments. The AND and OR operators in
assembly language are examples of binary
operators. character string See “string.”

BIOS (Basic Input/Output System) The software in
a computer’s ROM which forms a hardware-
independent interface between the CPU and its
peripherals (for example, keyboard, disk drives,
video display, I/O ports).

clipboard In PWB, a section of memory that holds
text deleted with the Copy, Ldelete, or Sdelete
functions. Any text attached to the clipboard
deletes text already there. The Paste function
inserts text from the clipboard at the current cursor
position.bit Short for binary digit. The basic unit of binary

counting. Logically equivalent to decimal digits,
except that bits can have a value of 0 or 1, whereas
decimal digits can range from 0 through 9.

.COM The filename extension for executable files
that have a single segment containing both code
and data. Tiny model produces .COM files.

breakpoint A user-defined condition that pauses combine type The segment-declaration specifier
program execution while debugging. CodeView
can set breakpoints at a specific line of code, for a

(AT, COMMON, MEMORY, PUBLIC, or
STACK) which tells the linker to combine all
segments of the same type. Segments without a

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 422 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 422

dynamic linking 423

combine type are private and are placed in separate
physical segments.

device driver A program that transforms I/O
requests into the operations necessary to make a
specific piece of hardware fulfill that request.

compact A memory model with multiple data
segments but only one code segment. Dialog Command window The window at the

bottom of the CodeView screen where dialog
commands can be entered, and previously entered
dialog commands can be reviewed.

compiler A program that translates source code
into machine language. Usually applied only to
high-level languages such as Basic, FORTRAN, or
C. See “assembler.” direct memory operand In an assembly-language

instruction, a memory operand that refers to the
contents of an explicitly specified memory
location.

constant A value that does not change during
program execution. A variable, on the other hand,
is a value that can—and usually does—change.
See “symbolic constant.” directive An instruction that controls the

assembler’s state.
constant expression Any expression that
evaluates to a constant. It may include integer
constants, character constants, floating-point
constants, or other constant expressions.

displacement In an assembly-language
instruction, a constant value added to an effective
address. This value often specifies the starting
address of a variable, such as an array or
multidimensional table.D

debugger A utility program that allows the DLL See “dynamic-link library.”
programmer to execute a program one line at a
time and view the contents of registers and memory
in order to help locate the source of bugs or other
problems. Examples are CodeView and Symdeb.

double-click To rapidly press and release a mouse
button twice while pointing the mouse cursor at an
object on the screen.

double precision A real (floating-point) value thatdeclaration A construct that associates the name
occupies 8 bytes of memory (MASM type
REAL8). Double-precision values are accurate to
15 or 16 digits.

and the attributes of a variable, function, or type.
See “variable declaration.”

default A setting or value that is assumed unless
doubleword A 4-byte word (MASM typespecified otherwise.
DWORD).

definition A construct that initializes and allocates
drag To move the mouse while pointing at anstorage for a variable, or that specifies either code

labels or the name, formal parameters, body, and
return type of a procedure. See “type definition.”

object and holding down one of the mouse buttons.

dump To display or print the contents of memory
in a specified memory range.description file A text file used as input for the

NMAKE utility.
dynamic linking The resolution of external
references at load time or run time (rather than link
time). Dynamic linking allows the called
subroutines to be packaged, distributed, and

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 423 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 423

424 dynamic-link library (DLL)

maintained independently of their callers.
Windows extends the dynamic-link mechanism to
serve as the primary method by which all system
and nonsystem services are obtained. See
“linking.”

extended memory Physical memory above 1
megabyte that can be addressed by 80286–80486
machines in protected mode. Adding a memory
card adds extended memory. On 80386-based
machines, extended memory can be made to
simulate expanded memory by using a memory-
management program.dynamic-link library (DLL) A library file that

contains the executable code for a group of
dynamically linked routines. extension The part of a filename (of up to three

characters) that follows the period (.). An
extension is not required but is usually added to
differentiate similar files. For example, the source-
code file MYPROG.ASM is assembled into the
object file MYPROG.OBJ, which is linked to
produce the executable file MYPROG.EXE.

dynamic-link routine A routine in a dynamic-link
library that can be linked at load time or run time.

E
element A single member variable of an array of
like variables. external variable A variable declared in one

module and referenced in another module.
environment block The section of memory
containing the MS-DOS environment variables.

F
errorlevel code See “exit code.” far address A memory location specified with a

segment value plus an offset from the start of that
segment. Far addresses require 4 bytes—two for
the segment and two for the offset. See “near
address.”

.EXE The filename extension for a program that
can be loaded and executed by the computer. The
small, compact, medium, large, huge, and flat
models generate .EXE files. See “.COM,” “tiny.”

field One of the components of a structure, union,exit code A code returned by a program to the or record variable.
operating system. This usually indicates whether
the program ran successfully. fixup The linking process that supplies addresses

for procedure calls and variable references.expanded memory Increased memory available
after adding an EMS (Expanded Memory
Specification) board to an 8086 or 80286 machine.
Expanded memory can be simulated in software.
The EMS board can increase memory from 1
megabyte to 8 megabytes by swapping segments of
high-end memory into lower memory. Applications
must be written to the EMS standard in order to
make use of expanded memory. See “extended
memory.”

flags register A register containing information
about the status of the CPU and the results of the
last arithmetic operation performed by the CPU.

flat A nonsegmented linear address space.
Selectors in flat model can address the entire 4
gigabytes of addressable memory space. See
“segment,” “selector.”

formal parameters The variables that receive
expression Any valid combination of values passed to a function when the function is

called.mathematical or logical variables, constants,
strings, and operators that yields a single value.

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 424 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 424

identifier 425

forward declaration A function declaration that H
establishes the attributes of a symbol so that it can
be referenced before it is defined, or called from a
different source file.

handle An arbitrary value that an operating
system supplies to a program (or vice versa) so that
the program can access system resources, files,
peripherals, and so forth, in a controlled fashion.frame The segment, group, or segment register

that specifies the segment portion of an address.
handler See “interrupt handler.”

G hexadecimal The base-16 numbering system
whose digits are 0 through F (the letters A through
F represent the decimal numbers 10 through 15).
This is often used in computer programming
because it is easily converted to and from the
binary (base-2) numbering system the computer
itself uses.

General-Protection (GP) fault An error that occurs
in protected mode when a program accesses invalid
memory locations or accesses valid locations in an
invalid way (such as writing into ROM areas).

gigabyte 1,024 megabytes, or 1,073,741,824
bytes.

high-level language A programming language that
expresses operations as mathematical or logical
relationships, which the language’s compiler then
converts into machine code. This contrasts with
assembly language, in which the program is written
directly as a sequence of explicit microprocessor
instructions. Basic, C, COBOL, and FORTRAN
are examples of high-level languages. See
“assembly language,” “compiler.”

global See “visibility.”

global constant A constant available throughout a
module. Symbolic constants defined in the module-
level code are global constants.

global data segment A data segment that is shared
among all instances of a dynamic-link routine; in
other words, a single segment that is accessible to
all processes that call a particular dynamic-link
routine.

hooking (an interrupt) Replacing an address in the
interrupt vector table with the address of another
interrupt handler. See “interrupt handler,”
“interrupt vector table,” “unhooking (an
interrupt).”

global variable A variable that is available
(visible) across multiple modules.

granularity The degree to which library huge A memory model (similar to large model)
procedures can be linked as individual blocks of
code. In Microsoft libraries, granularity is at the
object-file level. If a single object file containing
three procedures is added to a library, all three
procedures will be linked with the main program
even if only one of them is actually called.

with more than one code segment and more than
one data segment. However, individual data items
can be larger than 64K, spanning more than one
segment. See “large.”

I
group A collection of individually defined identifier A name that identifies a register or
segments that have the same segment base address. memory location.

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 425 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 425

426 IEEE format

IEEE format A standard created by the Institute of interrupt handler A routine that receives processor
Electrical and Electronics Engineers for
representing floating-point numbers, performing
math with them, and handling underflow/overflow
conditions. The 8087 family of coprocessors and
the emulator package implement this format.

control when a specific interrupt occurs.

interrupt service routine See “interrupt handler.”

interrupt vector An address that points to an
interrupt handler.

immediate expression An expression that
interrupt vector table A table maintained by theevaluates to a number that can be either a

component of an address or the entire address. operating system. It contains addresses (vectors) of
current interrupt handlers. When an interrupt
occurs, the CPU branches to the address in the
table that corresponds to the interrupt’s number.
See “interrupt handler.”

immediate operand In an assembly-language
instruction, a constant operand that is specified at
assembly time and stored in the program file as
part of the instruction opcode.

Kimport library A pseudo library that contains
keyword A word with a special, predefinedaddresses rather than executable code. The linker

reads the addresses from an import library to
resolve references to external dynamic-link library
routines.

meaning for the assembler. Keywords cannot be
used as identifiers.

kilobyte (K) 1,024 bytes.

include file A text file with the .INC extension

Lwhose contents are inserted into the source-code
file and immediately assembled. label A symbol (identifier) representing the

address of a code label or data objects.indirect memory operand In an assembly-language
instruction, a memory operand whose value is
treated as an address that points to the location of
the desired data. See “pointer.”

language type The specifier that establishes the
naming and calling conventions for a procedure.
These are BASIC, C, FORTRAN, PASCAL,
STDCALL, and SYSCALL.instruction The unit of binary information that a

CPU decodes and executes. In assembly language,
instruction refers to the mnemonic (such as LDS or
SHL) that the assembler converts into machine
code.

large A memory model with more than one code
segment and more than one data segment, but with
no individual data item larger than 64K (a single
segment). See “huge.”

instruction prefix See “prefix.” library A file that contains modules of compiled
code. MS-DOS programs use normal run-time
libraries, from which the linker extracts modules
and combines them with other object modules to
create executable program files. Windows-based
programs can use dynamic-link libraries (see),
which the operating system loads and links to
calling programs. See also “import library.”

interrupt A signal to the processor to halt its
current operation and immediately transfer control
to an interrupt handler. Interrupts are triggered
either by hardware, as when the keyboard detects a
keypress, or by software, as when a program
executes the INT instruction. See “interrupt
handler.”

