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Preface

People have long been interested in time series: data observed sequentially
in time. See Klein (1997) for a historical overview. Nowadays, such time
series are collected in diverse fields of science and practice, such as business,
computer science, epidemiology, finance, manufacturing or meteorology. In
line with the increasing potential for applications, more and more textbooks
on time series analysis have become available; see for example the recent
ones by Box et al. (2015), Brockwell & Davis (2016), Cryer & Chan (2008),
Falk et al. (2012), Shumway & Stoffer (2011) and Wei (2006). These textbooks
nearly exclusively concentrate on continuous-valued time series, where real
numbers or vectors are the possible outcomes. During the last few decades,
however, discrete-valued time series have also become increasingly important
in research and applications. These are time series arising from counting
certain objects or events at specified times, but they are usually neglected
in the textbook literature. Among the few introductory or overview texts on
discrete-valued time series are
• the books (or parts thereof ) by Fahrmeir & Tutz (2001), Kedem & Fokianos

(2002) and Cameron & Trivedi (2013) about regression models
• the book by Zucchini & MacDonald (2009) about hidden-Markov models
• the survey article by McKenzie (2003) in the Handbook of Statistics
• the textbook by Turkman et al. (2014), which includes a chapter about models

for integer-valued time series
• the book by Davis et al. (2016), which provides a collection of essays about

discrete-valued time series.

The present book intends to be an introductory text to the field of
discrete-valued time series, and to present the subject with a good balance
between theory and application. It covers common models for time series of
counts as well as for categorical time series, and it works out their most impor-
tant stochastic properties. It provides statistical approaches for analyzing
discrete-valued time series, and it exemplifies their practical implementation
in a number of data examples. It does not constitute a purely mathematical



�

� �

�
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treatment of the considered topics, but tries to be accessible to users from all
those areas where discrete-valued time series arise and need to be analyzed.
Inspired by the seminal time series book by Box & Jenkins (1970), there is a
strong emphasis on models and methods “possessing maximum simplicity”, but
it also provides background and references on more sophisticated approaches.
Furthermore, following again the example of Box & Jenkins, the book also
includes a part on methods from statistical process control, for the monitoring
of a discrete-valued process.

The book is aimed at academics at graduate level having a basic knowl-
edge of mathematics (calculus, linear algebra) and statistics. In addition,
elementary facts about time series and stochastic processes are assumed, as
they are typically taught in basic courses on time series analysis (also see the
textbooks listed above on time series analysis). To allow the reader to refresh
their knowledge and to make this book more self-contained, Appendix B
contains background information on, for example, Markov chains and ARMA
models. Besides putting the reader in a position to analyze and model the
discrete-valued time series occurring in practice, the book can also be used as
a textbook for a lecture on this topic. The author has already used parts of the
book in courses about discrete-valued time series. To support both its applica-
tion in practice and its use in teaching, ready-made software implementations
for the data examples and numerical examples are available to accompany
the book. Although such implementations are generally not restricted to a
particular software package, the program codes are written in the R language
(R Core Team, 2016), since R is freely available to everyone. But each of the
examples in this book could have been done with another computational
software like Matlab or Mathematica as well. All the R codes, and most of the
datasets, are provided on a companion website, see Appendix C for details.

I am very grateful to Prof. Dr. Konstantinos Fokianos (University of Cyprus),
Prof. Dr. Robert Jung (University of Hohenheim), Prof. Dr. Dimitris Karlis
(Athens University of Economics and Business) and to M. Sc. Tobias Möller
(Helmut Schmidt University Hamburg) for reading the entire manuscript
and for many valuable comments. I also wish to thank Prof. Dr. Sven Knoth
(Helmut Schmidt University Hamburg) for useful feedback on Part III of this
book, as well as M. Sc. Boris Aleksandrov and M. Sc. Sebastian Ottenstreuer
(ibid.) for making me aware of some typographical errors. I want to thank Prof.
Dr. Kurt Brännäs (Umeå University) for allowing me to share the transactions
counts data in Example 4.1.5, Alexander Jonen (Helmut Schmidt University
Hamburg) for making me aware of the rig counts data in Example 2.6.2, and
again Prof. Dr. Dimitris Karlis for contributing the accidents counts data in
Example 3.4.2. Thanks go to the Helmut Schmidt University in Hamburg,
to the editorial staff of Wiley, especially to Blesy Regulas and Shyamala
Venkateswaran for the production of this book, and to Andrew Montford
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(Anglosphere Editing Limited) for the copyediting of the book. Finally, I wish
to thank my wife Miia and my children Maximilian, Tilman and Amalia for
their encouragement and welcome distraction during this work.

Christian H. Weiss
Hamburg
February 2017
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Introduction

A (discrete-time) time series is a set of observations xt , which are recorded at
times t stemming from a discrete and linearly ordered set 0. An example of
such a time series is plotted in Figure 1.1. This is the annual number of lynx
fur returns for the MacKenzie River district in north-west Canada. The source
is the Hudson’s Bay Company, 1821–1934; see Elton & Nicholson (1942).
These lynx data are discussed in many textbooks about time series analysis,
to illustrate that real time series may exhibit quite complex seasonal patterns.
Another famous example from the time series literature is the passenger
data of Box & Jenkins (1970), which gives the monthly totals of international
airline passengers (in thousands) for the period 1949–1960. These data
(see Figure 1.2 for a plot) are often used to demonstrate the possible need for
variance-stabilizing transformations.

Looking at the date of origin of the lynx data, it becomes clear that people
have long been interested in data collected sequentially in time; see also the
historical examples of time series in the books by Klein (1997) and Aigner
et al. (2011). But even basic methods of analyzing such time series, as taught
in any time series course these days, are rather new, mainly stemming from
the last century. As shown by Klein (1997), the classical decomposition of
time series into a trend component, a seasonal component and an “irregular
component” was mostly developed in the first quarter of the 20th century. The
periodogram, nowadays a standard tool to uncover seasonality, dates back to
the work of A. Schuster in 1906. The (probably) first correlogram – a plot of
the sample autocorrelation function against increasing time lag – can be found
in a paper by G. U. Yule from 1926.

The understanding of the time series (xt)0
as stemming from an underlying

stochastic process (Xt) , and the irregular component from a stationary one,
evolved around that time too (Klein, 1997), enabling an inductive analysis of
time series. Here, (Xt) is a sequence of random variables Xt , where  is a
discrete and linearly ordered set with 0 ⊆  , while the observations (xt)0

are
part of the realization of the process (Xt) . Major early steps towards the mod-
eling of such stochastic processes are A. N. Kolmogorov’s extension theorem

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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Figure 1.1 Annual number of lynx fur returns (1821–1934); see Elton & Nicholson (1942).
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Figure 1.2 Monthly totals (in thousands) of international airline passengers (1949–1960);
see Box & Jenkins (1970).

from 1933, the definitions of stationarity by A. Y. Khinchin and H. Wold in
the 1930s, the development of the autoregressive (AR) model by G. U. Yule
and G. T. Walker in the 1920s and 1930s, as well as of the moving-average
(MA) model by G. U. Yule and E. E. Slutsky in the 1920s, their embedding into
the class of linear processes by H. Wold in 1938, their combination to the full
ARMA model by A. M. Walker in 1950, and, not to forget, the development
of the concept of a Markov chain by A. Markov in 1906. All these approaches
(see Appendix B for background information) are standard ingredients of
modern courses on time series analysis, a fact which is largely due to G. E. P.
Box and G. M. Jenkins and their pioneering textbook from 1970, in which they
popularized the ARIMA models together with an iterative approach for fitting
time series models, nowadays called the Box–Jenkins method. Further details
on the history of time series analysis are provided in the books by Klein (1997)
and Mills (2011), the history of ARMA models is sketched by Nie & Wu (2013),
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and more recent developments are covered by Tsay (2000) and Pevehouse &
Brozek (2008).

From now on, let (xt)0
denote a time series stemming from the

stochastic process (Xt) ; to simplify notations, we shall later often use
 = ℤ ∶= {… ,−1, 0, 1,…} (full set of integers) or  = ℕ0 ∶= {0, 1,…} (set
of non-negative integers). In the literature, we find several recent textbooks
on time series analysis, for example the ones by Box et al. (2015), Brockwell
& Davis (2016), Cryer & Chan (2008), Falk et al. (2012), Shumway & Stoffer
(2011) amd Wei (2006). Typically, these textbooks assume that the random
variables Xt are continuously distributed, with the possible outcomes of the
process being real numbers (the Xt are assumed to have the range ℝ, where ℝ
is the set of real numbers). The models and methods presented there are
designed to deal with such real-valued processes.

In many applications, however, it is clear from the real context that the
assumption of a continuous-valued range is not appropriate. A typical example
is the one where the Xt express a number of individuals or events at time t,
such that the outcome is necessarily integer-valued and hence discrete. If the
realization of a random variable Xt arises from counting, then we refer to it
as a count random variable: a quantitative random variable having a range
contained in the discrete set ℕ0 of non-negative integers. Accordingly, we
refer to such a discrete-valued process (Xt) as a count process, and to (xt)0

as a count time series. These are discussed in Part I of this book. Note that
also the two initial data examples in Figures 1.1 and 1.2 are discrete-valued,
consisting of counts observed in time. Since the range covered by these time
series is quite large, they are usually treated (to a good approximation) as being
real-valued. But if this range were small, as in the case of “low counts”, it would
be misleading if ignoring the discreteness of the range.

An example of a low counts time series is shown in Figure 1.3, which gives
the weekly number of active offshore drilling rigs in Alaska for the period
1990–1997; see Example 2.6.2 for further details. The time series consists
of only a few different count values (between 0 and 6). It does not show an
obvious trend or seasonal component, so the underlying process appears
to be stationary. But it exhibits rather long runs of values that seem to be
due to a strong degree of serial dependence. This is in contrast to the time
series plotted in Figure 1.4, which concerns the weekly numbers of new infec-
tions with Legionnaires’ disease in Germany for the period 2002–2008 (see
Example 5.1.6). This has clear seasonal variations: a yearly pattern. Another
example of a low counts time series with non-stationary behavior is provided
by Figure 1.5, where the monthly number of “EA17” countries with stable
prices (January 2000 to December 2006 in black, January 2007 to August 2012
in gray) is shown. As discussed in Example 3.3.4, there seems to be a structural
change during 2007. If modeling such low counts time series, we need models
that not only account for the discreteness of the range, but which are also able
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Figure 1.3 Weekly counts of active offshore drilling rigs in Alaska (1990–1997),
see Example 2.6.2.
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Figure 1.4 Weekly counts of new infections with Legionnaires’ disease in Germany
(2002–2008); see Example 5.1.6.
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Figure 1.5 Monthly counts of “EA17” countries with stable prices from January 2000 to
August 2012; see Example 3.3.4.
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to deal with features of this kind. We shall address this topic in Part I of the
present book.

All the data examples given above are count time series, which are the
most common type of discrete-valued time series. But there is also another
important subclass, namely categorical time series, as discussed in Part II of
this book. For these, the outcomes stem from a qualitative range consisting
of a finite number of categories. The particular case of only two categories is
referred to as a binary time series. For the qualitative sleep status data shown
in Figure 1.6, the six categories ‘qt’, …, ‘aw’ exhibit at least a natural ordering,
so we are concerned with an ordinal time series. In other applications, not
even such an inherent ordering exists (nominal time series). Then a time
series plot such as the one in Figure 1.6 is no longer possible, and giving
a visualization becomes much more demanding. In fact, the analysis and
modeling of categorical time series cannot be done with the common textbook
approaches, but requires tailor-made solutions; see Part II.

For real-valued processes, autoregressive moving-average (ARMA) models
are of central importance. With the (unobservable) innovations1 (𝜖t)ℤ being
independent and identically distributed (i.i.d.) random variables (white noise;
see Example B.1.2 in Appendix B), the observation at time t of such an ARMA
process is defined as a weighted mean of past observations and innovations,

Xt = 𝛼1 ⋅ Xt−1 +…+ 𝛼p ⋅ Xt−p + 𝜖t − 𝛽1 ⋅ 𝜖t−1 −…− 𝛽q ⋅ 𝜖t−q. (1.1)

In other words, it is explained by a part of its own past as well as by an
interaction of selected noise variables. Further details about ARMA models
are summarized in Appendix B.3. Although these models themselves can be
applied only to particular types of processes (stationary, short memory, and
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Figure 1.6 Successive EEG sleep states measured every minute; see Example 6.1.1.

1 For continuous-valued ARMA models, the innovations (𝜖t)ℤ are commonly referred to as the
error or noise process.
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so on), they are at the core of several other models, such as those designed
for non-stationary processes or processes with a long memory. In particular,
the related generalized autoregressive conditional heteroskedasticity (GARCH)
model, with its potential for application to financial time series, has become
very popular in recent decades; see Appendix B.4.1 for further details. A com-
prehensive survey of models within the “ARMA alphabet soup” is provided by
Holan et al. (2010). A brief summary and references to introductory textbooks
in this field can be found in Appendix B.

In view of their important role in the modeling of real-valued time series, it
is quite natural to adapt such ARMA approaches to the case of discrete-valued
time series. This has been done both for the case of count data and for the
categorical case, and such ARMA-like models serve as the starting point of our
discussion in both Parts I and II. In fact, Part I starts with an integer-valued
counterpart to the specific case of an AR(1) model, the so-called INAR(1)
model, because this simple yet useful model allows us to introduce some
general principles for fitting models to a count time series and for checking the
model adequacy. Together with the discussion of forecasting count processes,
also provided in Chapter 2, we are thus able to transfer the Box–Jenkins
method to the count data case. In the context of introducing the INAR(1)
model, the typical features of count data are also discussed, and it will become
clear why integer-valued counterparts to the ARMA model are required; in
other words, why we cannot just use the conventional ARMA recursion (1.1)
for the modeling of time series of counts.

ARMA-like models using so-called “thinning operations”, commonly
referred to as INARMA models, are presented in Chapter 3. The INAR(1)
model also belongs to this class, while Chapter 4 deals with a modification of
the ARMA approach related to regression models; the latter are often termed
INGARCH models, although this is a somewhat misleading name. More gen-
eral regression models for count time series, and also hidden-Markov models,
are discussed in Chapter 5. As this book is intended to be an introductory
textbook on discrete-valued time series, its main focus is on simple models,
which nonetheless are quite powerful in real applications. However, references
to more elaborate models are also included for further reading.

In Part II of this book, we follow a similar path and first lay the foundations
for analyzing categorical time series by introducing appropriate tools, for
example for their visualization or the assessment of serial dependence; see
Chapter 6. Then we consider diverse models for categorical time series
in Chapter 7, namely types of Markov models, a kind of discrete ARMA
model, and again regression and hidden-Markov models, but now tailored to
categorical outcomes.

So for both count and categorical time series, a variety of models are pre-
pared here to be used in practice. Once a model has been found to be adequate
for the given time series data, it can be applied to forecasting future values.



�

� �

�

Introduction 7

The issue of forecasting is considered in several places throughout the book,
as it constitutes the most obvious field of application of time series modeling.
But in line with the seminal time series book by Box & Jenkins (1970), another
application area is also covered here, namely the statistical monitoring of a pro-
cess; see Part III. Chapter 8 addresses the monitoring of count processes, with
the help of so-called control charts, while Chapter 9 presents diverse control
charts for categorical processes. The aim of process monitoring (and particu-
larly of control charts) is to detect changes in an (ongoing) process compared to
a hypothetical “in-control” model. Initially used in the field of industrial statis-
tics, approaches for process monitoring are nowadays used in areas as diverse
as epidemiology and finance.

The book is completed with Appendix A, which is about some common
count distributions, Appendix B, which summarizes some basics about
stochastic processes and real-valued time series, and with Appendix C, which
is on computational aspects (software implementation, datasets) related to
this book.
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Part I

Count Time Series

The first part of this book considers the most common type of discrete-valued
time series, in which each observation arises from counting certain objects
or events. Such count time series consist of time-dependent and quantitative
observations from a range of non-negative integers (see also Appendix A). This
topic has attracted a lot of research activity over the last three decades, and
innumerable models and analytical tools have been proposed for such time
series. To be quickly able to comprehensively discuss a first time series example,
we start with a simple yet useful model for count time series in Chapter 2,
namely the famous INAR(1) model, as proposed by McKenzie (1985). This
model constitutes a counterpart to the continuous-valued AR(1) model, which
cannot be applied to count time series because of the “multiplication problem”
(a brief summary of conventional ARMA models is provided by Appendix B).
To avoid this problem, the INAR(1) model uses the so-called binomial thinning
operator as a substitute for the multiplication, thus being able to transfer the
basic AR(1) recursion to the count data case. The INAR(1) model allows us,
among other things, to introduce basic approaches for parameter estimation,
model diagnostics, and statistical inference. These approaches are used in an
analogous way in the more sophisticated models discussed in the later chapters
of this book.

The thinning-based approach to count time series modeling is considered in
more depth in Chapter 3, where higher-order ARMA-like models for counts
are discussed, as are models with different types of thinning operation, and
also thinning-based models for a finite range of counts and for multivariate
counts. Chapter 4 then presents a completely different approach for stationary
count processes: the so-called INGARCH models. Despite their (controversial)
name, these models also focus on counts having an ARMA-like autocorrela-
tion structure. But this time, the ARMA-like structure is not obtained by using

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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thinning operations, but by a construction related to regression models. Such
regression models are covered in Chapter 5, which concludes Part I of this book
by briefly presenting further popular models for count time series, including
hidden-Markov models.
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2

A First Approach for Modeling Time Series of Counts:
The Thinning-based INAR(1) Model

As a first step towards the analysis and modeling of count time series, we con-
sider an integer-valued counterpart to the conventional first-order autoregres-
sive model, the INAR(1) model of McKenzie (1985). This constitutes a rather
simple and easily interpretable Markov model for stationary count processes,
but it is also quite powerful due to its flexibility and expandability. In particular,
it allows us to introduce some basic approaches for parameter estimation,
model diagnostics and statistical inference. These are used in an analogous way
also for the more advanced models discussed in Chapters 3–5. The presented
models and methods are illustrated with a data example in Section 2.5.

To prepare for our discussion about count time series, however, we start in
Section 2.0 with a brief introduction to the notation used in this book, and
with some remarks regarding characteristic features of count distributions in
general (without a time aspect).

2.0 Preliminaries: Notation and Characteristics of
Count Distributions

In contrast to the subsequent sections, here we remove any time aspects and
look solely at separate random variables and their distributions. The first aim
of this preliminary section is to acquaint the reader with the basic notation
used in this book. The second one is to briefly highlight characteristic features
of count distributions, which will be useful in identifying appropriate models
for a given scenario or dataset. To avoid a lengthy and technical discussion,
detailed definitions and surveys of specific distributions are avoided here but
are provided in Appendix A instead.

Count data express the number of certain units or events in a specified
context. The possible outcomes are contained in the set of non-negative
integers, ℕ0 = {0, 1, 2,…}. These outcomes are not just used as labels; they
arise from counting and are hence quantitative (ratio scale). Accordingly, we
refer to a quantitative random variable X as a count random variable if its

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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range is contained in the set of non-negative integers, ℕ0 = {0, 1, 2,…}. Some
examples of random count phenomena are:

• the number of emails one gets at a certain day (unlimited range ℕ0)
• the number of occupied rooms in a hotel with n rooms (finite range

{0, 1,… , n})
• the number of trials until a certain event happens (unlimited range

ℕ = {1, 2,…}).

