

Copyright (C) 2020 Arm. All rights reserved.
Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
Copyright (C) 2020 Huawei Technologies Co., Ltd. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

List of Schedules:

Collective Schedule: The schedule graph describes the list of p2p and collective operations that
need to be posted and completed for a given collective operation. Each operation is represented
by a schedule node.

Two types of schedule nodes are supported
- Topology based schedule
- Reactive based schedule

Hierarchical Task: Sequence of operations that
Reactive Task:

struct ucc_<component_name>_collective_schedule {
 uint64_t num_nodes;

}

struct ucc_<component_name>_task {
 ucc_request_t *request;
 uint64_t incoming_num_edges;
 ucc_schedule_type_t *sch_type; /*p2p, collective */

};

struct ucc_<component_name>_hierarchical_task {
 ucc_schedule_node super; // Pasha: ucc_schedule_node - where it defined. Is this struct
ucc_<component_name>_task ?
 tl_team *team;
 tl_team *fallback_team; // Pasha: what does it mean ? - the task is being
launched via ucc_tl_collective_task and it may return UCC_UNSUPPORTED. Then we want to
have another team to run this task on. Example: task step is sharp_allreduce (team - is sharp
team), then it may not support all the datatypes and sharp_team will return unsupported status.
We want to have another team (e.g. team ucx) to still move the task.
 ucc_coll_args_t args; // Pasha: Please expand ucc_coll_args_t - coll args are
defined in ucc.h
 ucc_schedule_node_t *next; // is
};

ucc_status_t ucc_schedule_create_node ();
ucc_status_t ucc_schedule_destroy_node ();

/*Val : the 2 functions below would allow building a hierarchical graph corresponding to a single
collective. We also need a way to progress this graph */

ucc_status_t ucc_​<component_name>​_schedule_create_graph(int n_nodes,
ucc_schedule_graph_t **graph, (ucc_status_t progress)(ucc_schedule_graph_t *graph));

ucc_status_t ucc_schedule_add_node_to_graph(ucc_schedule_node_t *node,

 ucc_schedule_graph_t *graph,
 int position, int n_dependencies, int *dep_ids);

ucc_status_t ucc_<component_name>_task_progress();

ucc_status_t ucc_​<component_name>​_context_progress(ucc_context_t *context);

THIS PART IS IDENTICAL TO UCP_REQUEST

typedef struct ucg_request {

 volatile uint32_t flags; /**< @ref enum ucg_request_common_flags */

 volatile ucs_status_t status; /**< Operation status */

} ucg_request_t;

THIS PART IS IDENTICAL TO UCG-SPECIFIC

struct ucg_builtin_request {

 ucg_request_t super;

 ucg_builtin_op_step_t *step; /**< indicator of current step within the op */

 ucg_builtin_op_t *op; /**< operation currently running */

 ucg_request_t *comp_req; /**< completion status is written here */

 volatile uint32_t pending; /**< number of step's pending messages */

 ucg_builtin_header_step_t latest; /**< request iterator, mostly here for

 alignment reasons with slot structs */

};

ucs_status_t static UCS_F_ALWAYS_INLINE

ucg_builtin_comp_step_cb(ucg_builtin_request_t *req,

 ucg_request_t **user_req)

{

 /* Check if this is the last step */

 if (ucs_unlikely(req->step->flags & UCG_BUILTIN_OP_STEP_FLAG_LAST_STEP)) {

 ucs_assert(user_req == NULL); /* not directly from step_execute() */

 ucg_builtin_comp_last_step_cb(req, UCS_OK);

 return UCS_OK;

 }

 /* Mark (per-group) slot as available */

 ucs_container_of(req, ucg_builtin_comp_slot_t, req)->cb = NULL;

 /* Start on the next step for this collective operation */

 ucg_builtin_op_step_t *next_step = ++req->step;

 req->pending = next_step->fragments * next_step->phase->ep_cnt;

 req->latest.step_idx = next_step->am_header.msg.step_idx;

 ​ return ucg_builtin_step_execute(req, user_req);
}

int static UCS_F_ALWAYS_INLINE

ucg_builtin_comp_step_check_cb ​(ucg_builtin_request_t *req)
{

 UCG_IF_PENDING_REACHED(req, 0, 1) {

 (void) ucg_builtin_comp_step_cb(req, NULL);

 return 1;

 }

 return 0;

}

typedef struct ucg_builtin_op_step {

 uint16_t flags; /* @ref enum ucg_builtin_op_step_flags */

 uint8_t iter_ep; /* iterator, somewhat volatile */

 uint8_t iter_calc; /* iterator, somewhat volatile */

 ucg_offset_t iter_offset; /* iterator, somewhat volatile */

#define UCG_BUILTIN_OFFSET_PIPELINE_READY ((ucg_offset_t)-1)

#define UCG_BUILTIN_OFFSET_PIPELINE_PENDING ((ucg_offset_t)-2)

 uct_iface_h uct_iface;

 uct_md_h uct_md;

 ucg_builtin_plan_phase_t *phase;

 int8_t *send_buffer;

 int8_t *recv_buffer;

 size_t buffer_length;

 ucg_builtin_header_t am_header;

 uint16_t batch_cnt;

 uint8_t am_id;

 uint32_t fragments; /* != 1 for fragmented operations */

 size_t fragment_length; /* only for fragmented operations */

 /* To enable pipelining of fragmented messages, each fragment has a counter,

 * similar to the request's overall "pending" counter. Once it reaches zero,

 * the fragment can be "forwarded" regardless of the other fragments.

 * This optimization is only valid for "*_WAYPOINT" methods. */

#define UCG_BUILTIN_FRAG_PENDING ((uint8_t)-1)

 volatile uint8_t *fragment_pending;

 /* Step-level callback functions (as opposed to Op-level callback functions) */

 ucg_builtin_step_calc_cb_t calc_cb;

 ucg_builtin_comp_recv_cb_t recv_cb;

 /* Fields intended for zero-copy */

 struct {

 uct_mem_h memh;

 ucg_builtin_zcomp_t *zcomp;

 } zcopy;

} ucg_builtin_op_step_t;

typedef struct ucg_builtin_comp_slot ucg_builtin_comp_slot_t;

struct ucg_builtin_op {

 ucg_op_t super;

 unsigned opt_cnt; /**< optimization count-down */

 ucg_builtin_op_optm_cb_t optm_cb; /**< optimization function for the operation */

 ucg_builtin_op_init_cb_t init_cb; /**< Initialization function for the operation */

 ucg_builtin_op_fini_cb_t fini_cb; /**< Finalization function for the operation */

 ucg_builtin_comp_slot_t *slots; /**< slots pointer, for faster initialization */

 ucg_builtin_op_step_t steps[]; /**< steps required to complete the operation */

};

struct ucc_reactive_task {

 ucc_schedule_node super;

 ucg_builtin_op_step_t *step; ​// Pasha can you please expand ucg_builtin_op_step_t . Sounds
like very similar to the above “*next”. ​// alex: added just above - that’s the bulk of params
used during an individual “step” of a collective operation (for example: tree node has 4 steps

for all reduce, tree root has 2)

 ucg_builtin_op_t *op; ​// Pasha: can you please expand what is ucg_builtin_op_t.
Similar to the above, you have to carry arguments and type of operations.​ ​// alex: added just
above - that’s the bulk of params used during the entire collective operation - basically an

array of steps + some callback functions

};

