-
Notifications
You must be signed in to change notification settings - Fork 6
/
EvaluatePETS.py
60 lines (52 loc) · 1.7 KB
/
EvaluatePETS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/python
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import os.path as ph
import os
import sys
from bokeh.plotting import figure, HBox, output_file, show, VBox
from bokeh.models import Range1d
pathDir = "Evaluate"
dirname = os.listdir(pathDir)
result = [np.zeros(7) for j in range(0,9)]
# result = np.array(result)
# print result
for x in xrange(1,len(dirname)):
filename = pathDir + "/" + dirname[x] + "/Evalfile.txt"
with open(filename) as f:
data = f.read()
data = data.split('\n')
data = [row.split(' ') for row in data]
data = np.array(data)
data = np.delete(data,len(data)-1,0)
for i in range(0,9):
result[i] = np.vstack((result[i], data[i]))
result = [np.delete(result[i],0,axis=0) for i in range (0,len(result))]
result = np.array(result, dtype=np.float32)
result = np.delete(result,(1,2,3,4),axis=2)
# print result[0]
data_mean_avg = [np.mean(mat, axis=0) for mat in result]
data_mean_avg = np.array(data_mean_avg)
data_std = [np.std(mat, axis=0) for mat in result]
data_std = np.array(data_std)
data_mean_avg = np.transpose(data_mean_avg)
data_std = np.transpose(data_std)
print data_mean_avg
plt.figure(1)
plt.xlabel('Sigma of position')
plt.ylabel('MOTA')
plt.errorbar(data_mean_avg[0], data_mean_avg[1],yerr=data_std[1],ecolor='r')
# plt.xticks(np.arange(0, 90, 10.0))
# plt.yticks(np.arange(min(data_mean_avg[1]), max(data_mean_avg[1])+1, 1.0))
plt.plot(data_mean_avg[0], data_mean_avg[1],color='b')
plt.grid(True)
plt.figure(2)
plt.xlabel('Sigma of position')
plt.ylabel('MOTP')
plt.errorbar(data_mean_avg[0], data_mean_avg[2],yerr=data_std[2],ecolor='r')
plt.plot(data_mean_avg[0], data_mean_avg[2],color='g')
plt.grid(True)
print data_std[1]
print data_std[2]
plt.show()