A common way of expressing location and dispersion of a count random
variable X is to use mean and variance, denoted as

𝜇 ∶= E[X] =
∑

x
x ⋅ P(X = x), 𝜎2 ∶= V [X] = E[(X − E[X])2].

The definition and notation of more general types of moments are summarized
in Table 2.1; note that 𝜇 = 𝜇1 is the mean of X, and 𝜎2 = 𝜇2 is the variance of X.

While such moments give insight into specific features of the distribution
of X, the complete distribution is uniquely defined by providing its probability
mass function (pmf), which we abbreviate as

pk = P(X = k).

Similarly, fk = P(X ≤ k) denotes the cumulative distribution function (cdf ).
An alternative way of completely characterizing a count distribution is to
derive an appropriate type of generating function; the most common types
are summarized in Table 2.2. The probability generating function (pgf ), for
instance, encodes the pmf of the distribution, but it also allows derivation of
the factorial moments: the rth derivative satisfies pgf(r)(1) = 𝜇(r); in particular,

Table 2.1 Definition and notation of moments of a count random variable X .

For n ∈ ℕ, we refer to
𝜇n ∶= E[Xn] as the nth moment of X,
𝜇n ∶= E[(X − 𝜇)n] as the nth central moment of X,
𝜇(n) ∶= E[X(n)] = E[X · · · (X − n + 1)] as the nth factorial moment of X.

Table 2.2 Definition and notation of generating functions of a count r. v. X .

Generating functions of X :

Probability (pgf ) pgf(z) ∶= E[zX] =
∑∞

k=0 pk ⋅ zk

Moment (mgf) mgf(z) ∶= pgf(ez) = 1 +
∑∞

j=1 𝜇j∕j! ⋅ zj

Cumulant (cgf ) cgf(z) ∶= ln (pgf(ez)) =∶
∑∞

j=1 𝜅j∕j! ⋅ zj

Factorial-cumulant (fcgf ) fcgf(z) ∶= ln (pgf(1 + z)) =∶
∑∞

j=1 𝜅(j)∕j! ⋅ zj
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pgf′(1) = 𝜇. The coefficients 𝜅j of cgf(z) are referred to as the cumulants.
Particular cumulants are

𝜅1 = 𝜇, 𝜅2 = 𝜎2, 𝜅3 = 𝜇3, 𝜅4 = 𝜇4 − 3𝜎4;

that is, 𝜅3∕𝜎3 is the skewness and 𝜅4∕𝜎4 the excess of the distribution. The coef-
ficients 𝜅(j) of the factorial-cumulant generating function (fcgf ) are referred to
as the factorial cumulants.

A number of parametric models for count distributions are available in the
literature. See Appendix A for a brief survey. There, the models are sorted
according to the dimension of their ranges (univariate vs. multivariate), and
according to size: in some applications, there exists a fixed upper bound n ∈ ℕ
that can never be exceeded, so the range is of finite size, taking the form
{0,… , n}; otherwise, we have the unlimited range ℕ0.

Distributions for the case of X being a univariate count random variable with
the unlimited range ℕ0 are presented in Appendix A.1. There, the Poisson dis-
tribution has an outstanding position (similar to the normal distribution in
the continuous case) and often serves as the benchmark for the modeling of
count data. One of its main characteristics is the equidispersion property, which
means that its variance is always equal to its mean. If we define the (Poisson)
index of dispersion as

I ∶= I(𝜇, 𝜎2) ∶= 𝜎2

𝜇
∈ (0;∞) (2.1)

for a random variable X with mean𝜇 and variance 𝜎2, then the Poisson distribu-
tion always satisfies I = 1. Values for I deviating from 1, in turn, express a viola-
tion of the Poisson model: I > 1 indicates an overdispersed distribution, such as
the negative binomial distribution from Example A.1.4 or Consul’s generalized
Poisson distribution from Example A.1.6. I < 1 expresses underdispersion, for
example in the Good distribution from Example A.1.7 or the PL distribution
from Example A.1.8.

Figure 2.1 illustrates the difference between the equidispersed Poisson dis-
tribution (black) and the overdispersed negative binomial distribution (NB;
gray) or generalized Poisson distribution (GP; light gray), respectively. All dis-
tributions are calibrated to the same mean 𝜇 = 1.5, but the plotted NB and GP
models have dispersion indices I = 2 (that is, 100% overdispersion). It can be
seen that both the NB and GP models have more probability mass for values
≥ 4, but also the zero probability is increased (Poi: ≈ 0.223, NB: ≈ 0.354, GP:
≈ 0.346); the latter phenomenon is discussed in more detail below.

Figure 2.2, in contrast, illustrates the effect of underdispersion, compared to
the equidispersed Poisson distribution (black) with mean 𝜇 = 1.5: the plotted
Good distribution (gray; Example A.1.7) and the PL1 distribution (light gray;
Example A.1.8) both have mean ≈ 1.500 and dispersion index ≈ 0.500 (that
is, 50% underdispersion). These underdispersed models concentrate most of
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Figure 2.1 Count distributions with 𝜇 = 1.5: Poisson in black; NB and GP distributions (both
with 100% overdispersion) in gray.
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Figure 2.2 Count distributions with 𝜇 ≈ 1.5: Poisson in black; Good and PL1 distributions
(both with ≈ 50% underdispersion) in gray.

their probability mass on the values 1 and 2. In particular, the zero probability
is much lower than in the Poisson case (Poi: ≈ 0.223, Good: ≈ 0.084, PL1: ≈
0.071).

When discussing Figures 2.1 and 2.2, it becomes clear that another character-
istic property of the Poisson distribution is the probability of observing a zero,
p0 ∶= P(X = 0) = exp (−E[X]). Hence, the zero index (Puig & Valero, 2006)

Izero ∶= Izero(𝜇, p0) ∶= 1 +
ln p0

𝜇
∈ (−∞; 1), (2.2)

as a function of mean 𝜇 and zero probability p0, takes the value 0 for the Poisson
distribution, but may differ otherwise. Values Izero > 0 indicate zero inflation
(excess of zeros with respect to a Poisson distribution), while Izero < 0 refers to
zero deflation. A useful approach for modifying a distribution’s zero probability
is described in Example A.1.9.
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The previous discussion as well as the definition of the indices (2.1) and (2.2)
are for distributions having an unlimited range ℕ0. However, as mentioned
before, sometimes the range is finite, {0,… , n} with fixed upper bound n ∈ ℕ.
In such a case, the binomial distribution (Example A.2.1 in Appendix A.2) plays
a central role. If we characterize its dispersion behavior in terms of the index
of dispersion (2.1), the binomial distribution is underdispersed. However, since
we are concerned with a different type of random phenomenon anyway – one
with a finite range – it is more appropriate to evaluate the dispersion behavior
in terms of the so-called binomial index of dispersion, defined by

IBin ∶= IBin(n, 𝜇, 𝜎2) ∶= 𝜎2

𝜇 (1 − 𝜇∕n)
∈ (0; n) (2.3)

for a random variable X with range {0,… , n}, mean 𝜇 and variance 𝜎2.
See also Hagmark (2009), and note that IBin → I for n → ∞. In view of this
index, the binomial distribution always satisfies IBin = 1, while a distribution
with IBin > 1 is said to exhibit extra-binomial variation. An example is the
beta-binomial distribution from Example A.2.2. For illustration, Figure 2.3
shows a binomial and a beta-binomial distribution with range {0,… , 15} and
the unique mean 6, but with the beta-binomial distribution exhibiting a strong
degree of extra-binomial variation (420%).

Although this book, as an introductory course in discrete-valued time series,
mainly focusses on the univariate case, in some places a brief account of
possible multivariate generalizations is also provided. Therefore, Appendix A.3
presents multivariate extensions to some basic count models such as the
Poisson or negative binomial. These extensions preserve the respective
univariate distribution for their marginals, but they induce cross-correlation
between the components of the multivariate count vector. An example is
plotted in Figure 2.4. The bivariate Poisson (Example A.3.1) and negative

0 5 10 15

0.
00

0.
10

0.
20

P
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x

Figure 2.3 Binomial distribution Bin(15, 0.4) in black, and corresponding beta-binomial
distribution with 𝜙 = 0.3 (IBin = 5.2) in gray.
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Figure 2.4 Bivariate Poisson (left) and negative binomial distribution (right) with
mean (3, 4)⊤ and cross-correlation ≈ 0.535.

binomial distribution (Example A.3.2) shown there are adjusted to give
the same mean 𝝁 = (3, 4)⊤ and the same cross-correlation

√
2∕7 ≈ 0.535,

but the negative binomial model obviously shows more dispersion in both
components: the dispersion indices are 2 and 2.3, respectively.

One of the multivariate count distributions, the multinomial distribution
from Example A.3.3, will be of importance in Part II’s consideration of cate-
gorical time series; see also the discussion in the appendix. The connection to
compositional data (Remark A.3.4) is briefly mentioned in this context.

2.1 The INAR(1) Model for Time-dependent Counts

In 1985, in issues 4 and 5 of volume 21 of the Water Resources Bul-
letin (nowadays the Journal of the American Water Resources Association), a
series of papers about time series analysis appeared, and were also published
separately by the American Water Resources Association as the monograph
Time Series Analysis in Water Resources (edited by K.W. Hipel). One of these
papers, “Some simple models for discrete variate time series” by McKenzie
(1985), introduced a number of AR(1)-like models for count time series. At
this point, it is important to note that the conventional AR(1) recursion,
Yt = 𝛼 ⋅ Yt−1 + 𝜀t , cannot be applied to count processes: even if the innova-
tions 𝜀t are assumed to be integer-valued with range ℕ0, the observations Yt
would still not be integer-valued, since the multiplication “𝛼⋅” does not
preserve the discrete range (the so-called multiplication problem). Therefore,
the idea behind McKenzie’s new models was to use different mechanisms
for “reducing” Yt−1. One such mechanism is the binomial thinning operator
(Steutel & van Harn, 1979), which was used to define the integer-valued AR(1)
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model, or INAR(1) model for short. The binomial AR(1) model, discussed in
Section 3.3, was also introduced in this context.

It seems that McKenzie’s paper was overlooked in the beginning, possibly
because the Water Resources Bulletin was not a typical outlet for time series
papers: two years later, the INAR(1) model was proposed again by Al-Osh
& Alzaid (1987), but now in the Journal of Time Series Analysis. Eventually,
McKenzie’s paper and the one by Al-Osh & Alzaid, turned out to be ground-
breaking for the field of count time series, initiating innumerable research
papers about thinning-based time series models (some of them are presented
in Section 3) and attracting more and more attention to discrete-valued time
series.

We shall now examine the important stochastic properties as well as rele-
vant special cases of the INAR(1) model in great detail. This will allow for more
compact presentations of many other models in the later chapters of this book.

2.1.1 Definition and Basic Properties

A way of avoiding the multiplication problem, as sketched above, is to use the
probabilistic operation of binomial thinning (Steutel & van Harn, 1979), some-
times also referred to as binomial subsampling (Puig & Valero, 2007). If X is a
discrete random variable with range ℕ0 and if 𝛼 ∈ (0; 1), then the random vari-
able 𝛼 ∘ X ∶=

∑X
i=1 Zi is said to arise from X by binomial thinning, and the Zi are

referred to as the counting series. They are i.i.d. binary random variables with
P(Zi = 1) = 𝛼, which are also independent of X. So by construction, 𝛼 ∘ X can
only lead to integer values between 0 and X. The boundary values 𝛼 = 0 and
𝛼 = 1 might be included in this definition by setting 0 ∘ X ∶= 0 and 1 ∘ X ∶= X.
Since each Zi satisfies Zi ∼ Bin(1, 𝛼) (see Example A.2.1), and since the bino-
mial distribution is additive, 𝛼 ∘ X has a conditional binomial distribution given
the value of X; that is, 𝛼 ∘ X|X ∼ Bin(X, 𝛼). In particular, using the law of total
expectation, it follows that

E[𝛼 ∘ X] = E[E[𝛼 ∘ X | X]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

mean of binom. distr.

] = E[𝛼 ⋅ X] ( = 𝛼 𝜇).

So the binomial thinning 𝛼 ∘ X and the multiplication 𝛼 ⋅ X have the same mean,
which motivates us to use binomial thinning within a modified AR(1) recursion.
However, they differ in many other properties; in particular, the multiplication
is not a random operation. As an example, the law of total variance implies that

V [𝛼 ∘ X] = V [E[𝛼 ∘ X | X]] + E[V [𝛼 ∘ X | X]]
= V [𝛼 ⋅ X] + E[𝛼(1 − 𝛼) ⋅ X] ( = 𝛼2 𝜎2 + 𝛼(1 − 𝛼) 𝜇),

so we have V [𝛼 ∘ X] ≠ V [𝛼 ⋅ X].
For the interpretation of the binomial thinning operation, consider a pop-

ulation of size X at a certain time t. If we observe the same population at a
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later time, t + 1, then the population may have shrunk, because some of the
individuals had died between times t and t + 1. If the individuals survive inde-
pendently of each other, and if the probability of surviving from t to t + 1 is
equal to 𝛼 for all individuals, then the number of survivors is given by 𝛼 ∘ X.

Using the random operator “ ∘ ”, McKenzie (1985) and Al-Osh & Alzaid (1987)
defined the INAR(1) process in the following way.

Definition 2.1.1.1 (INAR(1) model) Let the innovations (𝜖t)ℕ be an i.i.d.
process with range ℕ0, denote E[𝜖t] = 𝜇𝜖 , V [𝜖t] = 𝜎2

𝜖 . Let 𝛼 ∈ (0; 1). A process
(Xt)ℕ0

of observations, which follows the recursion

Xt = 𝛼 ∘ Xt−1 + 𝜖t,

is said to be an INAR(1) process if all thinning operations are performed inde-
pendently of each other and of (𝜖t)ℕ, and if the thinning operations at each time t
as well as 𝜖t are independent of (Xs)s<t .

Note that it would be more correct to write “∘t” in the above recursion to
emphasize the fact that the thinning is realized at each time t anew. However,
for the sake of readability, the time index is avoided.

The INAR(1) recursion of Definition 2.1.1.1 can be interpreted as follows
(Al-Osh & Alzaid, 1987):

Xt
⏟⏟⏟

Population at time t

= 𝛼 ∘ Xt−1
⏟⏟⏟

Survivors from time t−1

+ 𝜖t
⏟⏟⏟

Immigration

. (2.4)

The INAR(1) process is a homogeneous Markov chain with the 1-step transition
probabilities given by (McKenzie, 1985; Al-Osh & Alzaid, 1987):

pk|l ∶= P(Xt = k | Xt−1 = l)

=
min{k,l}∑

j=0

(
l
j

)
𝛼j (1 − 𝛼)l−j ⋅ P(𝜖t = k − j). (2.5)

For conditional mean and variance, we have (Alzaid & Al-Osh, 1988):

E[Xt | Xt−1] = 𝛼 ⋅ Xt−1 + 𝜇𝜖,

V [Xt | Xt−1] = 𝛼(1 − 𝛼) ⋅ Xt−1 + 𝜎2
𝜖 , (2.6)

which are both linear functions of Xt−1. For the derivation of (2.5) and (2.6),
note that 𝛼 ∘ Xt−1 and 𝜖t are independent according to Definition 2.1.1.1. Since
the conditional mean is linear in Xt−1, the INAR(1) model belongs to the class
of conditional linear AR(1) models, or CLAR(1), as discussed by Grunwald
et al. (2000). Note that the conditional variance differs from the AR(1) case
as it varies with time (conditional heteroscedasticity; see the discussion before
Definition B.4.1.1).
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Let us now assume that the INAR(1) process is even stationary (Defini-
tion B.1.3). Conditions for guaranteeing a stationary solution of the INAR(1)
recursion are discussed below. If we have given the innovations’ distribution
in terms of the pgf, then the observations’ stationary marginal distribution is
determined by the equation (Alzaid & Al-Osh, 1988):

pgf(z) = pgf(1 − 𝛼 + 𝛼z) ⋅ pgf𝜖(z). (2.7)

See also the discussion in Section 2.1.3 below. Note that (2.7) is again obtained
by applying the law of total expectation, as

E[z𝛼 ∘ Xt−1+𝜖t | Xt−1]
indep.
= E[z𝛼 ∘ Xt−1 | Xt−1] ⋅ E[z𝜖t | Xt−1]

Ex. A.2.1
= (1 − 𝛼 + 𝛼z)Xt−1 pgf𝜖(z).

Equation 2.7 can be used to determine the marginal moments or cumulants
of Xt ; see Weiß (2013a). In particular, if𝜇𝜖, 𝜎𝜖 < ∞, mean and variance are given
by

𝜇 =
𝜇𝜖

1 − 𝛼
and 𝜎2 =

𝜎2
𝜖 + 𝛼𝜇𝜖

1 − 𝛼2 , that is, I =
I𝜖 + 𝛼

1 + 𝛼
, (2.8)

where I refers to the index of dispersion (2.1). It implies that Xt is
over-/equi-/underdispersed iff 𝜖t is over-/equi-/underdispersed; that is,
the dispersion behavior of the observations is determined by the one of the
innovations.

The autocorrelation function (ACF; see Definition B.1.1) 𝜌(k) ∶=
Corr[Xt ,Xt−k] of a stationary INAR(1) process equals 𝛼k (McKenzie, 1985;
Al-Osh & Alzaid, 1987); that is, it is of AR(1) type. Expressions for higher-order
joint moments in (Xt)ℕ0

are provided by Schweer & Weiß (2014).

Remark 2.1.1.2 (Branching process with immigration) A branching
process with immigration (BPI) (Xt)ℕ0

, also called a Galton–Watson process
with immigration, is defined by the recursion (Venkataraman, 1982):

Xt = Zt; 1 +…+ Zt; Xt−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0 if Xt−1=0

+ 𝜖t ,

where X0,Zt; r, 𝜖s are mutually independent count random variables. The off-
spring variables Zt; r are i.i.d. with pgf A(z) =

∑∞
k=0 ak zk , and the immigration

variables 𝜖s are i.i.d. with pgf B(z) =
∑∞

k=0 bk zk . If the offspring mean satisfies
𝜇Z = A′(1) < 1, then the BPI is said to be subcritical. The terminology “off-
spring” refers to the possible interpretation of Zt; 1 +…+ Zt; Xt−1

as the repro-
duction generated by the generation t − 1. This interpretation is plausible if the
Zt; r are allowed to also take values larger than 1.

If, however, ak = 0 for all k ≥ 2 – that is, if the Zt; r are Bernoulli-distributed
according to Bin(1, a1) – then Zt; 1 +…+ Zt; Xt−1

is nothing else than the
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binomial thinning a1 ∘ Xt−1. In this case, the interpretation of survivors (see
Definition 2.1.1.1) is more appropriate. In particular, it becomes clear that the
INAR(1) model according to Definition 2.1.1.1 can be understood as a special
type of subcritical BPI; see Alzaid & Al-Osh (1988) and Kedem & Fokianos
(2002, Section 5.1). As a consequence, results for subcritical BPIs can also be
adapted to the INAR(1) process.

