
Using nonlinear p-multigrid in HORSES3D

INTRO - WHY USE NONLINEAR P-MULTIGRID?

Nonlinear p-multigrid, also known as Full Approximate Scheme (FAS) drastically improves CPU time

needed to converge steady-state cases in comparison to the default explicit solver. In extreme

examples, the performance can increase 100x, so it’s a difference of getting the results after the

coffee break and the next day. Following sections explain the flags that are used in FAS.

USING EXPLICIT FAS WITH HORSES3D

The 2 most basic flags in the control file are (just to use FAS):

It is also possible to use FAS for unsteady simulation using Dual Time Stepping to converge a local

problem, but this is not covered in here. Then, there are also few necessary flags that must be

explicitly specified in order for the solver to actually work:

Note that instead of the cfl flag, we can use dt. However, this is not advised since the solver will use

the same dt on all levels and we want to have a higher time step on coarse levels. Next, there are

several optional flags for different parameters.

time integration = fas ! this flag specifies that we want to use FAS as a solver

simulation type = steady-state ! this flag specifies that we solve a STEADY-STATE case

multigrid levels = INTEGER ! this flag specifies total number of levels used in the FAS. E.g. 1 means

that there is only one level, so essentially no coarse grid acceleration is provided. If we solve a case

with P=4 and default delta N (see next box), setting this number to 4 means we use 4 levels (3

additional coarse levels for P3,P2,P1), i.e. the full potential of the FAS is used.

convergence tolerance = REAL ! this flag specifies the tolerance, to which the case will be converged

cfl = REAL ! this flag specifies the CFL number

Defining the flags above is sufficient to use FAS as a solver. Next, there are several OPTIONAL flags

that can improve performance.

CFL RAMPING

Let’s start with the CFL ramping/boosting strategy and a few words. It is a common thing for a

simulation to crash with a high CFL, but successfully run with lower CFL. However, this is not

constant for the whole simulation. It often happens that the restriction is only for initial few hundred

iterations until the flow develops and residual drops few orders of magnitude. Instead of saving the

current solution and restarting it with higher CFL, we can start with low CFL and systematically

increase it during a run.

Important thing to say here is that there are several scientific approaches on how to increase CFL

during the simulation for the best performance, see for instance Hoshyari et al. Efficient Steady-

State Convergence for a Higher-Order Unstructured Finite Volume Solver for Compressible Flows.

They are not hard to implement, however, they have to be carefully tested on several different test

cases. Since I couldn’t figure out quick enough what would be the best, automatic strategy and had

to optimize each test case separately, I decided to put something straight forward.

delta N = INTEGER ! this flag specifies how the polynomial order changes on the next, coarse level,

i.e. 𝑃𝑐𝑜𝑎𝑟𝑠𝑒 = 𝑃𝑓𝑖𝑛𝑒 − Δ𝑁 . The default is 1. If we have P3 case and set it to 2, then the next coarse

level has P1.

dcfl = REAL ! this flag specifies the the visous CFL number. Default is the same as cfl, which has to be

specified.

mg sweeps = INTEGER ! this flag specifies number of sweeps on each level. The default is one. Note

that there are several different ways of specifying number of sweeps in FAS, check documentation

for more detailed explanation. My personal favourite is mg sweeps exact = [INTEGER, INTEGER, …,

INTEGER], where you can explicitly specify number of sweeps on each level.

cfl boost = STRING! this flag specifies the option for cfl boosting. It’s either ‘linear’ or ‘exponential’.

The former is simply 𝐶𝐹𝐿 = 𝐶𝐹𝐿 + Δ𝐶𝐹𝐿 ⋅ 𝐶𝐹𝐿 and the latter is 𝐶𝐹𝐿 = Δ𝐶𝐹𝐿 ⋅ 𝐶𝐹𝐿.

dcfl boost =STRING ! the same as above, but for DCFL

cfl boost rate = REAL ! this is Δ𝐶𝐹𝐿 from the flag above. Default 0.1.

cfl max = REAL! Cfl will only increase up to the value specified by this flag. Default 1.0.

dcfl max = REAL! As described above for DCFL. Default 1.0.

INITIALIZATION

The initialization strategy is another way of changing the FAS parameters during the run, such that at

the beginning we use something that is slower and more robust, but once the flow is developed, we

use a faster solver. The CFL ramping strategy described above is a gradual change, where we use the

same solver throughout the run. If we use the initialization, the parameters change suddenly at the

pre-defined moment. The idea here is that we specify ALL the flags for FAS for a desired solver (e.g.

semi-implicit solver), however, at the beginning, FAS uses ERK5 smoother with the ‘initial’ options

(described below) until the residual is dropped sufficiently, and only then, FAS starts to use the

solver we have defined in the control file.

USING EXPLICIT SMOOTHERS

The crucial part of the FAS is smoother, which is essentially the solver. The smoother is set via this

flag:

Additionally, for any of the options mentioned above, we can choose to have local time stepping.

This is done via this flag:

mg smoother = STRING! this flag specifies the smoother for FAS. The available options for explicit

FAS are: Euler, RK3, RK5, RKOpt.

mg initialization = LOGICAL ! set .true. to use it. If true, FAS will use ERK5 smoother until the

residual drops to the value defined by initial residual.

initial residual = REAL! this is how we define the moment, where the initialization part stops. Until

here, we use ERK5 smoother. After this threshold is reached, the solver defined by mg smoother

flag is used with corresponding parameters. Default 1.0.

initial cfl = REAL! Initial cfl for ERK5 smoother. Same for DCFL (for simplicity). Default 0.5.

initial preconditioner = STRING! We can set a preconditioner for the initialization. The only available

option is LTS. Default NONE.

Last, but not least, specifically for the steady-state optimized runge-kutta smoother mg smoother =

RKOpt, we have additional option of specifying the number of stages:

USING SEMI-IMPLICIT SMOOTHERS

If we want to use a higher CFL, we need an implicit smoother. We set it via the same flag that sets an

explicit smoother:

For the semi-implicit smoothers, we need to define how to compute the Jacobian as well. Necessary

flags:

mg preconditioner = STRING! this flag sets the preconditioner for explicit smoother. The only

available option is LTS. Default is NONE.

rk order = INTEGER! this flag sets the number of stages for RKOpt. Default is 5.

mg smoother = STRING! this flag specifies the smoother for FAS. The available options for implicit

FAS are: BIRK5, ILU, SGS.

k gauss seidel = INTEGER ! this flag specifies number of inner SGS iterations for the SGS. Default is 1,

which recovers LU-SGS scheme.

#define jacobian

type =INTEGER! this flag specifies how the Jacobian is computed. 1 is numerical, 2 is analytical.

print info = LOGICAL! Set .true. or .false. to print the details regarding the Jacobian computation.

preallocate = LOGICAL! Set .true. or .false. to preallocate memory for the Jacobian.

#end

compute jacobian every = INTEGER! This flag specifies the interval (number of iteration) how often

do we re-compute the Jacobian.