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 426 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 426

mnemonic 427

linked list A data structure in which each entry macro A block of text or instructions that has
includes a pointer to the location of the adjoining
entries.

been assigned an identifier. When the assembler
sees this identifier in the source code, it substitutes
the related text or instructions and assembles them.

linking In normal static linking, the process in
which the linker resolves all external references by
searching run-time and user libraries, and then
computes absolute offset addresses for these
references. Static linking results in a single
executable file. In dynamic linking (see), the
operating system, rather than the linker, provides
the addresses after loading the modules into
separate parts of memory.

main module The module containing the point
where program execution begins (the program’s
entry point). See “module.”

math coprocessor See “8087, 80287, or 80387
coprocessor.”

medium A memory model with multiple code
segments but only one data segment.

local constant A constant whose scope is limited
megabyte 1,024 kilobytes or 1,048,576 bytes.to a procedure or a module.

member One of the elements of a structure orlocal variable A variable whose scope is confined
union; also called a field.to a particular unit of code, such as module-level

code, or a procedure. See “module-level code.” memory address A number through which a
program can reference a location in memory.logical device A symbolic name for a device that

can be mapped to a physical (actual) device. memory map A representation of where in
memory the computer expects to find certain types
of information.

logical line A complete program statement in
source code, including the initial line of code and
any extension lines. memory model A convention for specifying the

number and types of code and data segments in a
module. See “tiny,” “small,” “medium,”
“compact,” “large,” “huge,” and “flat.”

logical segment A memory area in which a
program stores code, data, or stack information.
See “physical segment.”

memory operand An operand that specifies alow-level input and output routines Run-time
library routines that perform unbuffered,
unformatted input/output operations.

memory location.

meta A prefix that modifies the subsequent PWB
function.LSB (least-significant bit) The bit lowest in

memory in a binary number. mnemonic A word, abbreviation, or acronym that
replaces something too complex to remember or
type easily. For example, ADC is the mnemonic
for the 8086’s add-with-carry instruction. The
assembler converts it into machine (binary) code,
so it is not necessary to remember or calculate the
binary form.

M
machine code The binary numbers that a
microprocessor interprets as program instructions.
See “instruction.”

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 427 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 427

428 module

module A discrete group of statements. Every O
program has at least one module (the main
module). In most cases, a module is the same as a
source file.

.OBJ Default filename extension for an object file.

object file A file (normally with the extension
.OBJ) produced by assembling source code. It
contains relocatable machine code. The linker
combines object files with run-time and library
code to create an executable file.

module-definition file A text file containing
information that the linker uses to create a
Windows-based program.

module-level code Program statements within any offset The number of bytes from the beginning of
module that are outside procedure definitions. a segment to a particular byte within that segment.

MSB (most-significant bit) The bit farthest to the opcode The binary number that represents a
left in a binary number. It represents 2(n-1), where n
is the number of bits in the number.

specific microprocessor instruction.

operand A constant or variable value that is
manipulated in an expression or instruction.multitasking operating system An operating

system in which two or more programs, processes,
or threads can execute simultaneously. operator One or more symbols that specify how

the operand or operands of an expression are
manipulated.

N
option A variable that modifies the way a program

naming convention The way the compiler or performs. Options can appear on the command
line, or they can be part of an initialization file
(such as TOOLS.INI). An option is sometimes
called a switch.

assembler alters the name of a routine before
placing it into an object file.

NAN Acronym for “not a number.” Math
coprocessors generate NANs when the result of an
operation cannot be represented in IEEE format.
For example, if two numbers being multiplied have
a product larger than the maximum value
permitted, the coprocessor returns a NAN instead
of the product.

output screen The CodeView screen that displays
program output. Choosing the Output command
from the View menu or pressing F4 switches to this
screen.

overflow An error that occurs when the value
assigned to a numeric variable is larger than the
allowable limit for that variable’s type.near address A memory location specified by the

offset from the start of the value in a segment
register. A near address requires only 2 bytes. See
“far address.”

overlay A program component loaded into
memory from disk only when needed. This
technique reduces the amount of free RAM needed
to run the program.nonreentrant See “reentrant procedure.”

Pnull character The ASCII character encoded as the
value 0.

parameter The name given in a procedure
definition to a variable that is passed to the
procedure. See “argument.”

null pointer A pointer to nothing, expressed as the
value 0.

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 428 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 428

RAM (random-access memory) 429

passing by reference Transferring the address of procedure call An expression that invokes a
an argument to a procedure. This allows the
procedure to modify the argument’s value.

procedure and passes actual arguments (if any) to
the procedure.

passing by value Transferring the value (rather procedure definition A definition that specifies a
than the address) of an argument to a procedure.
This prevents the procedure from changing the
argument’s original value.

procedure’s name, its formal parameters, the
declarations and statements that define what it
does, and (optionally) its return type and storage
class.

physical segment The true memory address of a
segment, referenced through a segment register. procedure prototype A procedure declaration that

includes a list of the names and types of formal
parameters following the procedure name.pointer A variable containing the address of

another variable. See “indirect memory operand.”
process Generally, any executing program or

precedence The relative position of an operator in code unit. This term implies that the program or
unit is one of a group of processes executing
independently.

the hierarchy that determines the order in which
expression elements are evaluated.

preemptive Having the power to take precedence Program Segment Prefix (PSP) A 256-byte data
over another event. structure at the base of the memory block allocated

to a transient program. It contains data and
addresses supplied by MS-DOS that a program can
read during execution.

prefix A keyword (LOCK, REP, REPE,
REPNE, REPNZ, or REPZ) that modifies the
behavior of an instruction. MASM 6.1 ensures the
prefix is compatible with the instruction. protected mode The 80286–80486 operating

mode that permits multiple processes to run and not
interfere with each other. This feature should not
be confused with privileged mode.

private Data items and routines local to the
module in which they are defined. They cannot be
accessed outside that module. See “public.”

public Data items and procedures that can beprivilege level A hardware-supported feature of
accessed outside the module in which they are
defined. See “private.”

the 80286–80486 processors that allows the
programmer to specify the exclusivity of a program
or process. Programs running at low-numbered
privilege levels can access data or resources at
higher-numbered privilege levels, but the reverse is
not true. This feature reduces the possibility that
malfunctioning code will corrupt data or crash the
operating system.

Q
qualifiedtype A user-defined type consisting of an
existing MASM type (intrinsic, structure, union, or
record), or a previously defined TYPEDEF type,
together with its language or distance attributes.

privileged mode The term applied to privilege
Rlevel 0. This privilege level should be used only by

a protected-mode operating system. Special
privileged instructions are enabled by .286P,
.386P, and .486P. Privileged mode should not be
confused with protected mode.

radix The base of a number system. The default
radix for MASM and CodeView is 10.

RAM (random-access memory) Computer memory
that can be both written to and read from. RAM
data is volatile; it is usually lost when the computer

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 429 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 429

430 real mode

is turned off. Programs are loaded into and
executed from RAM. See “ROM.”

contains BIOS routines and parts of the operating
system. See “RAM.”

real mode The normal operating mode of the 8086 routine A generic term for a procedure or
family of processors. Addresses correspond to
physical (not mapped) memory locations, and there
is no mechanism to keep one application from
accessing or modifying the code or data of another.
See “protected mode.”

function.

run-time dynamic linking The act of establishing a
link when a process is running. See “dynamic
linking.”

run-time error A math or logic error that can berecord A MASM variable that consists of a
detected only when the program runs. Examples of
run-time errors are dividing by a variable whose
value is zero or calling a DLL function that doesn’t
exist.

sequence of bit values.

reentrant procedure A procedure that can be
safely interrupted during execution and restarted
from its beginning in response to a call from a
preemptive process. After servicing the preemptive
call, the procedure continues execution at the point
at which it was interrupted.

S
scope The range of statements over which a
variable or constant can be referenced by name.
See “global constant,” “global variable,” “local
constant,” “local variable.”

register operand In an assembly-language
instruction, an operand that is stored in the register
specified by the instruction.

screen swapping A screen-exchange method that
uses buffers to store the debugging and output
screens. When you request the other screen, the
two buffers are exchanged. This method is slower
than flipping (the other screen-exchange method),
but it works with most adapters and most types of
programs.

register window The optional CodeView window
in which the CPU registers and the flag register
bits are displayed.

registers Memory locations in the processor that
temporarily store data, addresses, and processor
flags.

scroll bars The bars that appear at the right side
regular expression A text expression that specifies and bottom of a window and some list boxes.