One such result is due to Heathcote (1966). Any BPI constitutes a homo-
geneous Markov chain; let h(k) ∶=

∑k
j=1

1
j

denote the kth harmonic number.
If the BPI is subcritical, if it is an irreducible and aperiodic Markov chain
(Appendix B.2.2), and if E[h(𝜖s)] < ∞, then there exists a proper stationary
marginal distribution for (Xt)ℕ0

. Note that E[h(𝜖s)] < ∞ is automatically
satisfied if 𝜖s has a finite mean. Another noteworthy result is the one by Pakes
(1971) about the geometric ergodicity of subcritical BPIs, which can be used
to derive mixing properties (see Definition B.1.5) for INAR(1) models; see also
Example 2.1.3.3 below.

A further useful relationship of INAR(1) models is to certain queue length
processes with an infinite number of servers. For instance, the Poisson INAR(1)
model, which will be discussed in Section 2.1.2, corresponds to an M∕M∕∞
queue observed at integer times (McKenzie, 2003).

2.1.2 The Poisson INAR(1) Model

The most popular instance of the INAR(1) family is the Poisson INAR(1) model,
which was introduced by McKenzie (1985) and Al-Osh & Alzaid (1987). Here,
it is assumed that the innovations (𝜖t)ℕ are i.i.d. according to the Poisson dis-
tribution Poi(𝜆), such that 𝜇𝜖 = 𝜎2

𝜖 = 𝜆. Since all P(𝜖t = j) are truly positive,
this also holds for all transition probabilities pk|l from (2.5). Consequently, a
Poisson INAR(1) process is an irreducible and aperiodic Markov chain (see
Appendix B.2.2), such that Remark 2.1.1.2 implies a unique stationary marginal
distribution for (Xt)ℕ0

.
It is well known that this stationary marginal distribution is also a Poisson

distribution, Poi(𝜇) with 𝜇 = 𝜆

1−𝛼
. This follows from two important invariance

properties of the Poisson distribution

• the invariance with respect to binomial thinning; that is, if X ∼ Poi(𝜇), then
𝛼 ∘ X ∼ Poi(𝛼 𝜇)

• the additivity; that is, if Z ∼ Poi(𝛼 𝜇), 𝜖 ∼ Poi((1 − 𝛼)𝜇) and both are
independent, then Z + 𝜖 ∼ Poi(𝛼 𝜇 + (1 − 𝛼)𝜇) = Poi(𝜇); see Example A.1.1.

Knowing both the conditional and the marginal distribution, we are able
to easily simulate a stationary Poisson INAR(1) process – just initialize
by Poi(𝜇) – and the full likelihood function is also directly available; see
Remark B.2.1.2 and Example 2.2.2.1 below. Furthermore, the property of
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having both the observations and the innovations within the same distribution
family is analogous to the case of a Gaussian AR(1) model. Another similarity
between Poisson INAR(1) and Gaussian AR(1) processes, which distinguishes
these special instances from other INAR(1) or AR(1) processes, respectively, is
time reversibility, see Schweer (2015).

Example 2.1.2.1 (Sample paths) Figure 2.5 shows two sample paths for
simulated Poisson INAR(1) processes. Both models were calibrated to give
the same observational mean, 𝜇 = 3, but the autocorrelation parameter 𝛼

differs, and hence the innovations mean 𝜆 = 𝜇 (1 − 𝛼). In Figure 2.5a, we have
𝛼 = 0.5 and 𝜆 = 1.5, and this moderate level of autocorrelation becomes visible
through the short-term up and down movements. The situation in Figure 2.5b
is much more extreme: 𝜆 = 0.15 implies that only rarely is a truly positive
innovation (and hence an upward movement) generated. 𝛼 = 0.95 leads to
𝛼 ∘ X being equal to X most of the time, hence the constant segments, and
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Figure 2.5 Simulated sample paths of Poisson INAR(1) processes with 𝜇 = 3 and (a) 𝛼 = 0.5,
(b) 𝛼 = 0.95, see Example 2.1.2.1.
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otherwise to a slowly descending behavior (leisure extinction). The constant
segments also go along with a very small and nearly constant conditional
variance according to (2.6); note that the linear coefficient 𝛼(1 − 𝛼) tends to 0
for either 𝛼 → 0 or 𝛼 → 1. This piecewise constant and slowly descending
behavior is a characteristic feature of many binomial-thinning-based models
(with large thinning probabilities). Other models, such as the INARCH(1)
model, as discussed in Example 4.1.6, exhibit different behavior if highly
correlated; see Remark 4.1.7.

2.1.3 INAR(1) Models with More General Innovations

The INAR(1) model becomes particularly simple if the innovations are chosen
to be Poisson distributed; see Section 2.1.2. But much more flexibility in terms
of marginal distributions is possible. One option is to select an appropriate
model for the observations Xt and then compute the corresponding inno-
vations’ distribution from (2.7); see McKenzie (1985) and the details below.
Another option is to choose the distribution of the innovations 𝜖t in order to
obtain certain properties for the observations’ distribution (Al-Osh & Alzaid,
1987; Alzaid & Al-Osh, 1988); this approach usually simplifies the computation
of the transition probabilities (2.5). Generally, see (2.8), the dispersion behavior
of the observations is easily controlled by that of the innovations. Also, the
probability for observing a zero is influenced by the innovations: since the zero
probability just equals pgf(0), (2.7) implies that

P(X = 0) = P(𝜖 = 0)
∞∏

k=1
pgf𝜖(1 − 𝛼k), (2.9)

see Jazi et al. (2012). So we are not only able to generate over- or underdisper-
sion, but also zero inflation or deflation (see Equation 2.2).

Let us now look at special instances. The most natural extension beyond Pois-
son distributions is to consider the family of discrete self-decomposable (DSD)
distributions for Xt (Steutel & van Harn, 1979), which includes, for example,
the negative binomial (NB) distribution (see Example A.1.4) as well as the gen-
eralized Poisson (GP) distribution (Example A.1.6); see Zhu & Joe (2003) and
Weiß (2008a) for more details. Here, a distribution is said to be DSD if its pgf
satisfies:

pgf(z)
pgf(1 − 𝛼 + 𝛼 z)

is itself a pgf for all 𝛼 ∈ (0; 1), (2.10)

that is, the coefficients of its power series expansion must be non-negative
and add up to 1. In view of (2.7), (2.10) implies that DSD distributions are the
marginal distributions of an INAR(1) process that can be preserved for any
choice of 𝛼; the corresponding innovations’ pgf is then given by (2.10). Note
that any DSD distribution is also infinitely divisible (while the reverse statement
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does not hold). In other words, it is a particular type of compound Poisson (CP)
distribution according to Example A.1.2. As a result, if it is not the Poisson dis-
tribution, a DSD distribution is overdispersed and zero-inflated.

Example 2.1.3.1 (Geometric INAR(1) process) The geometric distri-
bution Geom(𝜋) (see Examples A.1.4 and A.1.5) is DSD, so it is a possible
marginal distribution for an INAR(1) process (Xt)ℕ0

; we refer to it as the
geometric INAR(1) process (McKenzie, 1985). If X ∼ Geom(𝜋), then 𝛼 ∘ X is
also geometrically distributed with pgf

pgf𝛼 ∘ X(z) = pgf(1 − 𝛼 + 𝛼 z) = 𝜋

1 − (1 − 𝜋)(1 − 𝛼 + 𝛼 z)
=

𝜋

𝜋+𝛼 (1−𝜋)

1 − 𝛼 (1−𝜋)
𝜋+𝛼 (1−𝜋)

z
,

that is, 𝛼 ∘ X ∼ Geom
(

𝜋

𝜋 + 𝛼 (1 − 𝜋)

)
. So (2.10) implies that the innova-

tions (𝜖t)ℕ must have

pgf𝜖(z) =
pgf(z)

pgf(1 − 𝛼 + 𝛼 z)
= 𝛼 + (1 − 𝛼) 𝜋

1 − (1 − 𝜋) z
,

which is the pgf of a zero-inflated geometric distribution (Example A.1.9), par-
ent distribution Geom(𝜋) and inflation parameter 𝛼.

If we do not insist on having the same marginal distribution for all 𝛼, we can
simply select a distribution for the innovations, thus controlling dispersion or
zero behavior of the observations; see the above discussion. Following this strat-
egy, the most straightforward extension is to choose 𝜖t to be CP-distributed,
since then, as in the Poisson case, the observations are also CP-distributed,
a characteristic which follows from the invariance properties described next
(Schweer & Weiß, 2014).

Lemma 2.1.3.2 (Invariance properties) Let the compounding order
𝜈 ∈ ℕ ∪ {∞}.
(i) Additivity: If X1,X2 are independent with Xi ∼ CP𝜈(𝜆i,Hi), then their sum

X1 + X2 ∼ CP𝜈(𝜆,H) with

𝜆 ⋅ H(z) =
𝜈∑

x=1
(𝜆1h1;x + 𝜆2h2;x) zx,

including that 𝜆 = 𝜆1 + 𝜆2.
(ii) Invariance with respect to binomial thinning:

If X ∼ CP𝜈(𝜆,H), then 𝛼 ∘ X ∼ CP𝜈(𝜇,G), where

𝜇 ⋅ G(z) = 𝜆

𝜈∑
j=1

𝛼j ⋅

(
𝜈∑

i=j
hi

(
i
j

)
(1 − 𝛼)i−j

)
⋅ zj,

including that 𝜇 = 𝜆 (1 − H(1 − 𝛼)).
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In fact, Puig & Valero (2007) showed that a count model being parametrized
by its 𝜈 first factorial cumulants 𝜅(1),… , 𝜅(𝜈) is closed under addition and under
binomial thinning iff it has a CP𝜈 distribution. These invariance properties lead
to the definition of the compound Poisson INAR(1) or CP-INAR(1) model.

Example 2.1.3.3 (CP-INAR(1) model) An INAR(1) process (Xt)ℕ0

according to Definition 2.1.1.1 is referred to as a CP-INAR(1) process if
the innovations (𝜖t)ℕ are i.i.d. according to the CP𝜈(𝜆,H) distribution from
Example A.1.2 (possibly 𝜈 = ∞). Since I𝜖 > 1 for 𝜈 ≥ 2, it also follows from
(2.8) that Xt is overdispersed.

In addition, the innovations 𝜖s ∼ CP𝜈(𝜆,H) have a finite mean provided
that H′(1) < ∞. Since a CP-INAR(1) process is also irreducible and aperiodic
(Schweer & Weiß, 2014), we conclude that a CP-INAR(1) process with
H′(1) < ∞ possesses a unique stationary marginal distribution. According to
Lemma 2.1.3.2, this unique stationary marginal distribution is a compound
Poisson one, having the same compounding order 𝜈 as the innovations
(Schweer & Weiß, 2014, Theorem 3.2.1). Hence the observations’ distribution
is indeed overdispersed but also zero-inflated; see Equation A.1. Formulae
for the stationary marginal distribution and the h-step-ahead conditional
distributions are provided by Schweer & Weiß (2014).

The relation to BPIs according to Remark 2.1.1.2 and, hence, the result
by Pakes (1971) can be utilized to prove that a CP-INAR(1) process with
H′(1) < ∞ is 𝛼-mixing (see Definition B.1.5) with geometrically decreasing
weights (Schweer & Weiß, 2014, Theorem 3.4.1), a property that is useful for
central limit theorems applied to CP-INAR(1) processes.

A widely used special instance of the CP-INAR(1) model is the NB-INAR(1)
model, in which the innovations are negatively binomially distributed
(Example A.1.4). Note that the marginal distribution of Xt is not an NB
distribution, but just another type of CP∞ distribution.

As mentioned above, a (non-Poisson) CP-INAR(1) model always has an
overdispersed and zero-inflated marginal distribution. If, however, underdis-
persion or zero-deflation are required, then we have to choose the innovations
from outside the CP family. Models with underdispersed innovations 𝜖t
(following the Good distribution in Example A.1.7 or the PL distribution in
Example A.1.8), and therefore with underdispersed observations Xt according
to (2.8), are discussed by Weiß (2013a). Jazi et al. (2012) consider zero-modified
innovations (Example A.1.9).

Remark 2.1.3.4 (MC approximation) Defining the INAR(1) model by
specifying the innovations’ distribution (as is commonly done in practice),
one often does not obtain a closed-form expression for the observa-
tions’ marginal distribution; a few exceptions are discussed in Schweer
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& Weiß (2014). If one is only interested in the zero probability, and if
the innovations’ pgf is available (as for the distributions discussed in
Appendix A.1), one can approximate this probability via (2.9); that is, by
computing P(X = 0) ≈ P(𝜖 = 0)

∏M
k=1 pgf𝜖(1 − 𝛼k) with M sufficiently large.

If the complete marginal distribution is required – for example, to compute
the full likelihood function – then one may utilize the Markov chain (MC)
property. For M sufficiently large, define P̃ ∶= (pi|j)i,j=0,…,M with the transition
probabilities (2.5). Then the marginal probabilities (p0,… , pM)⊤ are approxi-
mated by the solution of the eigenvalue problem P̃ p̃ = p̃; see the invariance
equation (B.4). An alternative approach for approximation is described in
Remark 2.6.3.

Example 2.1.3.5 (NB-INAR(1) model) Let us consider the NB-INAR(1)
model to illustrate the approximations discussed in Remark 2.1.3.4; that
is, where 𝜖t ∼ NB(n, 𝜋) according to Example A.1.4. The innovations have
dispersion index I𝜖 = 1∕𝜋, so (2.8) implies for the observations: I = (1∕𝜋 + 𝛼)∕
(1 + 𝛼). Since pgf𝜖(z) =

(
𝜋

1−(1−𝜋)z

)n
and P(𝜖t = 0) = 𝜋n, the zero probability is

approximated by

p0 ≈ 𝜋(M+1)n
/ M∏

k=1
(1 − (1 − 𝜋)(1 − 𝛼k))n,

see (2.9). The transition probabilities (2.5) are computed using

P(𝜖t = k) =
(

n + k − 1
k

)
⋅ (1 − 𝜋)k ⋅ 𝜋n for k ∈ ℕ0.

They can be used to apply the MC approximation for the pmf of the observa-
tions (with M = 100 in all the examples below).

For the NB-INAR(1) model with marginal mean 𝜇 = 1.5 and 𝛼 = 0.5, one
obtains 𝜇𝜖 = 𝜇(1 − 𝛼) = 0.75 according to (2.8), and this equals n(1 − 𝜋)∕𝜋
because of the NB assumption. For increasing n (note that n → ∞ corresponds
to the Poisson case), we compute

n 1 2 5 10 25 100 ∞
𝜋 0.571 0.727 0.870 0.930 0.971 0.993 1
I 1.500 1.250 1.100 1.050 1.020 1.005 1
p0 0.292 0.261 0.239 0.231 0.226 0.224 0.223

All of these models have the same marginal mean and the same ACF, but
(among others) dispersion index and zero probability differ. Figure 2.6 com-
pares the pmf of the equidispersed Poisson INAR(1) model (gray) to the one
of the NB-INAR(1) model with (n, 𝜋) = (1.75, 0.7), so I ≈ 1.286. The latter
pmf has a higher zero probability as well as larger probabilities pk for k ≥ 4
(overdispersion).
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Figure 2.6 Marginal distribution (𝜇 = 1.5) of NB-INAR(1) model (n, 𝜋, 𝛼) = (1.75, 0.7, 0.5) in
black, and of Poisson INAR(1) model (𝜆, 𝛼) = (0.75, 0.5) in gray.

2.2 Approaches for Parameter Estimation

The INAR(1) model is determined by the thinning parameter 𝛼 on the one
hand, and by further parameters characterizing the marginal distribution of
the observations or innovations, respectively, on the other hand. Given the time
series data x1,… , xT , the task is to estimate the value of these parameters.

2.2.1 Method of Moments

Let x1,… , xT be a time series stemming from a stationary INAR(1) process. A
quite pragmatic approach for parameter estimation is the method of moments
(MM). Here, the idea is to select appropriate moment relations such that the
true model parameters can be obtained by solving the resulting system of
equations. For parameter estimation, the true moments are replaced by the
corresponding sample moments (see Definition B.1.4), thus leading to the MM
estimates.

For an INAR(1) model, one usually selects at least the marginal mean 𝜇

(to be estimated by the sample mean x) as well as the first-order autocorre-
lation 𝜌(1); the latter immediately leads to an MM estimator of 𝛼, defined
as �̂�MM ∶= �̂�(1) ∶= �̂�(1)∕�̂�(0) with �̂�(k) = 1

T

∑T
t=k+1(Xt − X)(Xt−k − X) for

k ∈ ℕ0 (Definition B.1.4).
If we have to fit a Poisson INAR(1) model according to Section 2.1.2, then we

only have one additional parameter besides 𝛼, which is either the observations’
mean 𝜇 or the innovations’ mean 𝜆 (depending on the chosen parametrization).
So, applying (2.8), we define the required MM estimator by either �̂�MM ∶= X
or �̂�MM ∶= X (1 − �̂�MM). If we have to fit an INAR(1) model with more general
innovations, as in Section 2.1.3, then further moment relations are required.
For instance, for the NB-INAR(1) model, we could consider the sample variance
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s2 ∶= �̂�(0) = 1
T

∑T
t=1 (xt − x)2 (Definition B.1.4), because relation (2.8) offers a

simple way to estimate the NB parameter 𝜋, since the innovations’ index of
dispersion just equals I𝜖 = 1∕𝜋.

Example 2.2.1.1 (Poisson INAR(1) model) For a Poisson INAR(1) pro-
cess, Freeland & McCabe (2005) showed that the above MM estimators are
asymptotically normally distributed (with 0 denoting the zero vector):√

T (�̂�MM − 𝛼, �̂�MM − 𝜇)⊤ ∼
a

N
(

0,𝚺𝛼,𝜇

)
, where

𝚺𝛼,𝜇 =
⎛⎜⎜⎜⎝
1 − 𝛼2 + 𝛼

𝜇
(1 − 𝛼) 𝛼

𝛼 𝜇
1 + 𝛼

1 − 𝛼

⎞⎟⎟⎟⎠ ,
as well as√

T (�̂�MM − 𝛼, �̂�MM − 𝜆)⊤ ∼
a

N
(

0,𝚺𝛼,𝜆

)
, where

𝚺𝛼,𝜆 =
⎛⎜⎜⎝
1 − 𝛼2 + 𝛼

𝜆
(1 − 𝛼)2 −𝜆(1 + 𝛼)

−𝜆(1 + 𝛼) 𝜆

(
1 + 𝜆

1 + 𝛼

1 − 𝛼

)⎞⎟⎟⎠ .
These relations can be utilized to compute approximate standard errors or con-
fidence regions for the estimates, by plugging in the estimates instead of the
true parameter values; for an asymptotic bias correction, see Weiß & Schweer
(2016).

The estimators �̂�MM ∶= �̂�(1) and �̂�MM ∶= X (1 − �̂�MM) are not only appropri-
ate for the Poisson INAR(1) model, but more generally for any CLAR(1) model
(Grunwald et al., 2000) that is parametrized with 𝛼, 𝜆 defined by E[Xt | Xt−1] =
𝛼 ⋅ Xt−1 + 𝜆. So the MM estimators do not rely on the particular distribution
of a Poisson INAR(1) process, as the ML estimators from Section 2.2.2 do, but
only on this particular moment relation. Hence one may classify such an MM
estimator as being semi-parametric, and one may expect it to be robust to mild
violations of the model assumptions; see also Jung et al. (2005). Certainly, the
(asymptotic) distribution of the MM estimators depends on the specific under-
lying model.

Remark 2.2.1.2 (Conditional least squares estimation) For the case of
the Poisson INAR(1) model with parameters 𝛼 and 𝜆 (innovations’ mean), the
conditional least squares (CLS) approach can also be used for parameter esti-
mation (Al-Osh & Alzaid, 1987; Freeland & McCabe, 2005). Here, the idea is to
accumulate the squared deviations between xt and E[Xt | xt−1]

(2.6)
= 𝛼 ⋅ xt−1 + 𝜆
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(with the latter being understood as the conditional mean forecast of xt), and to
choose 𝛼 and 𝜆 such that this conditional sum of squares (CSS) is minimized:

(�̂�CLS, �̂�CLS) ∶= arg min(𝛼,𝜆) CSS(𝛼, 𝜆),

where CSS(𝛼, 𝜆) ∶=
T∑

t=2
(xt − 𝛼 ⋅ xt−1 − 𝜆)2.

As shown by Klimko & Nelson (1978) and Al-Osh & Alzaid (1987), explicit
expressions for the CLS estimators are given by

�̂�CLS =
∑T

t=2 XtXt−1 −
1

T−1
⋅
∑T

t=2 Xt ⋅
∑T

s=2 Xs−1∑T
t=2 X2

t−1 −
1

T−1
⋅
(∑T

t=2 Xt−1

)2 ,

�̂�CLS = 1
T − 1

( T∑
t=2

Xt − �̂�CLS ⋅
T∑

t=2
Xt−1

)
.

Their asymptotic distribution (assuming a Poisson INAR(1) process) was
shown to be same as that of the MM estimators (�̂�MM, �̂�MM) given in
Example 2.2.1.1 (Klimko & Nelson, 1978; Al-Osh & Alzaid, 1987; Freeland
& McCabe, 2005). In contrast to the MM approach, however, it is more
difficult to find CLS estimators for other types of INAR(1) processes, as some
parameters might not be identifiable from the conditional mean.

The main advantage of the MM estimators is their simplicity (closed-form
formulae) and robustness. But for the Poisson INAR(1) model, Al-Osh & Alzaid
(1987), Jung et al. (2005) and Weiß & Schweer (2016) recommend using ML
estimators instead, because they are less biased for small sample sizes.

2.2.2 Maximum Likelihood Estimation

Like the method of moments, also the maximum likelihood (ML) approach
relies on a universal principle: one chooses the parameter values such that the
observed sample becomes most “plausible”. As shown in Remark B.2.1.2, the
required (log-)likelihood function is easily computed for Markov processes.
In the INAR(1) case with parameter vector 𝜽 – for example 𝜽 = (𝛼, 𝜆)⊤ in the
Poisson case or 𝜽 = (𝛼, n, 𝜋)⊤ in the NB case – the (full) log-likelihood function
becomes

𝓁(𝜽) = ln px1
(𝜽) +

T∑
t=2

ln pxt |xt−1
(𝜽), (2.11)

where the transition probabilities are computed according to (2.5). Sometimes,
it is difficult to compute px1

(𝜽). While this is just a simple Poisson probability in
the case of a Poisson INAR(1) model, a closed-form formula for, for example, an
NB-INAR(1) model, is not available. Then, one may use the MC approximation
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from Remark 2.1.3.4 to obtain px1
(𝜽), or one may simply use the conditional

log-likelihood function, which ignores the initial observation:

𝓁(𝜽 | x1) =
T∑

t=2
ln pxt |xt−1

(𝜽). (2.12)

The (conditional) ML estimates are now computed as

�̂�ML = arg max𝜽 𝓁(𝜽) or �̂�CML = arg max𝜽 𝓁(𝜽 | x1),

respectively. In contrast to the CLS approach from Remark 2.2.1.2, it is difficult
to find a closed-form solution to this optimization problem. Instead, a numer-
ical optimization is typically applied, where, for example, the MM estimates
described in Section 2.2.1 can be used as initial values for the optimization
routine. If the optimization routine is able to compute the Hessian of 𝓁 at the
maximum, standard errors can also be approximated; see Remark B.2.1.2 for
details.

Example 2.2.2.1 (Poisson INAR(1) model) General results for the exis-
tence, consistency and asymptotic normality of the (C)ML estimators for
discrete-valued Markov chains are available, for example in Part I of the book
by Billingsley (1961); see Remark B.2.1.2 for further details. The particular
case of a Poisson INAR(1) process was investigated in detail by Freeland &
McCabe (2004a); see also Bu et al. (2008). In particular, asymptotic normality
was established,√

T − 1 (�̂�CML − 𝛼, �̂�CML − 𝜆)⊤ ∼
a

N(0, I−1(𝛼, 𝜆)),

where I denotes the expected Fisher information (Remark B.2.1.2).

A semi-parametric ML approach for INAR(1) processes, where the inno-
vations’ distribution is not further specified, was investigated by Drost et al.
(2009).

2.3 Model Identification

Section 2.2 presented some standard approaches for fitting an INAR(1) model
to a given count time series x1,… , xT . The obtained estimates are meaningful
only if the data indeed stem from an INAR(1) model. So an obvious question is
how to identify an appropriate model class for the given data.

First, we look at the serial dependence structure. As for any CLAR(1)
model, the ACF of the INAR(1) model is of AR(1) type, given by 𝜌(k) = 𝛼k

(Section 2.1.1). This, in turn, implies that the partial ACF (PACF) satisfies
𝜌part(1) = 𝛼 and 𝜌part(k) = 0 for k > 1; see Theorem B.3.4. Hence to check if
an INAR(1) model might be appropriate at all for the given time series data,
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we should compute the sample PACF (SPACF) to analyze if �̂�part(1) deviates
significantly from 0, and if �̂�part(k) does not for any k > 1.

Remark 2.3.1 (Sample PACF) At this point, the (asymptotic) distribution
of (�̂�part(1), �̂�part(2),…) becomes important. For stationary linear processes
(Background B.3.1) with existing fourth-order moments, the asymptotic
behavior of the sample ACF (SACF) is described by the well-known Bartlett’s
formula, and for an AR(1) process, it is known that the �̂�part(k) for k ≥ 2
are asymptotically independent and normally distributed with mean 0 and
variance 1∕T (Brockwell & Davis, 1991). However, for non-linear processes,
Bartlett’s formula may be misleading, so one should use the more general
result by Romano & Thombs (1996). For the case of a Poisson INAR(1) model,
the asymptotic distribution of the �̂�part(k) was derived by Mills & Seneta (1991)
(see Remark 2.1.1.2). Although the asymptotic variances are slightly larger
than 1∕T , asymptotic independence still holds between the �̂�part(k) with k ≥ 2.
So the autocorrelation structure can be identified in a completely analogous
way to the AR(1) case.

Further tests for serial dependence in count time series are discussed by Jung
& Tremayne (2003).

Once we have identified the AR(1)-like autocorrelation structure, we should
next analyze the marginal distribution. Here, an important question is if the
simple Poisson model does well, or if the observed marginal distribution devi-
ates significantly from a Poisson distribution. In the latter case, the type of
deviation (overdispersion, zero-inflation, and so on) may help us to identify an
appropriate model.

A rather general approach that allows us to detect diverse violations of
the Poisson INAR(1) model are the pgf-based tests proposed by Meintanis
& Karlis (2014). These tests compare the conjectured bivariate pgf – that is,
pgfXt ,Xt−1

(z0, z1) ∶= E[z0
Xt z1

Xt−1 ] – with its sample counterpart. For the null
of a Poisson INAR(1) model, (Xt ,Xt−1) are bivariately Poisson distributed
(Example A.3.1) with the bivariate pgf being given by (Alzaid & Al-Osh, 1988):

pgfXt ,Xt−1
(z0, z1) = exp (𝜇 (z0 + z1 − 2 + 𝛼 (z0 − 1) (z1 − 1))), (2.13)

which is symmetric in z0, z1 in accordance with the time reversibility; note that
(2.13) holds for any time lag h ∈ ℕ if replacing 𝛼 by 𝛼h. Since the (asymptotic)
distributions of the proposed test statistics are intractable, Meintanis & Karlis
(2014) recommend a bootstrap implementation of the tests.

More simple diagnostic tests can be obtained by focussing on a particular
type of violation of the Poisson model. Often, such violations go along with
a violation of the equidispersion property,1 and overdispersion in particular

1 A counterexample would be the Good distribution from Example A.1.7, the parameter values
of which can be chosen such that it is non-Poisson but exhibits equidispersion.
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is commonly observed in practice (Weiß, 2009c). An obvious test statistic for
uncovering over- or underdispersion is the sample counterpart to the disper-
sion index (2.1); that is, Î ∶= S2∕X (see Definition B.1.4). Under the null of a
Poisson INAR(1) model, this test statistic is asymptotically normally distributed
with

E[Î] ≈ 1 − 1
T

1 + 𝛼

1 − 𝛼
, V [Î] ≈ 2

T
1 + 𝛼2

1 − 𝛼2 , (2.14)

see Schweer & Weiß (2014) and Weiß & Schweer (2015). Plugging in �̂�(1)
instead of 𝛼, the resulting normal approximation can be used for determining
critical values or for computing P values.

Remark 2.3.2 (Sample variance) The negative bias expressed by (2.14)
appears plausible in view of the general result by David (1985) about the bias
of S2:

E[S2] = 𝜎2 − V [X]. (2.15)

Now consider the particular case of a Poisson INAR(1) process, where 𝜎2 = 𝜇

(equidispersion). Inserting the asymptotic variance of X from Example 2.2.1.1
into (2.15), and using (3.6) from Pickands & Stine (1997), it follows that S2 is
asymptotically normally distributed with

E[S2] ≈ 𝜇 − 1
T

1 + 𝛼

1 − 𝛼
𝜇, V [S2] ≈ 1

T

(
2 1 + 𝛼2

1 − 𝛼2 𝜇2 + 1 + 𝛼

1 − 𝛼
𝜇

)
.

If several candidate models have been identified as being relevant for the
given data, a popular way to select a final model is to consider information
criteria such as the AIC and BIC (see Remark B.2.1.1, Equation B.7, for the
definitions), which are computed along with the ML estimates (Section 2.2.2).
While the idea behind such information criteria is plausible, namely balancing
goodness-of-fit against model size, they should be used with some caution in
practice; see Emiliano et al. (2014). They may serve as guides for identifying
a relevant model, but a decision to adopt a specific model should take into
account further aspects; see Section 2.4. Other selection criteria include
the conditional sum of squares, CSS, as computed during CLS estimation
(Remark 2.2.1.2) or criteria related to forecasting (for example, realized
coverage rates of prediction intervals); the topic of forecasting is discussed in
Section 2.6. More generally, scoring rules, such as the ones discussed by Czado
et al. (2009) and Jung & Tremayne (2011b) can be used for this purpose. Since
some of these are closely related to tools for checking for model adequacy, we
shall discuss them further; see Section 2.4 and Remark 2.4.1.
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2.4 Checking for Model Adequacy

After having identified the best of the candidate models, it remains to check if
they are really adequate for the analyzed data; that is, if the given time series
constitutes a typical realization of the considered model. An obvious approach
for checking the model adequacy is to compare some features of the fitted
model with their sample counterparts, as computed from the available time
series. Such a comparison should include the autocorrelation structure as well
as marginal characteristics such as the mean, the dispersion ratio or the zero
probability (see the corresponding formulae in Section 2.1). Besides merely
comparing the respective numerical values, one may follow the idea of Tsay
(1992) (see also Jung & Tremayne (2011a)) and compute acceptance envelopes
for, for example, ACF or pmf, where the envelope is based on quantiles obtained
from a parametric bootstrap for the fitted model.

More sophisticated tools relying on conditional distributions, which hence
check the predictive performance, are presented in Jung & Tremayne (2011b)
and Christou & Fokianos (2015). As a first approach, the standardized
Pearson residuals (Harvey & Fernandes, 1989) should be analyzed; that is,
the series

et ∶=
xt − E[Xt | xt−1]√

V [Xt | xt−1]
for t = 2,… ,T , (2.16)

where the conditional moments are given by (2.6). For models that are not
Markov chains, the definition of et has to be adapted accordingly. For an
adequate model, we expect these residuals to be uncorrelated, with a mean
about 0 and a variance about 1. A variance larger/smaller than 1 indicates
that the data show more/less dispersion than being considered by the model
(Harvey & Fernandes, 1989). The variance of the Pearson residuals or their
mean sum of squares (≈ “normalized squared error score”) are also some-
times used as a scoring rule for predictive model assessment (Czado et al.,
2009). Instead of Pearson residuals, forecast (mid-)pseudo-residuals might
also be used for checking the model adequacy (Zucchini & MacDonald,
2009, Section 6.2.3). But since these forecast pseudo-residuals are closely
related to the PIT (described below), we shall not discuss this type of residual
further here.

An approach that considers not only conditional moments, but the complete
conditional distribution, is the (non-randomized) probability integral trans-
form (PIT) (Czado et al., 2009; Jung & Tremayne, 2011b). Let f⋅|l = ( fk|l)k=0,1,…
with fk|l ∶= P(Xt ≤ k | Xt−1 = l) denote the conditional cdf, conditioned on
the last observation being l ∈ ℕ0, where the fk|l = ∑k

j=0 pj|l are computed
from (2.5). Then the mean PIT is defined as (Czado et al., 2009; Jung &
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Tremayne, 2011b):

F(u) ∶= 1
T − 1

T∑
t=2

Ft(u) for u ∈ [0; 1], where

Ft(u) ∶=

⎧⎪⎪⎨⎪⎪⎩
0 if u ≤ fxt−1|xt−1

,

u − fxt−1|xt−1

fxt |xt−1
− fxt−1|xt−1

if fxt−1|xt−1
< u < fxt |xt−1

,

1 if u ≥ fxt |xt−1
.

(2.17)

Here, we define f−1|l ∶= 0 for any l ∈ ℕ0; note that the fk|l only needs to be com-
puted for k, l ≤ max{x1,… , xT}. The mean PIT now allows us to construct a
histogram in the following way: dividing [0; 1] into the J subintervals

[
j−1

J
; j

J

]
for

j = 1,… , J (say, J = 10), the jth rectangle is drawn with height F
( j

J

)
− F

( j−1
J

)
.

If the fitted model is adequate, we expect the PIT histogram to look like that
of a uniform distribution. Common deviations from uniformity are U-shaped
histograms indicating that the fitted conditional distribution is underdispersed
with respect to the data, while inverse-U shaped histograms indicate overdis-
persion (Czado et al., 2009), analogous to the variance of the Pearson residuals,
as discussed above.

A related visual tool is the marginal calibration diagram (Czado et al.,
2009), which compares the marginal frequencies of the time series, p̂0, p̂1,…
where p̂k ∶= 1

T

∑T
t=1 𝟙(xt = k), with the aggregated conditional distribu-

tions, p̃k ∶= 1
T

∑T
t=1 pk|xt

, for example by plotting the differences p̃k − p̂k
against k ∈ ℕ0. Here, 𝟙(⋅) denotes the indicator function. Analogously, one
can compare the respective cumulative distributions with each other; that is,
f̂k ∶= 1

T

∑T
t=1 𝟙(xt ≤ k) and f̃k ∶= 1

T

∑T
t=1 fk|xt

.

Remark 2.4.1 (Scoring rules) As already mentioned, a number of scoring
rules to assess the quality of predictive distributions have been proposed in the
literature; see Czado et al. (2009) and Jung & Tremayne (2011b) for a detailed
discussion. Typical scoring rules are of the form s(p⋅|xt−1

, xt), to compare the
observation xt realized at time t with the conditional distribution p⋅|xt−1

based on
the previous observation, where smaller score values express better agreement.
The overall predictive performance of the model with respect to the time series
x1,… , xT is evaluated by the mean score 1

T−1

∑T
t=2 s(p⋅|xt−1

, xt).
A scoring rule that is closely related to the marginal calibration diagram is the

ranked probability score (Czado et al., 2009; Jung & Tremayne, 2011b), which
is defined as (the mean about) the squared deviations

srps(p⋅|xt−1
, xt) ∶=

∞∑
k=0

(fk|xt−1
− 𝟙(xt ≤ k))2 (2.18)
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between the conditional distribution and the actual observation. Other com-
monly used scoring rules are the logarithmic score

sls(p⋅|xt−1
, xt) ∶= − ln pxt |xt−1

, (2.19)

which goes along with the conditional log-likelihood computation (2.12), and
the quadratic score

sqs(p⋅|xt−1
, xt) ∶= −2 pxt |xt−1

+
∞∑

k=0
p2

k|xt−1
. (2.20)

Computing the mean score related to the fitted candidate models, a scoring rule
might be used in the context of model selection; see the discussion in the end
of Section 2.3.

2.5 A Real-data Example

To illustrate the models and methods discussed up until now, let us consider
the dataset presented by Weiß (2008a). This is a time series expressing the daily
number of downloads of a TEX editor for the period from June 2006 to Febru-
ary 2007 (T = 267). The plot in Figure 2.7 shows that these daily counts vary
between 0 and 14, without any visible trend or seasonality. The up and down
movements indicate a moderate autocorrelation level, which is confirmed by
the SACF plot in Figure 2.8a. After further inspecting the SPACF, where only
�̂�part(1) deviates significantly from 0, we conclude that an AR(1)-like model
might be appropriate for describing the time series.

The observed marginal distribution is plotted in Figure 2.8b. The mean
x ≈ 2.401 is clearly smaller than the variance s2 ≈ 7.506, so, at least empir-
ically, we are concerned with a strong degree of overdispersion. This goes
along with a high zero probability, p̂0 ≈ 0.277, which is much larger than the
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Figure 2.7 Plot of the download counts; see Section 2.5.
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Figure 2.8 Sample autocorrelation (a) and marginal frequencies (b) of the download
counts; see Section 2.5.

corresponding Poisson value exp (−x) ≈ 0.091 (zero inflation). In summary,
an INAR(1) model appears to be plausible for the data, possibly with an
overdispersed (and zero-inflated) marginal distribution. As pointed out by
Weiß (2008a), an INAR(1) model also seems plausible in view of interpretation
(2.4): some downloads at day t might be initiated on the recommendation of
users from the previous day t − 1 (“survivors”), the remaining downloads being
due to users who became interested in the program on their own initiative
(“immigrants”).

To test for overdispersion within the INAR(1) model, we apply the disper-
sion test described in Section 2.3, plugging in �̂� = �̂�(1) ≈ 0.245 instead of 𝛼 into
Equation 2.14. Comparing the observed value Î ≈ 3.127 with the approximate
mean and standard deviation under the null of a Poisson INAR(1) model, given
by about 0.994 and 0.092, respectively, it becomes clear that the overdisper-
sion is indeed significant (P value ≈ 0). Therefore, we shall fit the NB-INAR(1)
model to the data, but also the Poisson INAR(1) model and the corresponding
i.i.d. models for illustration. The estimated mean and dispersion index of the
innovations are given by �̂�𝜖 = x (1 − �̂�) ≈ 1.813 and Î𝜖 = Î (1 + �̂�) − �̂� ≈ 3.647,
respectively.