Dragging the mouse on the scroll bars allows
scrolling through the contents of a window or text
box.

a pattern of text to be matched (as opposed to
matching specific characters).

relocatable Not having an absolute address. The
assembler does not know where the label, data, or
code will be located in memory, so it generates a
fixup record. The linker provides the address.

segment A section of memory, limited to 64K
with 16-bit segments or 4 gigabytes with 32-bit
segments, containing code or data. Also refers to
the starting address of that memory area.return value The value returned by a function.

sequential mode The mode in CodeView in whichROM (read-only memory) Computer memory that
no windows are available. Input and output scroll
down the screen, and the old output scrolls off the
top of the screen when the screen is full. You
cannot examine previous commands after they

can only be read from and cannot be modified.
ROM data is permanent; it is not lost when the
machine is turned off. A computer’s ROM often

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 430 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 430

status bar 431

scroll off the top. This mode is required with
computers that are not IBM compatible.

represents the machine code currently being
executed.

selector A value that indirectly references a stack An area of memory in which data items are
segment address. A protected-mode operating
system, such as Windows, assigns selector values
to programs, which use them as segment addresses.
If a program attempts to use an unassigned
selector, it triggers a General-Protection fault
(see).

consecutively stored and removed on a last-in,
first-out basis. A stack can be used to pass
parameters to procedures.

stack frame The portion of a stack containing a
particular procedure’s local variables and
parameters.

shared memory A memory segment that can be
stack probe A short routine called on entry to aaccessed simultaneously by more than one process.
function to verify that there is enough room in the
program stack to allocate local variables required
by the function.

shell escape A method of gaining access to the
operating system without leaving CodeView or
losing the current debugging context. It is possible
to execute MS-DOS commands, then return to the
debugger.

stack switching Changing the stack pointers to
point to another stack area.

stack trace A symbolic representation of thesign extended The process of widening an integer
functions that are being executed to reach the
current instruction address. As a function is
executed, the function address and any function
arguments are pushed on the stack. Therefore,
tracing the stack shows the active functions and
their arguments.

(for example, going from a byte to a word, or a
word to a doubleword) while retaining its correct
value and sign.

signed integer An integer value that uses the
most-significant bit to represent the value’s sign. If
the bit is one, the number is negative; if zero, the
number is positive. See “two’s complement,”
“unsigned integer,” “MSB.”

standard error The device to which a program can
send error messages. The display is normally
standard error.

single precision A real (floating-point) value that
standard input The device from which a programoccupies 4 bytes of memory. Single-precision

values are accurate to six or seven decimal places. reads its input. The keyboard is normally standard
input.

single-tasking environment An environment in
standard output The device to which a programwhich only one program runs at a time. MS-DOS

is a single-tasking environment. can send its output. The display is normally
standard output.

small A memory model with only one code
statement A combination of labels, datasegment and only one data segment.
declarations, directives, or instructions that the
assembler can convert into machine code.source file A text file containing symbols that

define the program.
status bar See “linking.”

source mode The mode in which CodeView
displays the assembly-language source code that

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 431 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 431

432 static linking

static linking The line at the bottom of the PWB or text box In PWB, a box where you type
CodeView screen. The status bar displays text
position, keyboard status, current context of
execution, and other program information.

information needed to carry out a command. A text
box appears within a dialog box. The text box may
be blank or contain a default entry.

STDCALL A calling convention that uses caller tiny Memory model with a single segment for both
stack cleanup if the VARARG keyword is
specified. Otherwise the called routine must clean
up the stack.

code and data. This limits the total program size to
64K. Tiny programs have the filename extension
.COM.

string A contiguous sequence of characters toggle A function key or menu selection that turns
identified with a symbolic name. a feature off if it is on, or on if it is off. Used as a

verb, “toggle” means to reverse the status of a
feature.string literal A string of characters and escape

sequences delimited by single quotation marks
(' ') or double quotation marks (" "). TOOLS.INI A file containing initialization

information for many of the Microsoft utilities,
including PWB.structure A set of variables that may be of

different types, grouped under a single name.
two’s complement A form of base-2 notation in

structure member One of the elements of a which negative numbers are formed by inverting
the bit values of the equivalent positive number
and adding 1 to the result.

structure. Also called a field.

switch See “option.”

type A description of a set of values and a validsymbol A name that identifies a memory location
set of operations on items of that type. For
example, a variable of type BYTE can have any of
a set of integer values within the range specified
for the type on a particular machine.

(usually for data).

symbolic constant A constant represented by a
symbol rather than the constant itself. Symbolic
constants are defined with EQU statements. They
make a program easier to read and modify. type checking An operation in which the

assembler verifies that the operands of an operator
are valid or that the actual arguments in a function
call are of the same types as the function
definition’s parameters.

SYSCALL A language type for a procedure. Its
conventions are identical to C’s, except no
underscore is prefixed to the name.

T type definition The storage format and attributes
for a data unit.

tag The name assigned to a structure, union, or

Uenumeration type.

task See “process.” unary expression An expression consisting of a
single operand preceded or followed by a unary
operator.text Ordinary, readable characters, including the

uppercase and lowercase letters of the alphabet, the
numerals 0 through 9, and punctuation marks. unary operator An operator that acts on a single

operand, such as NOT.

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 432 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 432

word 433

underflow An error condition that occurs when a visibility The characteristic of a variable or
calculation produces a result too small for the
computer to represent.

function that describes the parts of the program in
which it can be accessed. An item has global
visibility if it can be referenced in every source file
constituting the program. Otherwise, it has local
visibility.

unhooking (an interrupt) The act of removing your
interrupt handler and restoring the original vector.
See “hooking (an interrupt).”

Wunion A set of values (in fields) of different types
that occupy the same storage space. watch window The window in CodeView that

displays watch statements and their values. A
variable or expression is watchable only while
execution is occurring in the section of the program
(context) in which the item is defined.

unresolved external See “unresolved reference.”

unresolved reference A reference to a global or
external variable or function that cannot be found,
either in the modules being linked or in the
libraries linked with those modules. An unresolved
reference causes a fatal link error.

window A discrete area of the screen in PWB or
CodeView used to display part of a file or to enter
statements.

unsigned integer An integer in which the most-
window commands Commands that work only insignificant bit serves as part of the number, rather

than as an indication of sign. For example, an
unsigned byte integer can have a value from 0 to
255. A signed byte integer, which reserves its
eighth bit for the sign, can range from -127 to
+128. See “signed integer,” “MSB.”

CodeView’s window mode. Window commands
consist of function keys, mouse selections, CTRL

and ALT key combinations, and selections from
pop-up menus.

window mode The mode in which CodeView
displays separate windows, which can change
independently. CodeView has mouse support and a
wide variety of window commands in window
mode.

user-defined type A data type defined by the user.
It is usually a structure, union, record, or pointer.

V
word A data unit containing 16 bits (2 bytes). Itvariable declaration A statement that initializes
can store values from 0 to 65,535 (or -32,768 to
+32,767).

and allocates storage for a variable of a given type.

virtual disk A portion of the computer’s random
access memory reserved for use as a simulated disk
drive. Also called an electronic disk or RAM disk.
Unless saved to a physical disk, the contents of a
virtual disk are lost when the computer is turned
off.

virtual memory Memory space allocated on a disk,
rather than in RAM. Virtual memory allows large
data structures that would not fit in conventional
memory, at the expense of slow access.

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 433 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 433

434

Filename: LMAPGGLO.DOC Project: Glossary
Template: GLOSS.DOT Author: Ruth L Silverio Last Saved By: Ruth L Silverio
Revision #: 2 Page: 434 of 14 Printed: 03/06/94 06:07 PM
Printed On: Distiller Colorlayer: ? Document Page: 434

435

Index

! (literal-character operator) 235 32-bit programming 335
!= (not equal operator) 178 80186 processor 3
” (double quotation marks) 109, 353 80188 processor 3
$ (current address operator) 368 80286 processor 3
% (expansion operator) 235, 248, 357 80287 math coprocessor 3, 135
& (substitution operator) 238, 372 80386 processor 3, 335
&& (logical AND operator) 178 80387 math coprocessor 3, 135
’ (single quotation mark) 109, 353 80486 processor 3, 135
() (parentheses) 106 8086-based processors 2– 3
+ (plus operator) 63, 66, 352, 370 8087 math coprocessor 3, 135
. (dot operator) 126 8088 processor 3
. (structure-member operator) 64, 67, 352, 370

A.186 directive 38
.286 directive 38
.286P directive 38 AAD instruction 160
.287 directive 38 AAM instruction 160
.386 directive ABS operand 220

FLAT, with 26, 36 Accessing data with pointers See Pointer variables
processor mode, specifying 38, 336 ADC instruction 92– 94
segment mode, setting 46, 68 ADD instruction 92– 94

.386P directive 38 ADDR operator 197

.387 directive 38 Addresses

.486 directive displacement of 65
FLAT, with 36 dynamic 79
processor mode, specifying 38 effective 65
segment mode, setting 46, 68 errors in 54

.486P directive 38 far 57, 74, 80

.8087 directive 38 near 57, 80
: (colon) 22, 352, 354 physical 7
: (segment-override operator) 50, 59– 60, 64 registers, loading into 80
:: (double colon) 197, 215, 352– 354 relocatable 57
; (semicolon) 21 segmented 7– 8, 53
;; (double semicolon) 227 Addressing
< (less than operator) 178 direct registers, used in 62– 63
< > (angle brackets) See Angle brackets indirect registers, used in 65, 68
== (equal operator) 178 scaling operands 70
> (greater than operator) 178 specifying 60
? (question mark initializer) Aliases 87, 369

array elements 109 ALIGN directive 3
described 368 Align types 45
variables 87 See also individual entries

@ (at sign) 10 .ALPHA directive 47
@@: (anonymous label) 170 AND instruction 27, 99, 100
[] (brackets) 107 Angle brackets (< >)
[] (index operator) 63 default parameters 230
\ (backslash character), MASM code 22 epilogues 202
\ (line-continuation character) 121 FOR loops 242
{} (curly braces) 121, 131 FORC loops 244
|| (logical OR operator) 178

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 435 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 435

436 Index

Angle brackets (< >) (continued) Bmacro text delimiters 234
prologues 202 Backslash character (\) 22
records 131 Backus-Naur Form See BNF grammar
structures and unions 121 Base Pointer (BP) register 73
Anonymous label (@@) 170 Basic calling conventions 308– 310