Parameter estimation is done by a full likelihood approach, using the MC
approximation for the initial probability in the case of the NB-INAR(1) model;
see Example 2.1.3.5). As initial values for the numerical optimization routine,
simple moment estimates are used (Section 2.2.2):

• �̂�MM ≈ 0.245 and �̂�MM ≈ 1.813 for the Poisson INAR(1)
• �̂�MM = 1∕Î𝜖 ≈ 0.274, n̂ = �̂�𝜖 �̂�MM∕(1 − �̂�MM) ≈ 0.685 for the NB-INAR(1).

The ML estimates �̂�ML are now obtained by maximizing the respective
full log-likelihood function, and the corresponding standard errors are
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Table 2.3 Download counts: ML estimates and AIC and BIC values for different models.

Model Parameter AIC BIC

1 2 3

i.i.d. Poisson 2.401 1323 1327
(𝜇) (0.095)
Poisson INAR(1) 1.991 0.174 1293 1300
(𝜆, 𝛼) (0.110) (0.033)
i.i.d. NB 1.108 0.316 1103 1111
(n, 𝜋) (0.158) (0.034)
NB-INAR(1) 0.835 0.291 0.154 1092 1103
(n, 𝜋, 𝛼) (0.145) (0.036) (0.042)

Figures in parentheses are standard errors. AIC and BIC values rounded.

approximated from the computed Hessian Ĵ ∶= H𝓁(�̂�ML) as the square roots
of the diagonal elements from the inverse Ĵ−1 (Remark B.2.1.2). The obtained
results are summarized in Table 2.3 together with the (rounded) values of the
AIC and BIC from (B.7).

From the AIC and BIC values shown in Table 2.3, it becomes clear that the
INAR(1) structure is always better than the respective i.i.d. model. In partic-
ular, the estimates for 𝛼 are always significantly different from 0. Comparing
the two INAR(1) models, the NB-INAR(1) model is clearly superior, as should
be expected in view of the strong degree of overdispersion (and zero inflation).
This decision is also supported by any of the scoring rules from Remark 2.4.1
(srps: 1.399 vs. 1.309; sls: 2.384 vs. 2.022; sqs: −0.121 vs. −0.179). Note that the
parameter n of the fitted NB models is always close to 1; that is, these NB dis-
tributions are close to a geometric distribution (see Example A.1.5). While the
NB-INAR(1) model is the best of the considered candidate models, it remains
to check if it is also adequate for the data (Section 2.4).

For illustration, we also include the Poisson INAR(1) model in the remaining
analyses. We start by computing the marginal properties of the fitted INAR(1)
models. The means of both INAR(1) models – 2.411 (Poisson) and 2.407 (NB),
according to (2.8) – are close to x ≈ 2.401. The observed index of dispersion Î ≈
3.127, however, is much better reproduced by the NB-INAR(1) model (3.111)
than by the equidispersed Poisson INAR(1) model. The same applies to the
zero probability, where p̂0 ≈ 0.277 compared to 0.258 (NB model; see (2.9) and
Example 2.1.3.5) and 0.090 (Poisson model). Also an analysis of the respective
Pearson residuals (both series show no significant autocorrelation) supports
use of the NB-INAR(1) model: the residuals variance for the NB, at 0.931, is
close to 1, whereas for the Poisson, the residuals variance, at 2.871, is much too
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Figure 2.9 PIT histograms based on fitted Poisson and NB-INAR(1) model; see Section 2.5.

large, thus indicating that the data show more dispersion than described by the
Poisson model.

Finally, let us have a look at the PIT histogram in Figure 2.9. The PIT his-
togram of the NB-INAR(1) model in (b) is close to uniformity, while the one
of the Poisson INAR(1) model in (a) is strongly U-shaped (and also asymmet-
ric). This U-shape indicates that the Poisson model does not show sufficient
dispersion, confirming our previous analyses.

2.6 Forecasting of INAR(1) Processes

Given the model for the observed INAR(1) process, one of the main appli-
cations2 of this model is to forecast future outcomes of the process. In other
words, having observed x1,… , xT , we want to predict XT+h for some h ≥ 1. For
real-valued processes, the most common type of point forecast is the condi-
tional mean, as this is known to be optimal in the sense of the mean squared
error. Applying the law of total expectation iteratively together with (2.6), it
follows that the h-step-ahead conditional mean is given by

E[XT+h | XT ] = 𝛼h ⋅ XT + 𝜇𝜖

1 − 𝛼h

1 − 𝛼
= 𝛼h ⋅ XT + 𝜇 (1 − 𝛼h). (2.21)

Note that this conditional mean only depends on XT , but not on earlier obser-
vations, due to the Markov property (Appendix B.2.1). Conditional mean fore-
casting for INAR(1) processes was further investigated by Sutradhar (2008),
and mean-based forecast horizon aggregation – that is, the forecasting of the
sum

∑h
j=1 XT+j given XT – was discussed by Mohammadipour & Boylan (2012),

2 Another important application area is statistical process control, where the process is
monitored to detect possible changes in the process distribution; this kind of application is
discussed later in Chapter 8.
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including also other members of the INARMA family, the latter which are dis-
cussed in Section 3.1.

The main disadvantage of the mean forecast is that it will usually lead to
a non-integer value, while XT+h will certainly take an integer value from ℕ0.
Therefore, coherent forecasting techniques (that only produce forecasts
in ℕ0) are required for count processes (Freeland & McCabe, 2004b). For
this purpose, the h-step-ahead conditional distribution of XT+h given the
past XT ,… ,X1 needs to be computed for the INAR(1) model; that is, the
h-step-ahead transition probabilities pk|l(h) ∶= P(XT+h = k |XT = l) (again only
depending on XT thanks to the Markov property). Once this distribution is
available, the corresponding conditional median and mode can be used as
a coherent point forecast. In fact, the conditional median also satisfies an
optimality property, as it minimizes the mean absolute error.

So the essential question is how to compute the pk|l(h). First note that Al-Osh
& Alzaid (1987) have shown the following equality in distribution:

XT+h
d
= 𝛼h∘XT +

∑h−1

j=0
𝛼j∘𝜖T+h−j

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=∶ 𝜖(h)

.

So once the distribution of 𝜖(h) is available, the pk|l(h) can be computed by
adapting (2.5). Unfortunately, this distribution is generally not easily obtained.
For the case of a CP-INAR(1) model, as introduced in Example 2.1.3.3 (the
CP distribution is invariant with respect to binomial thinning according to
Lemma 2.1.3.2), Schweer & Weiß (2014) showed that 𝜖(h) is CP-distributed,
and they provided a closed-form expression for the pgf of 𝜖(h). After having
done a numerical series expansion for pgf𝜖(h) (z), the h-step-ahead transition
probabilities pk|l(h) are computed via (2.5) (replacing 𝛼 by 𝛼h).

Example 2.6.1 (Forecasting Poisson INAR(1) processes) In the particu-
lar case of a Poisson INAR(1) process, the results above further simplify, since
now 𝜖(h) ∼ Poi(𝜇 (1 − 𝛼h)) (Freeland & McCabe, 2004b). So we explicitly obtain

p(h)
k|l =

min{k,l}∑
j=0

(
l
j

)
𝛼h j (1 − 𝛼h)l−j ⋅ e−𝜇 (1−𝛼h) (𝜇 (1 − 𝛼h))k−j

(k − j)!
,

V [XT+h | XT ] = 𝛼h(1 − 𝛼h) ⋅ XT + 𝜇 (1 − 𝛼h),

also see (2.13). Note that with increasing h, this distribution just converges to
the Poi(𝜇) distribution; that is, to the stationary marginal distribution, as would
be expected from the ergodicity of the process.

The h-step-ahead conditional distribution can certainly also be used
to construct a prediction interval on level 1 − 𝛼, based on the 𝛼∕2- and
(1 − 𝛼∕2)-quantile from this distribution in case of a two-sided interval,
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or based on the (1 − 𝛼)-quantile for an upper-sided interval (“worst-case
prediction”).

Example 2.6.2 (Rig counts) We analyze a time series of weekly counts of
active rotary drilling rigs, where each count expresses the number of active off-
shore drilling rigs in Alaska for the period 1990–1997 (length T = 417). The
data are available from Baker Hughes.3 These rig counts have been published
for the USA and Canada since 1944, and international rig counts since 1975.
They serve as an indicator of demand for products from the drilling industry.

A plot of the time series x1,… , x417 is shown in Figure 2.10a. Obviously, we
are concerned with low counts (x ≈ 1.580), and the long runs of values indicate
a strong serial dependence. Indeed, looking at the SACF shown in Figure 2.10b,
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Figure 2.10 Plot of the rig counts in (a), their sample autocorrelation in (b), and marginal
frequencies (black) together with a Poisson fit (gray) in (c); see Example 2.6.2.

3 phx.corporate-ir.net/phoenix.zhtml?c=79687&p=irol-rigcountsoverview.
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Figure 2.11 h-step-ahead forecasting distributions for horizons h = 1, 5, 10,∞ (dark to
light) in (a), and h = 1,… , 25,∞ in (b); see Example 2.6.2.

a high and slowly decreasing autocorrelation level becomes obvious (�̂�(1) ≈
0.911). An inspection of the SPACF reveals an approximate AR(1)-like structure
such that an INAR(1) model appears to be reasonable for the data. Applying the
dispersion test (2.14), it turns out that the observed (slight) degree of overdis-
persion (Î ≈ 1.110) is not significant (P value ≈ 0.238). The histogram from
Figure 2.10c, where the pmf of the Poi(x) distribution is shown in gray, confirms
that a Poisson model might serve well for the data.

So we fit a Poisson INAR(1) model to the data, leading to the ML estimates
�̂�ML ≈ 0.126 (std. err. 0.018) and �̂�ML ≈ 0.918 (std. err. 0.011). An analysis of
the Pearson residuals and the PIT histogram confirms that the fitted Poisson
INAR(1) model works reasonably well for the data. Using this fitted model,
the h-step-ahead forecasting distributions, conditioned on the last observation
xT = 0, are easily computed using the results from Example 2.6.1. Due to the
strong dependence structure, these distributions show little dispersion (see the
term 1 − 𝛼h in the formula for V [XT+h | XT ]), which is certainly attractive for
forecasting, and they converge only slowly to the marginal Poisson distribution
for increasing h. This is illustrated by Figure 2.11, where in (b), the distribu-
tions are represented by gray colors, with increasing darkness for increasing
probability value, and with the gray colors in the last column referring to the
marginal distribution (h = ∞). The median forecast for increasing h is equal
to 0 for h = 1,… , 6, and equal to 1 for h ≥ 7. The 95%-quantile (as some kind of
worst/best-case scenario) varies from 1 (lags 1–3) to 2 (lags 4–8) to 3 (lags 9–25)
to 4 (lags h ≥ 26).

Remark 2.6.3 (Approximate forecasting distribution) If closed-form
expressions for pk|l(h) are not available, one can make use of the Markov prop-
erty. The MC approximation described in Remark 2.1.3.4 is easily modified
for forecasting. If again M is sufficiently large, and if P̃ ∶= (pk|l)k,l=0,…,M with
the transition probabilities (2.5), then the h-step-ahead transition probabilities
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(pk|l(h))k,l=0,…,M are approximated by the matrix P̃h; see formula (B.3). Due
to the ergodicity of the INAR(1) process (Remark 2.1.1.2), the columns
of P̃h converge to the approximate stationary marginal distribution p̃ from
Remark 2.1.3.4, thus offering an alternative way of numerically computing p̃.
Concerning the speed of convergence, see the Perron–Frobenius theorem, as
described in Remark B.2.2.1.

Applied to the fitted NB-INAR(1) model from Section 2.5, where the last
download count equals xT = 7, the h-step-ahead forecasting distributions p⋅|7(h)
converge very quickly to the stationary marginal distribution as h → ∞ (the
quick convergence is not surprising in view of the weak autocorrelation level).
This is illustrated by Figure 2.12, where the distributions for h = 1, h = 2 and
h = ∞ (marginal distribution) are shown. The median forecast equals 2 for
all forecasting horizons h ≥ 1, while other quantiles may slightly change, say
the lower quartile from 1 (h = 1, 2) to 0 (h ≥ 3), the upper quartile from 4
(h = 1, 2) to 3 (h ≥ 3), and the 95% quantile from 9 (h = 1) to 8 (h ≥ 2). The
latter could be used as the limit of an upper-sided 95% prediction interval.
A two-sided interval is not possible since the zero probability is much larger
than 2.5% for all h. The mode, another option for coherent point forecasting,
equals 1 for h = 1, and 0 otherwise.

Up to now, we have assumed the INAR(1) model and its parameters, say 𝜽, to
be known. In practice, however, one has to estimate the parameters; that is, the
forecasting distribution depends on the estimate �̂�. This causes uncertainty in
the computed forecasting distribution. The case of a Poisson INAR(1) model,
as in Example 2.6.2, is discussed by Freeland & McCabe (2004b). Here, the
asymptotic distribution of, say, the ML estimator is known; see Section 2.2.
It is an asymptotic normal distribution such that the asymptotic distribution
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Figure 2.12 h-step-ahead forecasting distribution of fitted NB-INAR(1) model from
Section 2.5, for forecasting horizon h = 1 in black, h = 2 in dark gray, and h = ∞ (marginal
distribution) in light gray.
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of pk|l(h)(�̂�) can be determined by applying the Delta method. A closed-form
expression for the asymptotic variance of pk|l(h)(�̂�) was derived by Freeland &
McCabe (2004b), and this can be used for computing a confidence interval
for pk|l(h). Jung & Tremayne (2006) extend this work to more general INAR
models and investigate bootstrap-based methods for coherent forecasting
under estimation uncertainty.

We conclude this chapter with a brief remark about how to simulate a sta-
tionary INAR(1) process.

Remark 2.6.4 (Simulation of INAR(1) process) Since an INAR(1) process
constitutes a Markov chain, the essential point for simulating a stationary
INAR(1) process is its correct initialization. Because of the Markov property
discussed in Appendix B.2.1, we have to ensure that the initial count stems
from the stationary marginal distribution; if the remaining counts are then
generated by using the one-step-ahead conditional distributions (2.5) – that
is, by implementing the model recursion from Definition 2.1.1.1 – the whole
process becomes stationary.

So how can we simulate the initial count according to the stationary marginal
distribution? For the Poisson INAR(1) model, the stationary marginal distribu-
tion is explicitly known, being a simple Poisson distribution (Section 2.1.2). So
we just use this Poisson distribution for the initial count, and the conditional
distributions for the remaining counts.

If the stationary marginal distribution is not explicitly available, two approx-
imate solutions are possible. First, one can compute the MC approximation
p̃ ∶= (p̃0,… , p̃M)⊤ with sufficiently large M, as described in Remark 2.1.3.4; also
see Remark 2.6.3 for an alternative approach. Then the initial count is gener-
ated according to the distribution p̃ with finite support {0,… ,M}. Secondly,
one may utilize the ergodicity of the INAR(1) process (Remark 2.1.1.2). The
idea is to generate a prerun X−r,… ,X0, say by initializing X−r ∶= round(𝜇) and
by then generating X−r+1,… ,X0 from the one-step-ahead conditional distribu-
tions. Their corresponding marginal distributions then converge towards the
stationary marginal distribution; see the discussion in Appendix B.2.2. If the
length r of the prerun is sufficiently large – the values for r reported in the liter-
ature typically vary between 200 and 500 – then the distribution of X0 is close
to the required stationary marginal distribution.

The approach described in Remark 2.6.4 is easily adapted to other types of
count processes, for example higher-order Markov processes, by considering
the multivariate representation described after Definition B.1.7.
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3

Further Thinning-based Models for Count Time Series

After having introduced important tasks and approaches for analyzing count
time series, we shall now return to the question of how to model the underly-
ing process. The main characteristic of the INAR(1) model in Section 2.1 is the
use of the binomial thinning operator as a substitute for the multiplication, to
be able to transfer the AR(1) recursion to the count data case. In Section 3.1, we
shall see that this approach can also be used to define higher-order ARMA-like
models. Furthermore, different types of thinning operation have been devel-
oped for such models; see Section 3.2. Finally, various thinning-based models
to deal with count time series with a finite range (Section 3.3) and multivariate
count time series (Section 3.4) are also available in the literature.

3.1 Higher-order INARMA Models

The INAR(1) model, as introduced in Section 2.1, was developed as an
integer-valued counterpart to the conventional AR(1) model, mainly by
replacing the multiplication in the AR(1) recursion with the binomial thinning
operator. This idea is not limited to the first-order autoregressive case, but
can also be used to mimic higher-order ARMA models; see Appendix B. The
resulting models are then referred to as INARMA models.

Example 3.1.1 (INMA(1) model) An integer-valued counterpart to the
MA(1) model Yt = 𝜀t + 𝛽 ⋅ 𝜀t−1 was proposed by Al-Osh & Alzaid (1988),
McKenzie (1988). Like the INAR(1) model discussed in Section 2.1, their
INMA(1) model replaces the multiplication in the MA recursion by the
binomial thinning operation (executed independently of any available random
variables at time t), leading to the model recursion

Xt = 𝜖t + 𝛽 ∘ 𝜖t−1 with 𝛽 ∈ [0; 1], (3.1)

where, as in Definition 2.1.1.1, the innovations (𝜖t)ℤ are an i.i.d. process with
range ℕ0; again we denote E[𝜖t] = 𝜇𝜖 and V [𝜖t] = 𝜎2

𝜖 . We may interpret (3.1) by

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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analogy to (2.4): the population at time t consists of the immigrants at time t
plus the survivors of the immigrants from the previous point in time t − 1; there
are no survivors from former generations.

The stationary mean and variance of Xt follow immediately from the mean
and variance of 𝛽 ∘ 𝜖 (Section 2.1.1) as

𝜇 = 𝜇𝜖 (1 + 𝛽), 𝜎2 = (1 + 𝛽2) 𝜎2
𝜖 + 𝛽(1 − 𝛽) 𝜇𝜖.

The autocovariance function equals 𝛽 𝜎2
𝜖 for lag 1, and 0 otherwise. These and

further properties were derived by Al-Osh & Alzaid (1988).
The results simplify in the particular case of Poisson innovations 𝜖t ∼ Poi(𝜆);

see Al-Osh & Alzaid (1988), McKenzie (1988). Because of the Poisson’s
additivity and invariance with respect to binomial thinning (Section 2.1.2),
it follows that the observations of such a Poisson INMA(1) process are also
Poisson distributed, and because of the equidispersion, the autocorrelation
function becomes 𝜌(1) = 𝛽∕(1 + 𝛽) ∈ [0; 0.5] and 0 otherwise. The Poisson
INMA(1) process is also time-reversible with a linear 1-step-ahead conditional
mean,

E[Xt | Xt−1] =
𝛽

1 + 𝛽
Xt−1 + 𝜆,

see Al-Osh & Alzaid (1988); these properties do not hold in the non-Poisson
case.