API (Application Programming Interface) 257 Basic/MASM programs 328– 332
Architecture, segmented 2, 5 Binary Coded Decimals
Architecture, unsegmented 5 calculating with 156– 160
Arguments defining 156

errors 196 instructions for 156– 160
macro 252 packed 158
mixed-language programs, passing in 314 unpacked 159– 160
qualifiedtypes, with 16 Bits
stack, on 182 mask 99– 102

Arrays rotating 100
accessing elements in 105 shifting 100
declaring 105 BNF grammar 16, 379– 380
defined 105 BOUND instruction 108, 204
defining 15 BP (Base Pointer) register 73
DUP, declaring with 106, 124 Brackets ([]) 107
instructions for processing 110 .BREAK directive 173, 176
length of 108 BSF instruction 100
multiple-line declarations for 105 BSR instruction 100
number of bytes in 108 BYTE
referencing 108, 316 align type 45
size of elements 108 directive 86
with DUP operator See DUP operator

Cwith SIZEOF operator See SIZEOF operator
with TYPE operator See TYPE operator

ASCIIZ 267 C calling convention 309
Assembly C++/MASM programs 322– 323

actions during 23 C/MASM programs 315– 321
conditional See Conditional assembly CALL instruction 180
INCLUDE files 212 Calling conventions 309
language Basic 308– 310

book list xviii directives, specifying 37
mixed-language programs 312 FORTRAN 308– 310

listing files See Listing files (list) 308
two-pass 358 mixed-language programming 308– 309

Assembly pointers See Conditional assembly Pascal 310
Assembly-time variables 233 STDCALL 311
ASSUME directive SYSCALL 308– 311

.MODEL, generated with 37 CARRY? flag as operand 178
code segments, changing 357 Case sensitivity
enhancements 344 enforcing 348
general-purpose registers 77 macro functions, predefined 245
segment registers, setting 49– 55, 58– 59, 357 MASM statements 22

AT address combine type 46 radix specifiers 11
/AT command-line option, ML 36 reserved words 9, 407
At sign (@) 10 specifying

command-line options, in 25
language type 348
OPTION directive 25

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 436 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 436

Index 437

Case sensitivity (continued) Constants
symbols, predefined 10 defined 11

CASEMAP expressions 12
ALL argument, OPTION directive 25 immediate 61
NONE argument, OPTION directive 25 integer 11– 12
NOTPUBLIC argument, OPTION directive 25 size 363

CATSTR directive 245– 247 size of 12
CATSTR, compared with TEXTEQU directive See TEXTEQU

directive
symbolic 12

.CONST directive 33, 39– 40
@CatStr predefined string function 245– 247 .CONTINUE directive 173, 176
CBW instruction 90 Coprocessors
CDQ instruction 90 architecture 140– 144
CLC instruction 104 control registers 156
Cleaning the stack 185 data format in registers 140
CLI instruction 5, 209 defined 135
Client program 257, 266 described 3, 139
CMC instruction 104 instructions
CMP instruction 166 arithmetic 148– 150
CMPS instruction 110– 114, 353 data transfer 146
CMPSB instruction 114 described 146
.CODE directive 33, 40– 42 (list) 414
Code segment See Segments, code overview 141
Code, near or far 57 program control 151– 155
@CodeSize predefined symbol 40 memory access 145
CodeView for Windows 264 operand formats
Combine types classical stack 141

(list) 46 memory 142
See also individual entries overview 141

.COM files register 143
relocatable segment expression, lacking 62 register-pop 144
starting address 56 specifying 37, 140
tiny model, using 36, 46– 47 status word register 156

COMM directive 16, 211, 217– 218 steps for using 145
Command-line driver, ML xvi /Cp command-line option, ML 10, 245
Command-line options See ML command-line options @Cpu predefined symbol 254
COMMENT directive 22 Curly braces ({})
Comments records 131

extended lines, in 346 structures and unions 121
macros, in 227 Current address operator ($) 368
source code 21– 22 @CurSeg predefined symbol 39, 219

COMMON combine type 46 CWD instruction 90
Communal variables 217 CWDE instruction 90
Compact model See Memory models, compact /Cx command-line option, ML 158
Compatibility, MASM 5.1 See MASM 5.1 compatibility

DConditional assembly
assembly behavior, changing 23
conditions, testing for 28 DAA instruction 162
directives 28 DAS instruction 162
pointers 83, 187 .DATA directive 33, 39– 40

Conditional-error directives (table) 29 .DATA? directive 33, 39– 40
Conditional jumps 164– 170 @data predefined symbol 39
Conditions, testing for conditional assembly See Conditional

assembly
Data segment See Segments, data
@DataSize predefined symbol 39, 83

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 437 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 437

438 Index

Data types Directives (continued)
arrays See Arrays .CONST 33, 39– 40
attributes for 15 .CONTINUE 173, 176
Binary Coded Decimals 159 .DATA 33, 39– 40
defined 14 .DATA? 33, 39– 40
defining 87 Data declarations, for 87
directives 14 Data types, for 14
floating-point 136 Data-sharing See EXTERN directive
initializers, as 14 DB 86
integers, allocating memory for 85– 86 DD 86, 136
new features, MASM 6.1 344 Decision 171
qualifiedtypes 15, 214 DF 86
real 14, 136 .DOSSEG 47
signed 14, 86 DQ 86, 136
strings See Strings DT 86, 136
structures 117 DW 86
unions 117 DWORD 86
user-defined 15 ECHO 236

Data, near or far 57, 58 .ELSE 171
Data-sharing methods 211 ELSE 28
Data-sharing methods, multiple-module programs See

Multiple-module programs
.ELSEIF 171
ELSEIF 28

Date, system 11 ELSEIF1 29, 358
DB directive 86 ELSEIF2 29, 358
DD directive 86 END 33, 56
DEC instruction 92– 94 .ENDIF 171
DF directive 86 ENDIF 28
DGROUP group name ENDM 227– 239

.MODEL, defined by 34, 39, 51 ENDP 180– 181, 206
DS registers, initializing to 56 ENDS 44
MS-DOS programs, for 41– 42 .ENDW 173
near data, accessing 57– 58 EQU 12, 369
segment 35– 37, 51– 52, 57 .ERR 30

Direct memory operands .ERR1 30, 358
loading offset of 82 .ERR2 30, 358
overview 60– 64 .ERRB 30, 231

Directives .ERRDEF 30
.286P 38 .ERRDIF 30
.287 38 .ERRE 30
.386 See .386 directive .ERRIDN 29
.386P 38 .ERRNB 29, 231
.387 38 .ERRNDEF 29
.486P 38 .ERRNZ 29
.8087 38 EVEN 3
.ALPHA 47 .EXIT 33, 41– 43
ALIGN 3 EXITM 248
.BREAK 173, 176 EXTERN See EXTERN directive
BYTE 86 EXTERNDEF See EXTERNDEF directive
CATSTR 245– 247 FARDATA 33, 39– 40
.CODE 33, 40– 42 .FARDATA 39– 40
COMM 16, 211, 217– 218 .FARDATA? 33, 39– 40
COMMENT 22 Floating-point 136
Conditional assembly 28 FOR 242– 243, 249
Conditional error 29, 358 FORC 244

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 438 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 438

Index 439

Directives (continued) Directives (continued)
FWORD 86 TEXTEQU See TEXTEQU directive
GROUP 51– 52 UNION 118– 119, 122, 125– 129
.IF 171 .UNTIL 173
IF 28– 29 .UNTILCXZ 173
IF1 29, 358 .WHILE 173– 177
IF2 29, 358 WHILE 241
IFB 29, 231 WORD 86
IFDEF 29, 359 Directives: 36– 38, 46
IFDIF 29 Displacement 66
IFE 29 Distance attributes 15
IFIDN 29 DIV instruction 97– 98
IFNB 29, 231 Division 97, 102
IFNDEF 29, 359 DLLs
INCLUDE 212 client program 257, 266
INCLUDELIB 222 data segment 265– 269
INSTR 245– 246 defined 257, 266
INVOKE See INVOKE directive example 267– 268
LABEL 16 extension name 266
LOCAL 188– 191, 232 heap 261– 262, 265– 267
loop-generating 173 IMPLIB utility 258
.MODEL See .MODEL directive initialization 261– 262, 268– 269
.MSFLOAT 361 loading 258– 260
Naming conventions 37 programming requirements 260– 261, 267
.NO87 38, 349 prologue and epilogue 264– 267
obsolete 361 stacks in 46, 264– 267
OPTION See OPTION directive summary 266
ORG 56 termination 262– 264, 270
POPCONTEXT 255, 349 Document conventions vii
PROC 180– 184, 193, 206, 312 DOS See MS-DOS
PUBLIC 185, 211, 220 .DOSSEG directive 47
PUSHCONTEXT 255, 349 Dot (.) operator See Structure-member operator
QWORD 86 DOTNAME argument, OPTION directive 25
.RADIX 11 Double colon (::) 197, 215
REAL4 136– 137 Double quotation marks (”) 109
REAL8 136– 137 Double semicolon (;;) 227
REAL10 136– 137 Doublewords 86
RECORD 130– 131 DQ directive 86
Renamed since MASM 5.1 350 DT directive 86
.REPEAT 173– 177 DUP operator
REPEAT 240 arrays, with 106, 124
SBYTE 86 record variables, with 131
SDWORD 86 structures and unions, with 121
SEGMENT 44– 47 DW directive 86
Segment order, controlling 47 DWORD
.SEQ 47 align type 45
SIZESTR 245– 246 directive 86
STACK See STACK directive Dynamic-link libraries See DLLs
.STARTUP See .STARTUP directive