While both the INAR(1) and the INMA(1) recursion involve only one thin-
ning operation, the higher-order models need more than one thinning oper-
ation at a time. As an example, the counterpart to the full MA(q) model, the
INMA(q) model, is defined by a recursion of the form

Xt = 𝛽0 ∘t 𝜖t + 𝛽1 ∘t 𝜖t−1 +…+ 𝛽q ∘t 𝜖t−q, q ≥ 1, (3.2)

where the q + 1 thinnings at time t are performed independently of each other
(in Example 3.1.1, we set 𝛽0 ∶= 1). Here, a time index t has been added below
the operator “ ∘” to emphasize the fact that these are the thinnings being exe-
cuted at time t. Now focussing on one particular innovation, say 𝜖t , it becomes
clear that this innovation is altogether involved in q + 1 thinnings, namely
𝛽0 ∘t 𝜖t , 𝛽1∘t+1𝜖t ,… , 𝛽q∘t+q𝜖t . Since the thinning operations are probabilistic (in
contrast to the multiplication used for an MA(q) model), the joint distribution
of these thinnings has to be considered – that is, the conditional distribution
of (𝛽0 ∘t 𝜖t, 𝛽1∘t+1𝜖t,… , 𝛽q∘t+q𝜖t) given 𝜖t – thereby leading to different types of
models of the same model order q.

Until now, a total of four different INMA(q) models have been proposed in
the literature, each having slightly different interpretations and probabilistic
properties; see Al-Osh & Alzaid (1988), McKenzie (1988), Brännäs & Hall
(2001) and Weiß (2008b). To be more precise, the marginal properties are
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already fixed by definition (3.2), namely:

pgf(z) =
q∏

j=0
pgf𝜖(1 − 𝛽j + 𝛽jz),

𝜇 = 𝜇𝜖 𝛽•, 𝜎2 = 𝜇𝜖 𝛽• + (𝜎2
𝜖 − 𝜇𝜖)

q∑
j=0

𝛽2
j , (3.3)

where 𝛽• ∶=
∑q

j=0 𝛽j. The joint distributions, however, differ between the differ-
ent types of INMA(q) processes, as we shall see below. But first, let us look at
an example: as for the INAR(1) model (Section 2.1.2), the Poisson distribution
plays an important role.

Example 3.1.2 (Poisson INMA(q) model) The marginal properties in
(3.3) show that an equidispersed distribution for the innovations will lead
to equidispersed observations. Furthermore, if the innovations are Pois-
son distributed, 𝜖t ∼ Poi(𝜆), then the observations satisfy Xt ∼ Poi(𝜇) with
mean 𝜇 = 𝜆 𝛽•.

To be able to define different types of INMA(q) models, we follow the
approach in Weiß (2008b) and look at the individual counting series. Let
(Zt; i

(j))i=1,…,𝜖t
be the counting series of the thinning applied to 𝜖t at time t + j

for a j = 0,… , q, with P(Zt; i
(j) = 1) = 𝛽j. These Zt; i

(j) might be interpreted as
indicators for the 𝜖t individuals being introduced to the considered system at
time t (“generation t”). If Zt; i

(j) = 1, then the ith individual of generation t is
active at time t + j, where each individual has “lifetime” q.

In view of the general definition (3.2), the (q + 1)-dimensional vectors Zt; i ∶=
(Zt; i

(0),… ,Zt; i
(q))⊤ (each corresponding to one specific individual) have to be

i.i.d., but their components might be dependent, thus restricting the activa-
tion of an individual during its lifetime. The independence model by McKenzie
(1988), for instance, assumes the components of Zt; i to be mutually indepen-
dent (so there are no further restrictions concerning the activation of an indi-
vidual), while the sale model by Brännäs & Hall (2001) requires 𝛽• ≤ 1 and
defines the vector (Zt; i

(0),… ,Zt; i
(q))⊤ to be multinomially distributed accord-

ing to MULT∗(1; 𝛽0,… , 𝛽q); see Example A.3.3. So the sale model assumes that
each individual becomes active at most once during its lifetime; an example
would be if the “individuals” are perishable goods being produced at day t, and
they become “active” when they are sold during their shelf-life. Weiß (2008b)
analyzed the serial dependence structure of all these INMA(q) models; among
other things, he showed that

𝛾(k) = (𝜎2
𝜖 − 𝜇𝜖)

q∑
j=k

𝛽j𝛽j−k + 𝜇𝜖

q∑
j=k

P(Z(j)
t−j,1 = Z(j−k)

t−j,1 = 1). (3.4)
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So the autocovariance function for different INMA(q) models differs accord-
ing to the last term. For example, for the independence model by McKenzie
(1988), we have P(Z(j)

t−j,1 = Z(j−k)
t−j,1 = 1) = 𝛽j𝛽j−k , while P(Z(j)

t−j,1 = Z(j−k)
t−j,1 = 1) = 0

for the sale model because it is impossible that an individual becomes active
twice.

Example 3.1.3 (Poisson INMA(q) model) Let us continue Example 3.1.2.
Because of the equidispersion of the Poisson-distributed innovations, we have
𝜎2
𝜖 − 𝜇𝜖 = 0, so the formula (3.4) for the autocovariance function simplifies fur-

ther. Furthermore, by analogy to (2.13) for the Poisson INAR(1) model, Weiß
(2008b) showed that the pairs (Xt,Xt−k) with k ∈ ℕ are bivariately Poisson
distributed with pgf

pgfXt ,Xt−k
(z0, z1) = exp (𝜇 (z0 + z1 − 2 + 𝜌(k) (z0 − 1) (z1 − 1))).

So having specified the ACF, the whole bivariate distribution is fixed.

Two types of INAR(p) models have been proposed by Alzaid & Al-Osh (1990)
and Du & Li (1991), both being based on the recursion

Xt = 𝛼1 ∘t Xt−1 +…+ 𝛼p ∘t Xt−p + 𝜖t, (3.5)

where 𝛼• ∶=
∑p

j=1 𝛼j < 1 is assumed. Obviously, the conditional distribution of
(𝛼1∘t+1 Xt,… , 𝛼p∘t+p Xt) given Xt now has to be specified. Du & Li (1991) assume
conditional independence (by analogy to the INMA(q) independence model),
while Alzaid & Al-Osh (1990) assume a conditional multinomial distribution
(by analogy to the INMA(q) sale model):

(𝛼1 ∘ Xt,… , 𝛼p ∘Xt)⊤ ∼ MULT∗(Xt; 𝛼1,… , 𝛼p),

see Example A.3.3. Further specialized INAR(p) models can be defined by refin-
ing Equation 3.5 by analogy to the INMA(q) case; that is, by considering the
counting series (Zt,i

(j)) of the thinning applied to Xt (“generation t”) at time t + j
and by specifying the distribution of (Zt,i

(1),… ,Zt,i
(p)).

Remark 3.1.4 (Interpretation of INAR(p) model) For model order p ≥ 2,
a reasonable interpretation of the INAR(p) recursion in (3.5) is generally
obtained by analogy to that of BPIs, see Remark 2.1.1.2; that is, by interpret-
ing Xt as the total offspring at time t (caused by either previous generations or
by immigration). This interpretation especially applies to the INAR(p) model
by Du & Li (1991) (DL-INAR). For the INAR(p) model by Alzaid & Al-Osh
(1990) (AA-INAR), the conditional multinomial distribution appears to be
rather restrictive in view of reproduction. Here, one can think of some kind of
renewal of the individuals from generation t: if such an individual is renewed
at time t + j, then it becomes a member of generation t + j, but if it is not
renewed within p time periods, then it is shut down.
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Let us now look at properties of INAR(p) models. The stationary marginal
mean is always given by 𝜇 = 𝜇𝜖∕(1 − 𝛼•). For the DL-INAR(p) model, the vari-
ance satisfies

𝜎2 ⋅

(
1 −

p∑
i=1

𝛼i 𝜌(i)

)
= 𝜇

p∑
j=1

𝛼j(1 − 𝛼j) + 𝜎2
𝜖 ; (3.6)

see Silva & Oliveira (2005) for higher-order joint moments. The ACF is
obtained from the conventional AR(p) Yule–Walker equations (see (B.13));
that is,

𝜌(k) =
p∑

i=1
𝛼i 𝜌(|k − i|) for k ≥ 1, (3.7)

as shown by Du & Li (1991). For the AA-INAR(p) model, in contrast, Alzaid
& Al-Osh (1990) derived an ARMA(p, p − 1)-like autocorrelation structure,
which seems to be the main reason why the DL-INAR(p) model is usu-
ally preferred in practice. But there are also reasons why the AA-INAR(p)
model is attractive: if having Poisson innovations, its observations are also
Poisson distributed and the whole process is time-reversible (Alzaid &
Al-Osh, 1990; Schweer, 2015), which is analogous to the Gaussian AR(p)
case. The DL-INAR(p) process, in contrast, is time-reversible only in triv-
ial cases (Schweer, 2015), and equidispersed innovations generally do not
imply equidispersed observations (Weiß, 2013a). Note that for 𝜎2

𝜖 = 𝜇𝜖 , (3.6)
simplifies to

𝜎2 ⋅

(
1 −

p∑
i=1

𝛼i 𝜌(i)

)
= 𝜇

(
1 −

p∑
j=1

𝛼2
j

)
.

The conditional mean and variance of the DL-INAR(p) process are given by

E[Xt | Xt−1,…] = 𝜇𝜖 +
p∑

j=1
𝛼j Xt−j,

V [Xt | Xt−1,…] = 𝜎2
𝜖 +

p∑
j=1

𝛼j(1 − 𝛼j) Xt−j.

(3.8)

The transition probabilities of the DL-INAR(p) process, which is Markovian of
order p, can be computed by utilizing the fact that the conditional distribution
is a convolution between p binomial distributions and the innovations’ distri-
bution (Drost et al., 2009); see (3.12) below for illustration. Mixing and weak
dependence properties for the DL-INAR(p) process are discussed by Doukhan
et al. (2012, 2013) and a frequency-domain analysis is considered by Silva &
Oliveira (2005).
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Remark 3.1.5 (CINAR(p) model) An alternative AR(p)-like approach, the
so-called combined INAR(p) (CINAR(p)) model, is due to Zhu & Joe (2006) and
Weiß (2008c). A probabilistic mixing of lagged INAR(1) recursions is used:

Xt = Dt,1 ⋅ (𝛼 ∘t Xt−1) +… + Dt,p ⋅ (𝛼 ∘t Xt−p) + 𝜖t , (3.9)

where the (Dt,1,… ,Dt,p) are independent and multinomially distributed
according to MULT(1;𝜙1,… , 𝜙p) with 𝜙1 +…+ 𝜙p = 1. By construction,
the marginal distribution of such a process is that of the underlying INAR(1)
process; that is, one with the same 𝛼 and the same innovations’ distribution.
However, as for the INAR(p) model, different types of CINAR models are
obtained for the same model order p if varying the joint distribution of
the involved thinnings. In particular, if thinnings are independent, then the
process is Markovian of order p, having the typical AR(p)-like autocorrelation
structure with autoregressive parameters 𝛼 ⋅ 𝜙i. The conditional mean and
transition probabilities are given by

E[Xt | Xt−1,…] = 𝜇𝜖 + 𝛼

p∑
i=1

𝜙i Xt−i,

P(Xt = x | Xt−1 = xt−1,…)

=
x∑

y=0
P(𝜖t = y)

p∑
i=1

𝜙i

(
xt−i

x − y

)
𝛼x−y (1 − 𝛼)xt−i−x+y.

(3.10)

Higher-order (factorial) moments are easily computed by utilizing the binomial
theorem (also see Example A.2.1), for example:

E
[
(Xt)(r) | Xt−1,…

]
=

p∑
i=1

𝜙i

r∑
j=0

(
r
j

)
(Xt−i)(j) 𝛼j 𝜇𝜖; (r−j). (3.11)

While the marginal and autocorrelation properties of the CINAR(p) inde-
pendence model are quite attractive, the data generating mechanism itself is
somewhat artificial and difficult to interpret.

In a nutshell, while the INAR(1) model, with its intuitive interpretation and
its simple stochastic properties, is very attractive for applications, higher-order
extensions are not straightforward. Therefore, in Chapter 4, we discuss an alter-
native concept for ARMA-like count process models.

Example 3.1.6 (Gold particles) For illustration, we analyze a time series
of counts of gold particles, which was originally published by Westgren (1916).
These counts were measured in a fixed volume element of a colloidal solution
over time, and the count values vary because of the Brownian motion of the
particles. As in Jung & Tremayne (2006) and Weiß (2013a), we consider obser-
vations 501,… , 880 of series C (Westgren, 1916, pp. 12–13) and denote them
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Figure 3.1 Plot of the particles counts; see Example 3.1.6.

as x1,… , x380 for simplicity. The first T = 370 observations x1,… , x370, which
are plotted in Figure 3.1, are used for model fitting, while x371,… , x380 serve as
an exercise for forecasting.

The SACF shown in Figure 3.2a indicates an autoregressive autocorrelation
structure. This is also confirmed by the SPACF in Figure 3.2b, where we have
significant values at lags 1 and 2 but an abrupt drop towards zero with lag 3,
so an autoregressive model of order p ≤ 2 appears plausible (see the discussion
in Appendix B.3). Since we also have a significant SPACF value at lag 9, we
shall later also try out some higher-order models. The empirical marginal pmf
is shown in black in Figure 3.2c, together with the pmf of the Poi(x) distribution
in gray, where x ≈ 1.551. The plot implies that a Poisson marginal distribution
might be appropriate for the data, a suggestion which is confirmed by the index
of dispersion Î ≈ 1.062 (Poisson INAR(1) approximation according to (2.14):
mean ≈ 0.990, std.err. ≈ 0.104).

As a result of the previous analyses, we shall fit the Poisson INAR(p) and
CINAR(p) models of order p ≤ 2 to the data. To make the models more compa-
rable, we shall use a slightly modified parametrization for the CINAR(p) model,
with 𝛼j ∶= 𝛼 𝜙j for j = 1,… , p and, hence, 𝛼 = 𝛼1 +…+ 𝛼p as well as𝜙j = 𝛼j∕𝛼.
After having computed moment estimates for initialization, the final estimates
are obtained by maximizing the respective conditional log-likelihood function
𝓁(𝜽 | xp,… , x1) =

∑T
t=p+1 ln p(xt | xt−1,… , xt−p) from (B.6). The required tran-

sition probabilities are given by (2.5) for INAR(1), by (3.10) for CINAR(2), and
for the INAR(2) model by

P(Xt = k | Xt−1 = l1,Xt−2 = l2) =
min{k,l1}∑

j1=0

min{k−l1,l2}∑
j2=0(

l1
j1

)
𝛼

j1
1 (1 − 𝛼1)l1−j1 ⋅

(
l2
j2

)
𝛼

j2
2 (1 − 𝛼2)l2−j2 ⋅ P(𝜖t = k − j1 − j2).

(3.12)
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Figure 3.2 Particles counts; see Example 3.1.6: (a) SACF, (b) SPACF, (c) marginal frequencies
(black) together with a Poisson fit (gray) (d) SACF of Pearson residuals based on fitted
Poisson INAR(1) model.

For all models, we compute the CML estimates together with their approximate
standard errors as well as the AIC and BIC, as described in Remark B.2.1.2. The
results are summarized in Table 3.1. The first-order model not only performs
worst in terms of AIC and BIC, but the corresponding Pearson residuals indi-
cate that the model is not adequate for the data (Section 2.4): there are several
significant SACF values in Figure 3.2d, which implies that a higher-order model
should be used.

However, it is difficult to decide between the fitted Poisson INAR(2) and
CINAR(2) model. While the latter has a Poisson marginal distribution (with
mean ≈ 1.527 and dispersion index = 1), the former is slightly overdispersed
(marginal mean ≈ 1.564, dispersion index ≈ 1.151); for the data, we observed
x ≈ 1.551 and Î ≈ 1.062. The Pearson residuals do not show significant SACF
values for any of these models, while all the PIT histograms (see Figure 3.3) vis-
ibly deviate from uniformity (with a slight preference for the CINAR(2) model).
Note that the conditional variance of the Poisson CINAR(2) model, as required
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Table 3.1 Particles counts: CML estimates and AIC and BIC values for different models.

Model Parameter AIC BIC

1 2 3

Poisson INAR(1) 0.734 0.531 1040 1047
(𝜆, 𝛼) (0.063) (0.036)
Poisson INAR(2) 0.545 0.472 0.180 1027 1038
(𝜆, 𝛼1, 𝛼2) (0.072) (0.047) (0.053)
Poisson CINAR(2) 0.601 0.412 0.194 1027 1038
(𝜆, 𝛼1, 𝛼2) (0.064) (0.051) (0.054)

Figures in parentheses are standard errors. AIC and BIC values rounded.
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Figure 3.3 PIT histograms based on fitted (a) Poisson INAR(1), (b) INAR(2), (c) CINAR(2)
models; see Example 3.1.6.

for the Pearson residuals, follows from (3.11) with r = 2 by using 𝜇𝜖; (r−j) = 𝜆r−j

(Example A.1.1). The ACF of the fitted INAR(2) model (0.575, 0.451, 0.316,…)
is closer to the SACF (0.574, 0.471, 0.364,…) than the ACF of the CINAR(2)
model (0.511, 0.405, 0.266,…); note that the estimate for 𝛼1 is visibly smaller
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for the CINAR(2) model. So, in summary, none of the considered second-order
models perfectly fits the data, but both seem to constitute reasonable approx-
imations. If, for a practitioner, it is most important to imitate the observed
autocorrelation structure, then the INAR(2) model should be preferred, while
the CINAR(2) model, with its Poisson marginal distribution, might be more
attractive in view of its equidispersion property.

At this point, let us also try out some higher-order models; we have seen
in Figure 3.2b that there was also a significant SPACF value at lag 9. For
simplicity, we concentrate on CINAR(p) models for this exercise. Starting
with the CINAR(3) model, we estimate 𝜆 as 0.562 (standard error 0.069)
and the autoregressive parameters 𝛼1, 𝛼2, 𝛼3 as 0.392 (0.054), 0.193 (0.055),
0.037 (0.044), respectively. It becomes clear that the estimate for 𝛼3 is not
significantly different from 0 at a 5% level. Also the BIC ≈ 1039 is larger
than that of the second-order model, while the AIC further decreases to
about 1024. Considering the fact that the AIC sometimes tends to overesti-
mate the model order (see Katz (1981) and Remark B.2.1.2), the increased
model order does not appear to be beneficial for the given data. This is even
clearer for a fitted CINAR(4) model, where the estimate for 𝛼4 is (numerically)
identical to zero, and where now also the AIC is increased. All these analyses
confirm that the second-order model seems to be superior for the data
within the full CINAR(p) models. Only a special CINAR(9) model, where
the autoregressive parameters 𝛼3,… , 𝛼8 are set to zero (motivated by the
significant SPACF value at lag 9), could be a reasonable alternative. This model
has four parameters, 𝜆, 𝛼1, 𝛼2, 𝛼9, and leads to a performance comparable
to the CINAR(2) model, although certainly at the price of increased model
complexity.

Let us now return to the fitted second-order models, and conclude
this example with a forecasting exercise for the remaining observations
x371,… , x380. Based on the 1-step-ahead conditional distributions computed
according to (3.12) and (3.10) for the fitted Poisson INAR(2) and CINAR(2)
model, respectively, the 5%- and the 95%-quantiles were computed; see
Table 3.2. It can be seen that the CINAR(2) model produces slightly narrower
quantile bands, which is plausible in view of also it having less marginal
dispersion (see above). Neither observation violates any of the quantile
bands.