ESTARTUP See .STARTUP directive
STRUCT 118– 129
SUBSTR 245– 246 ECHO directive 236
SWORD 86 .ELSE directive 171
TBYTE 86, 159 ELSE directive 28

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 439 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 439

440 Index

.ELSEIF directive 171 Expansion operator (%) 235– 236, 248, 357
ELSEIF directive 28 Explicit loading 258
ELSEIF1 directive 358 Exponent bias 139
ELSEIF2 directive 29, 358 EXPORT operand 185
EMULATOR argument, OPTION directive 27, 157 EXPORTS statement 261, 270
Emulator libraries 155– 156 EXPR16 argument, OPTION directive 13, 26, 361, 373
END directive 33, 56 EXPR32 argument, OPTION directive 13, 26, 373
.ENDIF directive 171 Expression operators 178
ENDIF directive 28 Expressions
ENDM directive 227– 239 assembly-time evaluation 23
ENDP directive 180– 181, 206 constant 12
ENDS directive 44 loop conditions, evaluating 179
.ENDW directive 173 OPTION M510 behavior 364, 373
ENTER instruction 183 order of evaluation 14
Environment size 366, 373

target 4 word size 13, 26
variables Extension, filename 266

INCLUDE 213 EXTERN directive
LIB 222 data-sharing 211
returning values of 10 executable file size, limiting 223

/EP command-line option, ML 342 module-specific 220
EPILOGUE argument, OPTION directive 26, 201– 203 overview 16
Epilogue code positioning 218

defined 198 procedure prototypes, declaring 193
macros 201– 202, 264– 265 External declarations 216– 218
PROC statement, specifying arguments in 185 External variables 217, 369
procedures, with 26 EXTERNDEF directive
RET instruction 357 data-sharing 211
standard 199 overview 16
user-defined 201 positioning 218

EQ operator 365 procedure prototypes, declaring 193
EQU directive 12, 369 symbols, declaring 214– 215
Equal directive (=) 12

FEquates, predefined See Predefined symbols
.ERR directive 29
.ERR1 directive 30, 358 Far addresses, invoking 57, 74, 80– 81, 197
.ERR2 directive 30, 358 Far code 57
.ERRB directive 29, 231 Far data 58– 60
.ERRDEF directive 29 .FARDATA directive 33, 39– 40
.ERRDIF directive 29 .FARDATA? directive 39– 40
.ERRE directive 29 FAR operator 169, 185
.ERRIDN directive 29 Far pointer 74, 80– 81
.ERRNB directive 29, 231 FARSTACK operand
.ERRNDEF directive 29 example 35
.ERRNZ directive 29 grouping 34
Error detection 196 in Windows-based programs 266
ERROR operand 49–50 MS-DOS program, initializing 43
Errors, argument passing 196 special cases, setting for 37
ESC instruction 360 Farwords 86
EVEN directive 3 FCOM instruction 153
Executable (.EXE) files, controlling size of 223 Fields, statements in 21– 22
Exit codes, Windows operating system 263 Files
.EXIT directive 33, 41– 43 .COM
EXITM directive 248 relocatable segment expression, lacking 62

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 440 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 440

Index 441

Files (continued) Full segment definitions
.COM (continued) described 32

starting address 56 segment registers, initializing 54– 56
tiny model, using 36, 46– 47 using 44– 51

executable 24 Full segment defintions See .STARTUP directive
include 212– 213, 348 FWORD directive 86
line numbers 11 FXCH instruction 144
naming 11

GFlags
CARRY? 178
operands, as 178 Global variables 211
OVERFLOW? 178 GROUP directive 51– 52
PARITY? 178 Groups
SIGN? 178 defined 51
stack, saving on 73 DGROUP 51
ZERO? 178 SEG operator, returned by 62

Flags register See Registers, flags GS register 17
Flat model See Memory models, flat

H
FLAT operand 46, 49– 50
FLD1 instruction 147
FLDZ instruction 147

H2INC 318Floating-point
Heap space 261– 262, 265– 267calculations 3
HEAPSIZE statement 261, 271constants
Help, online See Microsoft Advisordecimal form 137
HIGH operator 356encoded hexadecimal format 137
HIGHWORD operator 346syntax for defining 136
Huge model See Memory models, hugeemulation 157– 158

I
IEEE format 139
instructions

arithmetic 148– 149
/I command-line option, ML 213controlling 26
Identifiersdata transfer 147

ABS, using 220not emulated (list) 158
naming restrictions 9, 346, 353, 357, 368program control 152– 153, 156
OPTION DOTNAME 373operations 146
OPTION NOKEYWORD 376values

IDIV instruction 97– 98double precision 139
IEEE format 139single precision 139
.IF directive 171variables
IF directive 28– 29IEEE format 138
IF1 directive 29, 358Microsoft binary format 138
IF2 directive 29, 358.MSFLOAT format 138
IFB directive 29, 231ranges 136
IFDEF directive 29, 359FOR directive 242– 243, 249
IFDIF directive 29FORC directive 244
IFE directive 29FORCEFRAME operand 200– 201
IFIDN directive 29FORTRAN calling convention 308– 310
IFNB directive 29, 231FORTRAN/MASM programs 323– 326
IFNDEF directive 29, 359/Fpi command-line option, ML 26, 157
Immediate operands 60– 62Frame 62
IMPLIB utility 258FS register 17
Implicit loading 258FTST instruction 153
Import libraries 258

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 441 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 441

442 Index

IMPORTS statement 266 Instructions (continued)
IMUL instruction 95– 96 FLDZ 147
IN instruction 5 floating-point See Floating-point instructions
INC instruction 92– 94 FTST 153
INCLUDE directive 212 FXCH 144
INCLUDE environment variable 213 IDIV 97– 98
Include files IMUL 95– 96

assembling 213 IN 5
nested 213 INC 92– 94
overview 212, 348 INT 204– 205

INCLUDELIB directive 222 INTO 207
Index operator ([]) 63 JCXZ 170– 173
Indirect memory operands 60, 64– 70 JECXZ 170– 173
Indirect procedure calls See INVOKE directive JMP 49, 162
Initializers JO 165

allocating 87 jump 165–167, 170, 173
directives for 15 LAHF 73
multiple-line 346 LDS 81

Instance 261, 266 LEA 82, 104
INSTR directive 245– 246 LEAVE 183
@InStr predefined string function 245– 246 LES 81
Instruction Pointer (IP) register 20, 57, 161 (list) 412
Instructions LOCK 353, 363

ADC 92– 94 LODS 110– 115, 353
ADD 92– 94 logical 99– 102
AND 26, 99– 100 LOOP 172
arithmetic 378 LOOPE 172
bit-test 354 LOOPNE 172
BOUND 108, 204 LOOPNZ 172
BSF 100 LOOPZ 172
BSR 100 MOV 49, 82, 89
CALL 180 MOVS 110– 113, 353
CBW 90 MOVSX 92
CDQ 90 MOVZX 92
CLC 104 MUL 95– 96
CLI 5, 209 NOP 377
CMC 104 NOT 99– 100
CMP 166 obsolete 360
CMPS 110– 114, 353 operands for 60
CMPSB 114 OR 26, 99– 100, 168
conditional-jump 165– 167 OUT 5
coprocessor 377 POP 49, 71
CWD 90 POPA 74
CWDE 90 POPAD 74
DAA 162 POPF 73
DAS 162 POPFD 73
DEC 92– 94 privileged 2, 38
default segments, requiring 49 PUSH 49, 71
DIV 97– 98 PUSHA 74
encodings, changes to 377– 378 PUSHAD 74
ENTER 183 PUSHF 73
ESC 360 PUSHFD 73
FCOM 153 RCL 101– 104
FLD1 147 RCR 101– 104

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 442 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 442

Index 443

Instructions (continued) Interrupt-enable flag 205
REP 110– 112, 363 Interrupts
REPE 110– 112, 363 CLI instruction 209
REPNE 110– 112, 353, 363 handlers 206– 207
REPNZ 110– 112, 353, 363 INT instruction 204– 205
REPZ 110– 112, 363 MS-DOS 204, 285
RET 378 operation 206
RETF 181, 378 overview 204
RETN 181, 378 redefining 207
ROL 101– 104 STI instruction 209
ROR 101– 104 vector table 205
SAL 101– 104 INTO instruction 207
SAR 101– 104 INVOKE directive
SBB 92– 94 actions 194
SCAS 110– 115, 353 ADDR, invoking 197
SHL 101– 104 arguments, widening 196
SHR 101– 104 error detection 196
STC 104 far addresses, invoking 197
STI 5, 209 generated code, checking 198
STOS 110– 113, 353 indirect procedure calls 198
SUB 92– 94 mixed-language programs 312– 313
TEST 167– 168 procedures, calling 193– 197, 216
timing xvii, 399– 400 type conversions 194– 195
XCHG 90

JXLAT 116
XLATB 116
XOR 26, 99– 100 JCXZ instruction 170– 173

Integers JECXZ instruction 170– 173
adding 92– 94 JMP instruction 49, 162
allocating memory for 85– 86 JO instruction 165
Binary Coded Decimal (BCD) 159 Jumps
bit operations on 99 anonymous 170
constants, defining 11– 12 automatic 169
dividing 97– 98 conditional
exchanging 90 bit status 167
hexadecimal 12 comparisons 166
initializing 87 extending 26, 169
memory format 86 flag status 165– 166
moving 89 instructions (list) 165– 167
multiplying 95– 96 overview 164
operations with 88 zero value 168
popping off stack 71 directives for 171
pushing onto stack 71 extension, automatic 26, 169
radix specifiers for 11 instructions 165– 167
sign-extending 90 optimization, automatic 162
signed 86 overview 161
size of 86 unconditional
stack 71 indirect operands 163
subtracting 92– 94 jump tables 163
translating 116 overview 162
types, defining 14, 86