Remark 3.1.7 (Further extensions) The use of thinning operations is not
limited to development of stationary and ARMA-like count models. As an
example, by defining the thinning parameter or further model parameters to
depend on time, say through a time-dependent mean (McKenzie, 1985; Moriña
et al., 2011), through periodically varying parameters (Monteiro et al., 2010)
or through incorporating covariate information (Azzalini, 1994; Freeland &
McCabe, 2004a; Sutradhar, 2008), one obtains a non-stationary extension of
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Table 3.2 Particles counts: 5% and 95% quantiles of 1-step-ahead forecasting distributions
for x371,… , x380 based on fitted Poisson INAR(2) and CINAR(2) models.

t 371 372 373 374 375 376 377 378 379 380
95% INAR(2) 5 5 4 4 4 3 4 4 3 4

CINAR(2) 4 4 4 4 4 3 3 4 3 3
xt 3 2 3 2 1 2 2 1 2 1

5% INAR(2) 1 1 0 0 0 0 0 0 0 0
CINAR(2) 1 1 0 1 0 0 0 0 0 0

the INAR(1) model. A related approach is to use state-dependent parameters ;
see Weiß (2015a) and the references therein. In particular, the idea of a
self-exciting threshold (SET) autoregression (Turkman et al., 2014) can be
adapted to the integer-valued case, too; see Monteiro et al. (2012) for such a
model.

As another example, thinning operations can also be used to transfer bilinear
models (Turkman et al., 2014) to the integer-valued case, leading to the INBL
models; see, for example Doukhan et al. (2006), who discuss the INBL(1, 0, 1, 1)
model in great detail. It is defined by the recursion 1

Xt = 𝛼 ∘ Xt−1 + 𝛽 ∘ (Xt−1 𝜖t−1) + 𝜖t , (3.13)

where thinnings are performed independently of each other. A (strictly) station-
ary solution exists if 𝛼 + 𝛽 𝜇𝜖 < 1, having the mean 𝜇 = (𝜇𝜖 + 𝛽 𝜎2

𝜖 )∕(1 − 𝛼 −
𝛽 𝜇𝜖). The variance exists (and hence weak stationarity holds) if (𝛼 + 𝛽 𝜇𝜖)2 +
𝛽2 𝜎2

𝜖 < 1 and 𝜇𝜖,4 < ∞ holds. For further results, including the ACF in the case
of Poisson-distributed innovations, see Doukhan et al. (2006).

To illustrate the potential of some of the extensions mentioned in
Remark 3.1.7, let us look at simulated sample paths. The first two parts
of Figure 3.4 show paths of non-stationary Poisson INAR(1) processes, where
the thinning parameter 𝛼 is kept constant in time, but the innovations’ mean
varies according to 𝜆t = exp(𝛄⊤zt), with zt representing the covariate infor-
mation at time t (Freeland & McCabe, 2004a). Such trend and seasonality are
often observed in practice; corresponding real-data examples are presented
in Examples 5.1.6 and 5.1.7. Figure 3.4c shows a sample path with a piecewise
pattern, which was generated by a simple SET extension of the Poisson
INAR(1) model with one threshold and delay 1; see Monteiro et al. (2012) for
further background.

1 In fact, Doukhan et al. (2006) define this model by using the concept of generalized thinning as
described in Section 3.2.
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Figure 3.4 Simulated Poisson INAR(1) process (𝛼 = 0.5) with innovations 𝜖t ∼ Poi(𝜆t) ∶
(a) having trend 𝜆t = exp (𝛾0 + 𝛾1 t) with 𝛾0 = ln 1.5, 𝛾1 = 0.01; (b) having seasonality
𝜆t = exp (𝛾0 + 𝛾2 sin (2𝜋 t∕12)) with 𝛾0 = ln 1.5, 𝛾2 = 1.5; (c) having SET mechanism 𝜆t = 1.5
if Xt−1 ≤ 5 and 𝜆t = 5 otherwise.
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3.2 Alternative Thinning Concepts

The idea behind a thinning operation (and the related time series models) can
be modified in diverse ways; see the surveys by Weiß (2008a) and Scotto et al.
(2015). Such modified thinning concepts allow for different stochastic prop-
erties and alternative interpretation schemes. We shall pick out two of these
alternative thinning concepts here, but many further approaches are described
in Weiß (2008a) and Scotto et al. (2015).

In view of the BPIs according to Remark 2.1.1.2, the generalized thinning
operation, as proposed by Latour (1998), appears reasonable:

𝛼•𝛽 X ∶=
X∑

j=1
Zj with 𝛼 ∈ (0; 1) and 𝛽 > 0, (3.14)

where the random variables Zj (counting series) are allowed to have the full
range ℕ0 instead of only {0, 1}. Here, the Zj are required to have mean 𝛼 and
variance 𝛽. Since now the Zj may become larger than 1, the interpretation (2.4)
as “survival indicators” is no longer appropriate, but they can be understood
as describing a reproduction mechanism: as in Remark 2.1.1.2, Zj might be
the number of children being generated by the jth individual of the population
behind X.

Using their generalized thinning operation (which includes binomial thin-
ning as a special case), Latour (1998) extended the INAR(p) model (3.5) by Du
& Li (1991) to the GINAR(p) model, which is defined as

Xt = 𝛼1•𝛽1
Xt−1 +…+ 𝛼p•𝛽p

Xt−p + 𝜖t, (3.15)

where again 𝛼• ∶=
∑p

j=1 𝛼j < 1 is assumed. In (3.15), a time index for the thin-
ning operations is omitted for the sake of readability, but it is understood that
all thinnings are performed independently, as in the model by Du & Li (1991).

Although (3.15) has been generalized with respect to (3.5), 𝜇 = 𝜇𝜖∕(1 − 𝛼•)
as well as the Yule–Walker equations (3.7) still hold, while formula (3.6) for the
variance has to be modified (Latour, 1998):

𝜎2 ⋅

(
1 −

p∑
i=1

𝛼i 𝜌(i)

)
= 𝜇

p∑
j=1

𝛽j + 𝜎2
𝜖 . (3.16)

Setting 𝛽j ∶= 𝛼j(1 − 𝛼j), we would obtain (3.6) again.
A particular instance of generalized thinning, which has received consid-

erable interest in the literature, is the negative binomial thinning operator
“𝛼 ∗” of Ristić et al. (2009), for which the Zj are geometrically distributed with
parameter 𝜋 ∶= 1∕(1 + 𝛼) (hence E[Zj] = 𝛼; see Example A.1.5). Therefore,
𝛼 ∗ X is conditionally NB(X, 1∕(1 + 𝛼))-distributed due to the additivity of
the NB distribution (Example A.1.4). Ristić et al. (2009) use this operation to
construct a first-order process having a geometric marginal distribution, and
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refer to it as the new geometric INAR(1) process, abbreviated as NGINAR(1).
Also the Poisson INARCH models, discussed later in Section 4.1, might be
understood as particular GINAR models using Poisson thinning (Rydberg &
Shephard, 2000; Weiß, 2015a).

Another family of thinning operations assumes the counting series to
be Bernoulli distributed, but now the thinning probability 𝛼 is allowed to
be random itself. The resulting thinning operation is then called random
coefficient (RC) thinning, and it has been applied in the context of count time
series modeling by a number of authors, including Joe (1996) and Zheng et al.
(2007). As a specific instance (Joe, 1996), we consider the case where 𝛼𝜙 follows
the BETA

(
1−𝜙
𝜙

𝛼,
1−𝜙
𝜙

(1 − 𝛼)
)

distribution with 𝛼, 𝜙 ∈ (0; 1); that is, where
E[𝛼𝜙] = 𝛼 and 𝜎2

𝛼 ∶= V [𝛼𝜙] = 𝜙 𝛼(1 − 𝛼). Then the conditional distribution
of 𝛼𝜙 ∘ X given X is a beta-binomial distribution (see Example A.2.2), and the
thinning operation is referred to as beta-binomial thinning accordingly.

A counterpart to the INAR(1) model from Definition 2.1.1.1 using a general
random coefficient thinning operation “𝛼t ∘ ” (that is, where the distribution
of 𝛼t on [0; 1) is only required to have mean 𝛼 and a certain variance 𝜎2

𝛼 , but is
not further specified) was investigated by Zheng et al. (2007). Their RCINAR(1)
model is defined by

Xt = 𝛼t ∘t Xt−1 + 𝜖t. (3.17)

While the (conditional) mean and ACF remain as in the INAR(1) case
(Section 2.1.1), the effect of the additional uncertainty manifests itself in the
(conditional) variance (Zheng et al., 2007):

V [Xt | Xt−1] = 𝜎2
𝛼 (X2

t−1 − Xt−1) + 𝛼(1 − 𝛼) Xt−1 + 𝜎2
𝜖 ,

𝜎2 = V [Xt] = 𝜇

1 − 𝛼2 + (𝜇 − 1) 𝜎2
𝛼 + (1 − 𝛼)

(
𝜎2
𝜖

𝜇𝜖

− 1
)

1 − 𝛼2 − 𝜎2
𝛼

.

(3.18)

Note that V [Xt | Xt−1] is a quadratic function of Xt−1, and the observations are
overdispersed even if the innovations are equidispersed.

Joe (1996) and Sutradhar (2008) considered that instance of the RCINAR(1)
model where beta-binomial thinning “𝛼𝜙 ∘ ” is used. If 𝜖t ∼ NB(n(1 − 𝛼), 𝜋) and
if 𝜙 ∶= 1∕(n + 1), then the stationary marginal distribution of

Xt = 𝛼1∕(n+1) ∘ Xt−1 + 𝜖t , (3.19)

omitting the time index at the thinning operation, is Xt ∼ NB(n, 𝜋). So innova-
tions and observations are from the same family of distributions, NB(⋅, 𝜋), and
have a unique index of dispersion, I = 1∕𝜋, both being completely analogous to
the case of a Poisson INAR(1) model (Section 2.1.2).

Example 3.2.1 (Download counts) Let us consider again the time series
of download counts as discussed in Section 2.5. When analyzing the data, Weiß
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(2008a) recommended to use the NB-RCINAR(1) model (3.19) for these data.
Therefore, we now also fit this model to the data by a full likelihood approach,
where the transition probabilities are computed by analogy to (2.5) by replacing
the pmf of the Bin(l, 𝛼) distribution by that of the BB(l; 𝛼, 1

n+1
) distribution (see

Example A.2.2). We obtain the estimates (std.err. in parentheses)
n̂ML ≈ 1.134 (0.174), �̂�ML ≈ 0.315 (0.038), �̂�ML ≈ 0.274 (0.058).

In particular, the NB-RCINAR(1) model indeed leads to the lowest values
of AIC (≈ 1085) and BIC (≈ 1096). The marginal distribution of the fitted
model is an NB distribution with mean ≈ 2.463, dispersion index ≈ 3.172,
and zero probability ≈ 0.270. The Pearson residuals do not contradict the
fitted model, and also the PIT histogram is reasonable close to uniformity
(although it looks a bit worse than the one of the NB-INAR(1) model in
Figure 2.9b).

Zheng et al. (2006) extended the RCINAR(1) model to the pth-order
RCINAR(p) model, analogous to the INAR(p) model of Du & Li (1991); that is,
with thinnings being performed independently (Section 3.1).

Remark 3.2.2 (Convolution-closed models) Another way of generalizing
the binomial-thinning-based Poisson INAR(1) model to different marginal
distributions and to higher-order dependence structures was proposed by Joe
(1996). The idea behind this approach can be explained by looking back to the
construction of the Poisson INAR(1) model, as described at the beginning of
Section 2.1.2. There, we made use of the additivity of the Poisson distribution;
that is, the property that the sum of two independent Poisson random variables
is again Poisson distributed. Generally, the pmf of the sum of two independent
random variables is obtained by convoluting their individual pmfs. Using
this terminology, the additivity of the Poisson distribution is equivalently
stated by saying that the Poisson distribution is convolution-closed. However,
there are further convolution-closed distributions in Appendix A, such as the
negative binomial (Example A.1.4) or the generalized Poisson (Example A.1.6).
In fact, the whole compound Poisson family (Example A.1.2) shares some
kind of additivity; see Lemma 2.1.3.2. Therefore, the approach by Joe (1996)
mainly concentrates on convolution-closed and infinitely divisible marginal
distributions.

So let us look back to Section 2.1.2. The stationary Poisson INAR(1) model
generates the count Xt ∼ Poi(𝜇) at time t as the sum of the independent
random variables 𝛼 ∘ Xt−1 ∼ Poi(𝛼 𝜇) and 𝜖t ∼ Poi((1 − 𝛼)𝜇). As a result – see
(2.13) – we know that the successive observations (Xt,Xt−1) are bivariately Pois-
son distributed according to MPoi(𝛼 𝜇; (1 − 𝛼)𝜇, (1 − 𝛼)𝜇) (Example A.3.1).
So we have the equality in distribution

(Xt , Xt−1)
d
= (Y2 + Y12, Y1 + Y12), (3.20)
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where Y1,Y2,Y12 are independent with Y1,Y2 ∼ Poi((1 − 𝛼)𝜇) and Y12 ∼
Poi(𝛼 𝜇). In this construction, one may interpret Y12 as a common latent
component of Xt and Xt−1 inducing the serial dependence, while Y1,Y2
reflect the innovation part (Joe, 1997; Jung & Tremayne, 2011a). To obtain
first-order models with non-Poisson marginals, Joe (1996) used the same
construction as in (3.20), but with Y1,Y2,Y12 stemming from another type of
convolution-closed and infinitely divisible distribution:

• the negative binomial, leading to the NB-RCINAR(1) model (3.19), or
• the generalized Poisson, leading to the model by Alzaid & Al-Osh (1993),

which can be expressed by using the quasi-binomial thinning operation.

For the latter model, also see Jung & Tremayne (2011a), who refer to it as the
GPJ(1) model. Generally, as shown by Joe (1996), all these first-order models
can be understood as some kind of thinning-based model, by using an appropri-
ate type of generalized thinning, and they are all Markov chains with CLAR(1)
structure (Grunwald et al., 2000).

The construction in (3.20) can also be extended to higher-order autoregres-
sions, but then “the notation is a bit cumbersome” (Joe, 1996, p. 671). So the
reader is referred to the works by Joe (1996) and Jung & Tremayne (2011a) for
more details; it is just noted here that such higher-order autoregressions do not
possess a CLAR structure anymore. Finally, it is pointed out that Markov count
models can also be defined using copulas (Joe, 1997, 2016), background infor-
mation on which is provided by Joe (1997) and Genest & Nes̆lehová (2007). A
Markov chain with the Xt having cdf F , for instance, is constructed by specifying
the bivariate distribution of (Xt,Xt−1) in the form C(F(x0), F(x1)), where C is an
appropriate bivariate copula. A potential benefit of such copula-based models
is the possibility for negative autocorrelations.

Remark 3.2.3 (ℤ-valued time series) Although they have received less
attention in the literature than count models, it should be emphasized that
models for time series having the full set of integers ℤ as their range (hereafter
referred to as ℤ-valued time series) have also been discussed by some authors.
Probably the first contribution concerning ℤ-valued time series was the one
by Kim & Park (2008), who introduced the signed binomial thinning operator,
defined as 𝛼 ⊙ X ∶= sgn(𝛼) sgn(X) (|𝛼| ∘ |X|), where 𝛼 ∈ (−1; 1), and where
sgn(z) = 1 for z ≥ 0 and −1 otherwise. Using this operator, Kim & Park (2008)
defined signed counterparts to both the AA- and the DL-INAR(p) models
(Section 3.1). These are referred to as INARS(p) models. The DL-INARS(p)
model, where the thinnings in

Xt = 𝛼1 ⊙ Xt−1 +…+ 𝛼p ⊙ Xt−p + 𝜖t

are assumed to be all independent, has a stationary solution if the roots of
𝛼(z) ∶= 1 − 𝛼1z −…− 𝛼pzp are outside the unit circle (see also Appendix B.3);



�

� �

�

Further Thinning-based Models for Count Time Series 59

then it exhibits the typical AR(p)-autocorrelation structure. Andersson & Karlis
(2014) investigated a special case of the INARS(1) model, where the innovations
are assumed to stem from a Skellam distribution (see Example A.1.10). Refer-
ences to further models for ℤ-valued time series can be found in Section 3.4 of
Scotto et al. (2015).

3.3 The Binomial AR Model

In many applications, it is known that the observed count data cannot become
arbitrarily large; their range has a natural upper bound n ∈ ℕ that can never
be exceeded. The models discussed up to now – the INAR(1) model from Def-
inition 2.1.1.1 and all its extensions – can only be applied to count processes
having an infinite range ℕ0. As an example, if we want to guarantee that Xt =
𝛼 ∘ Xt−1 + 𝜖t does not become larger than n, then the range of 𝜖t at time t would
have to be restricted to {0,… , n − Xt−1}, which would contradict the innova-
tions’ i.i.d. assumption. So different solutions are required for “finite-valued”
counts.

One such solution for time series of counts supported on {0,… , n}, with a
fixed upper limit n ∈ ℕ, is the binomial AR(1) model, which was proposed by
McKenzie (1985) together with the INAR(1) model. It replaces the INAR(1)’s
innovation term by an additional thinning, 𝛽 ∘ (n − Xt−1), such that this term
cannot become larger than n − Xt−1.

Definition 3.3.1 (Binomial AR(1) model) Let 𝜌 ∈
(
max

{ −𝜋
1−𝜋

,
1−𝜋
−𝜋

}
; 1

)
and 𝜋 ∈ (0; 1). Define 𝛽 ∶= 𝜋 (1 − 𝜌) and 𝛼 ∶= 𝛽 + 𝜌. Fix n ∈ ℕ.

The process (Xt)ℤ, defined by the recursion

Xt = 𝛼 ∘ Xt−1 + 𝛽 ∘ (n − Xt−1),

where all thinnings are performed independently of each other, and where the
thinnings at time t are independent of (Xs)s<t , is referred to as a binomial AR(1)
process .

The condition on 𝜌 guarantees that the derived parameters 𝛼, 𝛽 satisfy 𝛼, 𝛽 ∈
(0; 1); that is, these parameters can indeed serve as thinning probabilities.

The binomial AR(1) model of Definition 3.3.1 is easy to interpret (Weiß,
2009a). Suppose that we have a system of n mutually independent units,
each being either in state “1” or state “0”. Let Xt−1 be the number of units
being in state “1” at time t − 1. Then 𝛼 ∘ Xt−1 is the number of units still
being in state “1” at time t, with individual transition probability 𝛼 (“survival
probability”). 𝛽 ∘ (n − Xt−1) is the number of units, which moved from
state “0” to state “1” at time t, with individual transition probability 𝛽 (“revival
probability”).
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It is known that (Xt)ℤ is a stationary, ergodic and 𝜙-mixing finite Markov
chain (also see Appendix B.2.2). Its marginal distribution is Bin(n, 𝜋), and the
(truly positive) 1-step-ahead transition probabilities are given by

pk|l =
min{k,l}∑

m=max{0,k+l−n}

(
l

m

)(
n − l

k − m

)
𝛼m(1 − 𝛼)l−m 𝛽k−m(1 − 𝛽)n−l+m−k ,

(3.21)
see McKenzie (1985) and Weiß (2009a). Conditional mean and variance are
both linear in Xt−1, and given by

E[Xt | Xt−1] = 𝜌 ⋅ Xt−1 + n𝛽,
V [Xt | Xt−1] = 𝜌(1 − 𝜌) (1 − 2𝜋) ⋅ Xt−1 + n𝛽(1 − 𝛽).