L
value range 86

@Interface predefined symbol 37
Interrupt vector 205

LABEL directive 16

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 443 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 443

444 Index

Labels Listing files (continued)
anonymous 170 symbols used in (list) 400
code tables in 405– 406

length 346 Literal-character operator (!) 235
OPTION M510 behavior 363 LJMP argument, OPTION directive 27
OPTION NOSCOPED 375 LOADDS operand 200– 201
procedures, in 357 Loading local address variables See Local variables
referencing 352 Loading, actions during 24
size 346 Local addresses, loading See Local variables
visibility 354 LOCAL directive 188– 191, 232

LAHF instruction 73 Local variables
LANGUAGE creating 188

BASIC argument, OPTION directive 26 loading addresses of 82
C argument, OPTION directive 26 procedures, in 188
FORTRAN argument, OPTION directive 26 LOCK instruction 353, 363
PASCAL argument, OPTION directive 26 LODS instruction 110– 115, 353
STDCALL argument, OPTION directive 26 Logical AND 178
SYSCALL argument, OPTION directive 26 Logical instruction 99– 100

LANGUAGE argument, OPTION directive 193 Logical line 22
Language attributes Lookup tables 241

.MODEL directive, with 34, 37 LOOP instruction 172
OPATTR operator 253 LOOPE instruction 172
OPTION directive, with 26 LOOPNE instruction 172

Large model See Memory models, large LOOPNZ instruction 172
LDS instruction 81 Loops
LEA instruction 82, 104 conditions
LEAVE instruction 183 expression evaluation 179
Length of strings See LENGTHOF operator precedence 179
LENGTH operator 356– 357, 364 PTR operator in 178
LENGTHOF operator relational operators for (list) 178

number of items, returning 110, 124, 132, 346 signed operands 178
structures, defining 108 writing 178
unions, with 125 controlling 176

LES instruction 81 directives
Libraries .REPEAT 173– 177

C run-time 271 .WHILE 173– 177
emulator 155– 156 instructions (list) 172
overview 221 macros
source files, specifying in 222 FOR 242– 243, 249

LIBRARY statement 270 FORC 244
Line-continuation character (\) 121 REPEAT 240
LINK, command-line options See individual entries WHILE 241
Linkage specification 322– 323 LOOPZ instruction 172
Linking LOW operator 356

actions during 24, 45 LOWWORD operator 346, 366
segment order in 48 LROFFSET operator 344

Listing files

Mcode generated 399
command-line options 397– 399
error messages 400 M510 argument, OPTION directive
examples 401 compatibility with MASM 5.1 26, 353– 370
generating 397 expression word size, setting 13
PWB options 397– 399 structures, with 119
reading 399, 405

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 444 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 444

Index 445

Macros Mask (continued)
arguments logic instructions, with 102

commas 352, 372 record operators, with 133
quotation marks 353 MASK operator 133
testing 29, 252 MASM 5.1 compatibility
variable 242, 249 address fixups 26

calling 227 macro behavior 25, 356, 372
checking argument types with 253 OPTION directive, specifying 25
comments (;;) 227 overview xvi
expansion 23 structures 25
functions updating code 353– 360

defined 248 MASM utility xvi, 342
epilogues 201 Math coprocessor See Coprocessors
EXITM 248 Medium model See Memory models, medium
prologues 201 Memory
returning values 248 access 64

local symbols in 232 allocation 24
loops virtual 5

FOR 242– 243, 249 MEMORY combine type 46
FORC 244 Memory models
REPEAT 240 attributes 35
WHILE 242– 243 compact 36

MASM 5.1 behavior 25, 356, 372 described 34
nested 251 determining 10
new features 351 far code segments 40
operators far data segments 40

behavior in macro functions 251 flat 36, 58, 336
expansion (%) 235– 236, 248, 357 huge 36
(list) 234 large 36
literal-character (!) 235 medium 36
substitution (&) 238, 352, 372 model-independent code 83

OPTION OLDMACROS 372 near code segments 40
parameters small 36

default values 230 specifying in PROC statement 185
procedure parameters, compared to 234 tiny 36, 46– 47
required 229 Memory-resident programs See TSRs
substitution 238 Microsoft Advisor xiii, 342

passing arguments to 228, 235 Minus operator (–) 64
predefined string functions 11 Mixed-language programming
procedures argument passing 314

defined 226 assembly procedures 312
functions, compared to 228 Basic/MASM programs 328– 332

recursive 255 C prototypes, converting with H2INC 318
redefining 251 C++/MASM programs 322– 323
text C/MASM programs 315– 321

defined 226 calling conventions
forward referencing 356 Basic 308– 310
numeric equates, compared to 234 FORTRAN 308– 310
OPTION M510 behavior 370 (list) 308
syntax 226 Pascal 310

VARARG keyword 242, 249, 351 STDCALL 311
writing 227 SYSCALL 308– 311

Mask column-major order 315
defined 99

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 445 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 445

446 Index

Mixed-language programming (continued) Multiple-module programs (continued)
compatible data types COMM, using 217

Basic (list) 328 data-sharing methods 211
C (list) 315 declaring symbols public and external 214
FORTRAN (list) 323 EXTERN with library routines 223

external data 314 external declarations, positioning 218
FORTRAN/MASM programs 323– 326 EXTERNDEF, using 214
initialization code 313, 321 include files 212– 213
INVOKE, using 312– 313 libraries 221– 222
naming conventions 308– 309 modules 212
overview 307 PROTO, using 216
register preservation 314 PUBLIC and EXTERN, using 220
row-major order 315 sharing symbols with include files 212

ML command-line options Multiplex interrupt 291, 304
/AT 36 Multiplication
/Cp 10, 245 instructions 95
described xvi shift operations 102
/EP 342

N/Fpi 26, 157
/I 213
listing options (list) 397 Naming conventions
overview xvi directives 37
/X 213 (list) 308
/Zm 62, 119 mixed-language programming 308– 309
/Zp 119 Naming restrictions 9

Mode, real, protected See Real mode; Protected mode Naming restrictions, identifers See Identifiers
.MODEL directive NE operator 365

attributes 34– 35 Near address 57, 80
DGROUP 51 NEAR operator 169, 185
language types, specifying 26, 308 NEARSTACK operand
memory model, defining 35– 36 ASSUME statement 54
mode default 46 default stack type 37, 42
overview 34 described 35
positioning 46 New features, MASM 6.1 xiv– xv, 342– 351
simplified segment directives 33 NMAKE 270

@Model predefined symbol 35, 83 .NO87 directive 38, 349
Module-definition file NODOTNAME argument, OPTION directive 25

described 270 NOEMULATOR argument, OPTION directive 27
statements NOKEYWORD argument, OPTION directive 9, 27, 353, 376

EXPORTS 261, 270 NOLJMP argument, OPTION directive 27, 170
HEAPSIZE 261, 271 NOM510 argument, OPTION directive 25
IMPORTS 266 NONUNIQUE operand 118, 126
LIBRARY 270 NOOLDMACROS argument, OPTION directive 26
STUB 266 NOOLDSTRUCTS argument, OPTION directive 26

Module-specific EXTERN directive See EXTERN directive NOP instruction 377
MOV instruction 49, 82, 89 NOREADONLY argument, OPTION directive 27
MOVS instruction 110– 113, 353 NOSCOPED argument, OPTION directive 26, 362, 375
MOVSX instruction 92 NOSIGNEXTEND argument, OPTION directive 27, 378
MOVZX instruction 92 NOT instruction 99– 100
MS-DOS interrupts 204, 285 NOTHING operand 49– 50
MS-DOS operating system 2– 6 Number of items with LENGTHOF operator See LENGTHOF

operatorMUL instruction 95– 96
Multiple-module programs Numeric equates, compared to text macros 234

alternatives to include files 219

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 446 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 446

Index 447

O LENGTHOF 346
Operators (continued)

OFFSET LOW 356
FLAT argument, OPTION directive 27 LOWWORD 346, 366
GROUP argument, OPTION directive 27 LROFFSET 344
SEGMENT argument, OPTION directive 27, 62 macro 251

OFFSET operator 61, 82, 356, 374 MASK 133
Offsets minus (–) 64

accessing data with 74 NE 365
addresses 7 NEAR 169, 185
described 5– 7 OFFSET 61, 82, See OFFSET operator
determining 23– 24, 360, 374 OPATTR 252– 254
fixups for 26 plus (+) 63, 66

OLDMACROS argument, OPTION directive 25, 239, 361,
372

precedence 14
PTR See PTR operator

OLDSTRUCTS argument, OPTION directive PTR, example See PTR operator
MASM 5.1 compatibility 25, 361, 370– 372 relational 357, 365
structures, with 119, 126 relational (list) 178

Online help See Microsoft Advisor SEG 50, 62, 363
OPATTR operator 252– 253 segment-override (:) 59, 64
Operands SHORT 169

ABS 220 SIZE 364– 365
direct memory 60– 64 size See PTR operator
EXPORT 185 SIZEOF 86, 346
FAR 15 structure-member (.) 64– 67, 126, 352, 370
FARSTACK See FARSTACK operand substitution (&) 238
FLAT 46, 49– 50 .TYPE 252, 360
FORCEFRAME 244 TYPE 86
immediate 60– 62 WIDTH 133
indirect memory 60, 64– 70 OPTION directive
NEAR 15 CASEMAP 25
PRIVATE READONLY 44– 45 described 23
registers 61 DOTNAME 25, 361, 373
size 66, 355 emulation mode 157
USE16 44– 46 EMULATOR 26, 157
USE32 44– 46 EPILOGUE 26, 201– 203

Operating systems EXPR16 OPTION directive 13, 26, 361, 373
(list) 4 EXPR32 OPTION directive 13, 26, 373
.MODEL, specifying with 34 LANGUAGE 26, 193
multitasking 6 language types, specifying 308
types See MS-DOS, Windows operating systems list of arguments for 25

Operators LJMP 26
ADDR 197 M510 See M510 argument, OPTION directive
current address ($) 368 NODOTNAME 25
dot (.) 126, 352, 370 NOEMULATOR 26
EQ 365 NOKEYWORD See NOKEYWORD argument, OPTION

directiveexpansion (%) 235– 236, 248, 357
expressions, in 12– 13 NOLJMP 27, 170
FAR 169, 185 NOM510 25
HIGH 356 NOOLDMACROS 26
HIGHWORD 346 NOOLDSTRUCTS 26
index ([]) 63 NOREADONLY 27
instructions, compared to 13 NOSCOPED 26, 362, 375
LENGTH 356– 357, 364 NOSIGNEXTEND 27, 378

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 447 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 447

448 Index

OPTION directive (continued) Predefined string functions (continued)
OFFSET 26, 62, 362, 374– 375 @SizeStr 245– 246
OLDMACROS 25, 237 @SubStr 245– 246
OLDSTRUCTS See OLDSTRUCTS argument, OPTION

directive
Predefined symbols 39, 83

@Codesize 40
PROC 185, 375 @Cpu 254
procedure use 26 @CurSeg 39, 219
PROLOGUE 26, 201– 203 @Data 39
READONLY 26 @DataSize 39, 83
SCOPED 25 @Interface 37
SETIF2 25, 29– 30 (list) 10, 409
using 25, 361 @Model 35, 83

OR instruction 27, 99– 100, 168 @stack 37
ORG directive 56 @Wordsize 39
OUT instruction 5 case sensitivity 9– 10
OVERFLOW? flag as operand 178 new to MASM 6.1 (list) 343

P
PRIVATE operand 185
Privilege levels 5
Problems, reporting xx
PROCPAGE align type 45

EXPORT argument, OPTION directive 25PARA align type 45
PRIVATE argument, OPTION directive 25, 362Parentheses [()] 106
PUBLIC argument, OPTION directive 25, 185PARITY? flag as operand 178

PROC directive 180– 184, 193, 206, 312Pascal convention 310
PROC statements with visibility See also VisibilityPhysical line 22
PROC with RET instruction See RET instructionPlus operator (+) 66, 352, 370
Procedure prototypesPointer variables 74– 78

declaring See EXTERNDEF directivePointers
defined with See PROTO directiveaccessing data with 74
defined with PROTO directive See PROTO directivearguments, as 80
writing See PROTO directivecopying 79

Proceduresfar 74, 80– 81
argumentsinitializing 78

far pointers 197location 74
near addresses 197operations 78
passing 182TYPEDEF, defined with 15, 75– 78
pointers 80types, to 15
type conversions 195, 196Pointers and conditional Assembly See Conditional assembly

CALL instruction 180Pointers defined by TYPEDEF See TYPEDEF directive
calling See INVOKE directivePOP instruction 49, 71
callsPOPA instruction 74

indirect 198POPAD instruction 74
optimizing 181POPCONTEXT directive 255, 349

defining 180POPF instruction 73
epilogues 26POPFD instruction 73
EXTERNDEF directive 214–215Positioning

See also EXTERNDEF directive,EXTERN directive See EXTERN directive
include files 214EXTERNDEF directive See EXTERNDEF directive
INVOKE directive 193– 197, 216Precedence operators 14
libraries 221Predefined equates See Predefined symbols
local variables 188– 192Predefined functions for macros 11

See also Local variablesPredefined string functions
Macro See Macros, procedures@CatStr 245– 247
new features 347@InStr 245– 246

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 448 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 448

Index 449

Procedures (continued) PTR operator (continued)
OPTION PROC 375 OPTION M510 behavior 365
overview 180 pointer to type, as 15
parameters signed number, specifying 178

declaring 184– 186 size 66, 88
variable numbers of 186– 188, 194 TYPEDEF, used with 75

PROC attributes, specifying 185 PUBLIC combine type 45
prologues 26 PUBLIC directive 185, 211, 220
PROTO directive 193, 214, 216 PUSH instruction 49, 71

See also PROTO directive PUSHA instruction 74
prototypes, writing 193 PUSHAD instruction 74
RET instruction 180 PUSHCONTEXT directive 255, 349
RETF instruction 181 PUSHF instruction 73
RETN instruction 181 PUSHFD instruction 73
syntax description 184

QVARARG keyword 186– 188, 194
visibility 25, 375

Processors Quadwords 86
See also Real mode; Protected mode Qualifiedtypes
8086-based 2– 3 BNF grammar 16
.MODEL directive 37 defined 15
modes, determining 10 pointers, defining 75– 76
target 2 prototypes, as 15
timing xvii, 399– 400 rules for use 15– 16

Product assistance xx Question mark initializer (?)
Program Segment Prefix (PSP) 56 array elements 109
Programming, MASM 6.1 practices 352 described 368
Programs variables 87

exiting 41 Quotation marks (' or ") 109
mixed-language 307 QWORD directive 86
starting 41

R
PROLOGUE argument, OPTION directive 25, 201– 203
Prologue code

arguments, specifying 185
.RADIX directive 11code labels in 357
Radix specifiersdefined 198

(list) 11macros for 201– 203, 264– 265
OPTION M510 behavior 367standard 199

RCL instruction 101– 104user-defined 26, 201
RCR instruction 101– 104Protected mode
Read-only code 27described 2– 7, 335
READONLY argument, OPTION directive 26flat model 335
READONLY operand 44– 45read-only segments 45
Real mode 2, 4, 7PROTO directive
Real numbers See Floating-pointinclude files 211, 214– 216
REAL4 directive 136– 137procedure prototypes, defined with 193
REAL8 directive 136– 137procedure prototypes, writing 312
REAL10 directive 136– 137Prototypes
RECORD directive 130– 131procedure
Recordsdirectives for 193

defined 129overview 193
field ranges 354qualifiedtypes, defined with 15
LENGTH operator 357PTR operator
operators 133– 134example 92
RECORD syntax 130– 131

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 449 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 449

450 Index

Records with SIZEOF operator See SIZEOF operator RETF instruction 181, 378
Records with TYPE operator See TYPE operator RETN instruction 181, 378
Recursive macros 255 ROL instruction 101– 104
Register operands 61 ROM-BIOS interrupts See Interrupts
Registers ROR instruction 101– 104

16-bit 16– 17, 67 Rotate instructions 101
32-bit 335 Routines, interrupt 206
base 65– 70

Scoprocessor 140
copying pairs of 82
division (table) 98 SAL instruction 101– 104
Eflags 20 SAR instruction 101– 104
extended 17 SBB instruction 92– 94
flags 20 SBYTE directive 86
FS 17 Scaling factor 107
general purpose 19 Scaling index registers 67– 69
GS 17 SCAS instruction 110– 112, 115, 353
index 65– 69 Scope within visibility See also Visibility
indirect addressing 65 SCOPED argument, OPTION directive 26
indirect operands 67– 68 SDWORD directive 86
initializing 44 SEG operator 49, 62, 363
Instruction Pointer (IP) 20, 57, 161 SEGMENT
(list) 409 FLAT argument, OPTION directive 27
loading addresses into 80 USE16 argument, OPTION directive 27
mixed 16-bit, 32-bit 70 USE32 argument, OPTION directive 27
pointers as 77 Segment arithmetic 7
scaling 67– 69 SEGMENT directive 44– 47
segment See Segment registers Segment mode, setting See .386 directive; .486 directive
Stack Pointer (SP) 19 Segment registers
Stack Segment (SS) 73 32-bit 335
stacks, saving on 74 assigning 59, 62
types, defined with ASSUME 77 ASSUME directive 49– 55, 58– 59, 357

Relational operators (list) 178 changing 57
Relocatable default 60, 64

addresses 57 described 18
expressions 62, 65 FS 18

REP instruction 110– 112, 363 GS 18
REPE instruction 110– 112, 363 initializing 43, 54– 57
Repeat blocks 239 MS-DOS, under 24, 43
.REPEAT directive 173 near code 57
REPEAT directive 240 restoring 59
REPNE instruction 110– 112, 353, 363 segment-override operator (:) 50, 59– 60, 64
REPNZ instruction 110– 112, 353, 363 Segment registers
Reporting problems xx initializing See STARTUP directive
REPZ instruction 110– 112 setting See STACK directive
Reserved words Segment selectors 5

described 8, 26 Segment-override operator (:) 50, 59– 60, 64
(list) 407 Segmented architecture 2, 5
OPTION M510 behavior 362 Segments
OPTION NOKEYWORD 376 32-bit 36, 335

RET instruction accessing data 74
epilogue code, generating 200, 378 aligning 44– 45
instruction encodings, changes to 357 class types 44, 47– 48
PROC, with 180

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 450 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 450

Index 451

Segments (continued) Simplified segment directives (continued)
code memory model 35

creating 40 .MODEL, defining with 34
far 40 operating system 35
memory model support for 36 processor 38
near 40 segment registers, initializing 54– 56

combining 40, 44– 46 stack 39
current 10 stack distance 37
data using 33

creating 39 Single quotation mark (') 109
default 49, 54– 55, 59 Size attribute, segments
far 40 FLAT 46
memory model support for 36 USE16 46
near 39 USE32 46

defined 31 Size mismatch 355
described 5– 7 Size of strings See SIZEOF operator
determining order of 47– 48 SIZE operator 364, 365
determining position of 23– 24 @SizeStr predefined string function 245– 246
determining size of 44 SIZEOF operator
fixups for 26 arrays, with 108
full segment definitions, defining 32 described 346
groups, defining 51 records, with 132
initializing 55 strings, with 110
location of 6 structures, with 124
naming 40 types 86
ordering with the linker 48 unions, with 125
protection 6 SIZESTR directive 245– 246
READONLY 45 Small model See Memory models, small
simplified segment directives 37– 42 Source code, statements in 21
size, determining 10 SP (Stack Pointer) register 19, 71– 73
types 44 SS (Stack Segment) register 73
USE16 44 STACK combine type 45
USE32 44 .STACK directive
values 55 described 33
word size, setting 46 segment registers, setting 56

Selector 335 Stack distance 37
Semicolon (;), comments 21 Stack frame 73, 200, 264– 265
.SEQ directive 47 Stack Pointer (SP) register 19
SETIF2 argument, OPTION directive 25, 29– 30 @stack predefined symbol 37
Shift instructions 100 Stack Segment (SS) register 73
SHL instruction 101– 104 Stacks
SHORT operator 169 cleaning 185
SHR instruction 101– 104 creating 38
Sign-extending integers 90 described 71
SIGN? flag as operand 178 distance 37
Signed data 14, 91 far 10
Signed numbers, specifying See PTR operator FARSTACK 35, 37
Significand 139 in DLLs 264– 267
Simplified segment directives local variables on 188– 191

code segments 41 near 10
code, starting and ending 42 NEARSTACK 33, 35– 37
data segments 40 operations with 72– 74
described 32 operators 71
language convention 36 passing arguments 182

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 451 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 451

452 Index

Stacks (continued) Structures (continued)
pointer 71– 73 nested 128– 129
POP instructions 71 new features 345
PUSH instructions 71 operators 124
saving flags 73 OPTION M510 behavior 366
saving registers 74 OPTION OLDSTRUCTS 370
segment register 18 redeclaration 124, 355
separate 46 referencing fields in 126
trace 264 steps for using 118

.STARTUP directive string initializers 122, 368
described 33 syntax
initializing segments 54– 56 types 118
program, starting 41– 42 variables 121
segment address 37 Structures with LENGTHOF operator See LENGTHOF

operatorStatements
case sensitivity 22 Structures with SIZEOF operator See SIZEOF operator
syntax 21 Structures with TYPE operator See TYPE operator

Status flags, saving 73 STUB statement 266
STC instruction 104 SUB instruction 92– 94
STDCALL calling convention 311, 336 Substitution operator (&) 238, 372
STI instruction 5, 209 SUBSTR directive 245– 246
STOS instruction 110– 113, 353 @SubStr predefined string function 245– 246
Strings SWORD directive 86

declaring 109 Symbol table, listing files 405
defined 105 Symbols
defining 15 declaring public and external 214, 220
initializing 109 external 369
instructions naming 346, 368

processing, for 110 predefined 9– 11
requirements (table) 112, 353 Symbols, declaring by EXTERNDEF directive See

EXTERNDEF directivelength of 110
multiple-line declarations for 109 Syntax, MASM 6.1 statements 21
overview 111 SYSCALL calling convention 308– 311
predefined functions for macros 11 System date 11

See also Predefined string functions System time 11
size of 110

Ttype of 110
STRUCT directive 118– 129
Structure-member operator (.) 64– 67, 126, 352, 370 Tables, lookup 241
Structures Target environment 4

alignment of fields 118– 119 TBYTE directive 86, 159
array initializers 122 Terminate-and-Stay-Resident programs See TSRs
arrays 124 TEST instruction 167– 168
compatibility with MASM 5.1 25, 118 Testing for zero 168
current address operator ($) 368 Text delimiters See Angle brackets
default field values 122 Text macros See Macros, text
defined 117 TEXTEQU directive
fields aliases 369

accessing 64, 67, 371 CATSTR, compared with 247
initializing 118 syntax 226
naming 119, 352, 372 Time, system 11

initializers, as 123 Timing (cycle/second) xvii, 399– 400
MASM 5.1 behavior 25, 355, 370 Tiny model See Memory models, tiny
memory allocation 117 Trap flag 205

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 452 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 452

Index 453

TSRs Unions (continued)
active nested 128– 129

described 275 operators 125
interrupt handlers in 275 referencing fields in 126
MS-DOS functions, calling 285 steps for using 118
MS-DOS functions, interrupting 286, 302 strings as initializers 122

deinstalling 292, 305 types 118
described 273 variables 121, 127
errors, trapping 288– 289 Unpacked BCD numbers 160
examples Unsegmented architecture 5

ALARM.ASM 279– 280, 284 Unsigned data 91
SNAP.ASM 293– 305 .UNTIL directive 173

existing data, preserving 290, 303 .UNTILCXZ directive 173
hardware events, auditing 275– 276, 299 USE16 operand 44– 46
interrupt handlers 275 USE32 operand 44– 46
monitoring USES in PROC statement 184

Critical Error flag 287 Utilities
system status 277, 300 IMPLIB 258

MS-DOS internal stacks (lists) 286 MASM 342
multiplex interrupt 290, 304 ML xvi
passive 274

VType conversions See INVOKE directive
Type of strings See TYPE operator
TYPE operator VARARG keyword

and OPATTR 252– 253 macros, used in 242, 249, 351
arrays, with 108 procedures, used with 186– 188, 194
compatibility 360, 365 Variables
records, with 132 assembly-time 233
string, with 110 communal 217
structures, with 124 environment 10, 213, 222
types 86 external 217, 369
unions, with 125 floating-point 136– 138

TYPEDEF directive global 211
aliases, created by 87, 137 initializing 87
BNF, from 380 integers, allocating memory for 85– 86
data types, defining 87 local address, loading 82
indirect operands, defining 163 naming restrictions 9
pointers, defined by 15, 75– 78 Virtual memory 5
procedure declarations 193 Virtual-86 mode 2, 335
procedure prototypes 193 Visibility
qualifiedtypes 16 PROC statement 25, 185

TYPEDEF, used with PTR operator See PTR operator scope, within 9
Types, data See Data types

WU
WDEB386 debugger 264

Unconditional jumps 162 WEP (Windows Exit Procedure) 263– 264, 270
UNION directive 118– 119, 122, 125– 129 .WHILE directive 173
Unions WHILE directive 241

arrays as initializers 122 WIDTH operator 133
arrays of 124 Windows operating system
defined 117 API 257, 262
fields 119, 127– 129 applications 258, 261
memory allocation 117 DLLs 261

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 453 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 453

454 Index

Windows operating system (continued)
exit codes 263
MS-DOS, compared 4
programming for 4
protected mode 2, 6
SDK 268
task header 265, 269
Windows NT 3– 5

WORD align type 45
WORD directive 86
Word size

default 13, 363, 373
expressions, in 13, 26

@WordSize predefined symbol 39
Words, reserved See Reserved words

X
XCHG instruction 90
/X command-line option, ML 213
XLAT instruction 116
XLATB instruction 116
XOR instruction 27, 99– 100

Z
ZERO? flag as operand 178
/Zm command-line option, ML 62, 119
/Zp command-line option, ML 119

Filename: LMAPGINX.DOC Project:
Template: INDEX.DOT Author: Samuel G. Dawson Last Saved By: Ruth L Silverio
Revision #: 20 Page: 454 of 20 Printed: 03/06/94 06:09 PM
Printed On: Distiller Colorlayer: ? Document Page: 454

Documentation Feedback — Microsoft ® Macro Assembler Version 6.1
Please help us improve our documentation. When you have used MASM 6.1 for a while, please complete and return this form. Use the back
of the form for additional suggestions and comments. Suggestions and comments become the property of Microsoft Corporation.

Rate each component of the document set: What one thing would you like to see added to or removed from
each component?Rate each from 1 (never use) to 5 (often use).
Getting Started ______________________________________
__
__
__

1 2 3 4 5 Getting Started

1 2 3 4 5 Programmer’s Guide

1 2 3 4 5 Environment and Tools

Programmer’s Guide _________________________________
__
__
__

1 2 3 4 5 Reference

1 2 3 4 5 Online Help

List what stands out most about each component:
List the one or two things that you like, dislike, or both. Or, use the
space to comment on the rating you gave the component in the
previous section.

Environment and Tools ________________________________
__
__
__Getting Started ______________________________________

__
__
__

Reference __
__
__
__Programmer’s Guide _________________________________

__
__
__

Online Help ___
__
__
__Environment and Tools________________________________

__
__
__

How many years of programming experience do you have?
 With assembly language

 With other programming languages (including application
macro languages)Reference __

__
__
__

Online Help ___
__
__
__

Filename: LMAPGDFD.DOC Project: Documentation Feedback Form MASM 6.1
Template: FEEDBACK.DOT Author: Ruth L Silverio Last Saved By: Mike Eddy
Revision #: 5 Page: 1 of 2 Printed: 03/06/94 06:06 PM
Printed On: Distiller Colorlayer: ? Document Page: 1

Name__

Address __

City/State/Zip _______________________________________

Home Phone (_____)_________________________________

Work Phone (_____)_________________________________

May we contact you for additional information about your comments? Yes No

Additional comments:

.. Fold...

Place stamp

here.

Post Office

will not deliver

without proper

postage.

Microsoft Corporation
Languages — MASM 6.1
One Microsoft Way
Redmond WA 98052-9953

Filename: LMAPGDFD.DOC Project: Documentation Feedback Form MASM 6.1
Template: FEEDBACK.DOT Author: Ruth L Silverio Last Saved By: Mike Eddy
Revision #: 5 Page: 2 of 2 Printed: 03/06/94 06:06 PM
Printed On: Distiller Colorlayer: ? Document Page: 2