(3.22)

Closed-form expressions for the corresponding h-step-ahead regression
properties are obtained by replacing 𝜌 by 𝜌h (Weiß & Pollett, 2012). Also note
that the eigenvalues of the transition matrix P according to (3.21) are just
given by 1, 𝜌,… , 𝜌n (Weiß, 2009a). So the speed of convergence of Ph → p𝟏⊤
is determined by the value of 𝜌 according to the Perron–Frobenius theorem
(Remark B.2.2.1). The ACF of the binomial AR(1) model is of AR(1)-type,
given by 𝜌(k) = 𝜌k for k ≥ 0 (note that 𝜌 might become negative). Closed-form
expressions for higher-order joint moments in such a process are provided
by Weiß & Kim (2013); the binomial AR(1) process is also time-reversible
(McKenzie, 1985).

Remark 3.3.2 (Renewal-based models) If n = 1, the binomial AR(1)
model according to Definition 3.3.1 reduces to the binary Markov chain,
which will be discussed in Example 7.1.3. But for n > 1, there is also a close
relationship between both models due to the additive structure of the involved
thinning operations. Each of the n independent “units” might be associated its
own binary Markov chain, indicating if this unit is in state “0” or “1”. The whole
binomial AR(1) process might then be thought of as a sum of these n inde-
pendent binary Markov chains. This idea was picked up by Cui & Lund (2009,
2010), who defined count processes by superpositioning stationary renewal
processes. Such models can be designed to give, for example, binomially or
Poisson-distributed marginals, and they include the binomial AR(1) model as
a special case.

A pth-order autoregressive version, which uses a probabilistic mixing
approach analogous to the CINAR(p) model from Remark 3.1.5 and thus
preserves the binomial marginal distribution, was proposed by Weiß (2009b).
For the resulting binomial AR(p) model, defined by

Xt =
p∑

i=1
Dt,i

(
𝛼 ∘t Xt−i + 𝛽 ∘t (n − Xt−i)

)
(3.23)
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completely analogous to (3.9), the special case of independent thinnings is again
relevant. It leads to a pth-order Markov process, the ACF of which satisfies the
Yule–Walker equations

𝜌(k) = 𝜌

p∑
i=1

𝜙i ⋅ 𝜌(|k − i|). (3.24)

The conditional mean and transition probabilities are given by

E[Xt | Xt−1,…] = 𝜇 (1 − 𝜌) + 𝜌

p∑
i=1

𝜙i Xt−i,

P(Xt = x | Xt−1 = xt−1,…) =
p∑

i=1
𝜙i⋅

x∑
y=0

(
xt−i

y

)
𝛼y (1 − 𝛼)xt−i−y

(
n − xt−i

x − y

)
𝛽x−y (1 − 𝛽)n−xt−i−x+y.

(3.25)
Higher-order (factorial) moments follow in an analogous way to (3.11),

E[(Xt)(r) | Xt−1,…]

=
p∑

i=1
𝜙i

r∑
j=0

(
r
j

)
(Xt−i)(j)𝛼j (n − Xt−i)(r−j)𝛽

r−j.
(3.26)

The binomial AR(1) model and its pth-order extension have a binomial
marginal distribution; in particular, their binomial index of dispersion accord-
ing to (2.3) satisfies IBin = 1. To allow for time-dependent and finite-range
counts with IBin > 1 (extra-binomial variation), Weiß & Kim (2014) pro-
posed replacing the binomial thinning operations in Definition 3.3.1 (or in
(3.23), respectively) by beta-binomial ones (see Section 3.2). The resulting
beta-binomial AR(1) model is characterized by the recursion

Xt = 𝛼𝜙 ∘ Xt−1 + 𝛽𝜙 ∘ (n − Xt−1), (3.27)

where both thinnings use a unique dispersion parameter 𝜙 ∈ (0; 1). Many
stochastic properties are analogous to those of the binomial AR(1) model,
but the beta-binomial AR(1) model exhibits extra-binomial variation (Weiß &
Kim, 2014):

IBin = 1 + (n − 1) ⋅ (1 − 2𝜋(1 − 𝜋)(1 − 𝜌))(
1
𝜙
− 1

)
(1 + 𝜌) + (1 − 2𝜋(1 − 𝜋)(1 − 𝜌))

. (3.28)

The transition probabilities are obtained from (3.21) by replacing the involved
binomial distributions by beta-binomial ones (Example A.2.2). They can
be used to compute the stationary marginal distribution as well as any
h-step-ahead forecasting distribution exactly as described in Appendix B.2.1,
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since the beta-binomial AR(1) process is a finite Markov chain. The conditional
mean is the same as in (3.22) (thus we also have the same ACF), while the
conditional variance is now a quadratic function of Xt−1 (Weiß & Kim, 2014):

V [Xt | Xt−1] = (𝜌(1 − 𝜌)(1 − 2𝜋) (1 − 𝜙) − 2n𝛽(1 − 𝛽) 𝜙) Xt−1

+ 𝜙 (𝛼(1 − 𝛼) + 𝛽(1 − 𝛽)) X2
t−1 + n𝛽(1 − 𝛽) (1 + 𝜙(n − 1)).

(3.29)

Extensions of the binomial AR(1) model using state-dependent parameters
(also see Remark 3.1.7) have been proposed by Weiß & Pollett (2014), for
example to describe binomial underdispersion, and by Möller (2016) for
SET-type models.

Remark 3.3.3 (Model fitting) The approaches for parameter estimation,
model identification and adequacy checking described in Sections 2.2–2.4 are
easily adapted to the binomial AR case. As the only exception, the dispersion
test (2.14) in Section 3.3 is not reasonable in the context of a finite range. There-
fore, Weiß & Kim (2014) considered a sample version of the binomial index
of dispersion (2.3), defined as ÎBin ∶= n S2∕(X (n − X)). Under the null of a
binomial AR(1) model, this test statistic is asymptotically normally distributed
with

E
[
ÎBin

]
≈ 1 − 1

T

(
1 − 1

n

) 1 + 𝜌

1 − 𝜌
, V

[
ÎBin

]
≈ 2

T

(
1 − 1

n

) 1 + 𝜌2

1 − 𝜌2 ,

(3.30)

see Weiß & Kim (2014) and Weiß & Schweer (2015).

Example 3.3.4 (Price Stability) Weiß & Kim (2014) analyzed a time
series for the EA17, a group of countries in the Euro area, consisting of n = 17
member states. Starting in January 2000, it was determined for each month,
how many of these countries showed stable prices (that is, an inflation rate
below 2%), leading to monthly counts with range {0,… , 17}. As in Weiß &
Kim (2014), we first restrict to the time series x1,… , xT corresponding to
the period from January 2000 to December 2006 (length T = 84). The data
collected for January 2007 to August 2012 (shown in gray in Figure 3.5a) is
later used for forecasting.

The SACF in Figure 3.5b shows significant values for lags 1 and 2, and the
SPACF indicates an AR(1)-like autocorrelation structure. The estimated pmf
is shown in black in Figure 3.5c. The marginal mean equals x ≈ 4.274, so the
overall proportion of countries having stable prizes is (only) �̂�MM ≈ 0.251.
The corresponding binomial distribution Bin(n, �̂�MM) is shown in gray in
Figure 3.5c, and it looks less dispersed than the sample pmf. This is also con-
firmed by the binomial index of dispersion, given by ÎBin ≈ 1.521. Compared to
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Figure 3.5 EA17 prices: (a) price stability counts (2000–2006 in black), (b) their sample
autocorrelation, (c) marginal frequencies (black) and a binomial fit (gray). See Example 3.3.4.

a binomial AR(1) model with parameter values �̂�MM and �̂�MM ∶= �̂�(1) ≈ 0.658,
where approximate mean and standard deviation for ÎBin would be given by
about 0.946 and 0.238, respectively, according to (3.30), we realize a significant
degree of extra-binomial variation (P value ≈ 0.008). So the beta-binomial
AR(1) model might be more appropriate for the data.

Both models are fitted to the data by the (full) ML approach; see Table 3.3
for a summary of the results. In terms of the AIC, the beta-binomial AR(1)
model is superior, while the BIC prefers the binomial AR(1) model. Further-
more, the estimate for 𝜙 is not significantly different from 0, but this might just
be due to the small sample size. On the other hand, the binomial index of dis-
persion within the fitted beta-binomial AR(1) model (≈ 1.315) better meets the
observed value ÎBin ≈ 1.521 (the same holds for 𝜌(1)). Also the Pearson resid-
uals are slightly better for the beta-binomial model, with the variance ≈ 1.040
(vs.≈ 1.275 for the binomial model) being pretty close to 1. The PIT histograms
only roughly agree with uniformity in both cases.



�

� �

�

64 An Introduction to Discrete-Valued Time Series

Table 3.3 Price stability counts: ML estimates and AIC and BIC values for different models.

Model Parameter AIC BIC

1 2 3

Binomial AR(1) 0.256 0.578 327.3 332.2
(𝜋, 𝜌) (0.022) (0.058)

Beta-binomial AR(1) 0.260 0.622 0.037 326.7 334.0
(𝜋, 𝜌, 𝜙) (0.028) (0.064) (0.028)

Figures in parentheses are standard errors.

In view of the significant degree of extra-binomial variation for x1,… , x84,
let us discuss the fitted beta-binomial model in more detail, while being aware
that this model is far from being perfect for the data. The estimate �̂�ML implies
that the overall probability for an EA17 country satisfying the stability criterion
is only about 26%. If such a country has stable prices in a month t − 1, it will
also have stable prices in month t with about 72% probability, since the survival
probability is estimated as �̂�ML ≈ 0.721. In contrast, if there are no stable prices
in month t − 1, prices will become stable one month later with a probability of
only about 10% (revival probability 𝛽ML ≈ 0.098).

Next, we use the fitted beta-binomial model for forecasting “future” values;
that is, the values after x84 = 7. Caused by the rather strong degree of depen-
dence, the h-step-ahead forecasting distributions (given x84 = 7) converge
relatively slowly to the marginal distribution. For instance, the 5% quantile
equals 3 for h = 1, then 2 for h = 2, 3, 4, and 1 for h ≥ 5. Similarly, the median
changes from 6 (h = 1) to 5 (h = 2,… , 5) to 4 (h ≥ 6), and the 95% quantile
from 9 (h = 1, 2, 3) to 8 (h ≥ 4). The speed of convergence is characterized
by the Perron–Frobenius theorem (Remark B.2.2.1); here, the second largest
eigenvalue of the fitted model’s transition matrix takes the value �̂�ML ≈ 0.622.

The result of continued 1-step-ahead forecasting is shown in Figure 3.6. After
a few observations, the data appear to be misplaced with respect to the quantile
bands. As argued by Weiß & Kim (2014), there is indeed external evidence for a
structural change after t = 84 (that is, for January 2007 and later), for example
increased inflation due to strongly surging oil prices in 2007, and the beginning
of the financial crisis in 2008 and the bankruptcy of Lehman Brothers. Tools
for detecting such changes in a count process are presented in Chapter 8.

3.4 Multivariate INARMA Models

In many applications, we do not observe a single feature over time, but instead
a number of related features simultaneously, thus leading to a multivariate
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Figure 3.6 Plot of the price stability counts for t ≥ 84, together with 1-step-ahead median
(dashed) plus 5%- and 95%-quantiles (solid); see Example 3.3.4.

time series. If these multivariate observations are truly real-valued, then, for
example, vector autoregressive moving-average (VARMA) models might be
appropriate for describing the data; see Appendix B.4.2 for a brief summary.
Here, we consider the count data case again; that is, a d-variate time series
x1,… , xT with the range being ℕd

0 (or a subset of it). For such multivariate
count time series, a number of thinning-based models (designed as coun-
terparts to the VARMA model) have been discussed in the literature; see
Section 4 in Scotto et al. (2015) for a survey. These approaches mainly differ in
the way of defining a multivariate type of thinning operation. The most widely
discussed approach, which is defined in a close analogy to conventional matrix
multiplication, is matrix-binomial thinning, which was introduced by Franke
& Subba Rao (1993).

Let X be a d-dimensional count random vector; that is, having the range ℕd
0 .

Let A ∈ [0; 1]d×d be a matrix of thinning probabilities. Then Franke & Subba
Rao (1993) define the ith component of the d-dimensional count random vector
A ∘ X by

(A ∘ X)i =
d∑

j=1
aij ∘ Xj for i = 1,… , d, (3.31)

where the d2 univariate binomial thinning operations (Section 2.1.1) are per-
formed independently of each other. A generalized version of this operator,
using univariate generalized thinnings (3.14) instead of binomial ones, was pro-
posed by Latour (1997). We denote this operation by “A•B”, with the (i, j)th
thinning “aij•bij

” satisfying aij ∈ [0; 1] and bij > 0 (for binomial thinning, we
have bij = aij(1 − aij)). It satisfies E[A•BX] = A E[X] and

E[(A•BX) (A•BX)⊤] = A E[X X⊤] A⊤ + diag (B E[X]).
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In an analogy to Definition B.4.2.1, a multivariate extension of the INAR(1)
model (MINAR(1) model) according to Definition 2.1.1.1 is given by the
recursion

X t = A ∘ X t−1 + 𝛜t (or, analogously, by using A•B), (3.32)

where (𝛜t)ℤ is an i.i.d. d-dimensional count process with finite mean 𝝁𝛜 and
covariance matrix 𝚺𝛜; see Franke & Subba Rao (1993), Latour (1997) and
Pedeli & Karlis (2013a). Latour (1997) showed that (Condition (B.25) in
Appendix B.4.2):

det(I − A z) ≠ 0 for |z| ≤ 1,

where I denotes the identity matrix, still guarantees the existence of a unique
stationary solution. The marginal mean is given by 𝛍 = (I − A)−1 𝝁𝛜, and the
autocovariance function is obtained from a slightly modified version of (B.30),

𝚪(k) = Ak 𝚪(0) =∶ Ak 𝚺, 𝚺 = A 𝚺 A⊤ + diag (B 𝛍) + 𝚺𝛜. (3.33)

If the thinning matrix A of the MINAR(1) model (3.32) is not a diagonal
matrix, then the component processes (Xt,i)ℤ are generally not univariate
INAR(1) processes. Therefore, Pedeli & Karlis (2011, 2013b) concentrate on
the diagonal case A = diag(a1,… , ad) of matrix-binomial thinning (thus also
reducing the number of model parameters) such that the cross-correlation
between Xt,i and Xt,j is solely caused by the innovations. Note that (3.33)
simplifies in this case, because Ak becomes diag(ak

1,… , ak
d):

𝛾ij(k) = ak
i 𝜎ij, (1 − aiaj) 𝜎ij = 𝛿i,j ai(1 − ai) 𝜇i + 𝜎𝛜;ij, (3.34)

where 𝛿i,j denotes the Kronecker delta. As particular instances of the
MINAR(1) model with diagonal-matrix-binomial thinning, they consider
the cases with 𝛜t stemming from a multivariate Poisson or negative binomial
distribution (Examples A.3.1 and A.3.2). The corresponding component
processes (Xt,i)ℤ then follow the univariate Poisson INAR(1) (Section 2.1.2) or
NB-INAR(1) model (Example 2.1.3.3), respectively. Note that Pedeli & Karlis
(2011, 2013b) use a slightly different parametrization for the MNB distribution
from Example A.3.2, with 𝛽, 𝜆1,… , 𝜆d obtained from the relations n = 𝛽−1 and
𝜋j = 𝛽 𝜆j

/(
1 + 𝛽

∑d
i=1 𝜆i

)
for j = 1,… , d.

Remark 3.4.1 (MINAR(p) model) Latour (1997) also considered the
d-dimensional extension of the DL-INAR(p) model (3.5) by Du & Li (1991)
and showed that it can be embedded into the MINAR(1) model by using the
thinning matrix D11 defined as in (B.28) in Appendix B.4.2. In particular, the
univariate DL-INAR(p) model (3.5) by Du & Li (1991) can be represented as a
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MINAR(1) model with X t ∶= (Xt,… ,Xt−p+1)⊤, with 𝛜t ∶= (𝜖t, 0,… , 0)⊤, and
with thinning matrix

A ∶=

⎛⎜⎜⎜⎜⎜⎝

𝛼1 𝛼2 … 𝛼p−1 𝛼p
1 0 … 0 0
0 1 ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 ⋮
0 … 0 1 0

⎞⎟⎟⎟⎟⎟⎠
.

Example 3.4.2 (BINAR(1) model) The particular instance of the bivari-
ate INAR(1) (BINAR(1)) model with diagonal-matrix-binomial thinning
was discussed by Pedeli & Karlis (2011) in great detail. For the innovations
(𝛜t)ℤ, they considered either the bivariate Poisson or negative binomial
distribution; see Examples A.3.1 and A.3.2 (a copula-based model was
developed by Karlis & Pedeli (2013)). Combining the moment proper-
ties for MPoi(𝜆0; 𝜆1, 𝜆2) and MNB(n, 𝜋1, 𝜋2), as given in Examples A.3.1
and A.3.2, respectively, with formula (3.34), the moment properties of the
resulting BINAR(1) models are immediately obtained. The transition prob-
abilities pk|l ∶= P(X t = k | X t−1 = l) follow by extending (2.5) to (Pedeli &
Karlis, 2011):

pk|l =
min{k1,l1}∑

j1=0

min{k2,l2}∑
j2=0

(
l1
j1

)
aj1

1 (1 − a1)l1−j1

⋅
(

l2
j2

)
aj2

2 (1 − a2)l2−j2 ⋅ P(𝛜t = k − j).

In the Poisson case, the components (Xt,i)ℤ follow the Poisson INAR(1) model
with 𝜖t,i ∼ Poi(𝜆i + 𝜆0); in the NB case, they follow the NB-INAR(1) model with
𝜖t,i ∼ NB(n, 𝜋0∕(𝜋0 + 𝜋i)).

For illustration, we briefly discuss the data example presented by Pedeli &
Karlis (2011). Each bivariate count xt expresses the number of daytime (xt,1) and
nighttime (xt,2) road accidents in the Schiphol area (Netherlands) for the days
t = 1,… , 365 in 2001; see the plot in Figure 3.7. Both components (xt,i) show
significant values for the SACF at lag 1 (�̂�11(1) ≈ 0.125 and �̂�22(1) ≈ 0.134), and
the sample cross-correlation is computed as �̂�12(0) ≈ 0.142.

The respective marginal frequencies are shown in Figure 3.8, with the
zero frequencies being 0.014 and 0.258, respectively. The estimated means
are x1 ≈ 7.277 and x2 ≈ 1.504. We not only have more daytime accidents in
the mean, but also a much stronger daytime dispersion, with Î1 ≈ 2.869 and
Î2 ≈ 1.245 (approximate upper-sided critical values at the 5% level according
to (2.14) would be given by 1.120 for both components). Therefore, we shall
consider both the Poisson and the negative binomial BINAR(1) models
as candidate models. The results of a CML estimation are summarized in
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Figure 3.7 Plot of the daily number of daytime and nighttime road accidents; see
Example 3.4.2.
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Figure 3.8 Plot of the marginal frequencies for the daily number of (a) daytime and (b)
nighttime road accidents; see Example 3.4.2.

Table 3.4. Since both models have the same number of parameters, only the
maximal log-likelihood is shown, which prefers the NB model.

If computing the components’ Pearson residuals based on the fitted
Poisson-BINAR(1) model from Table 3.4, the variances of 2.857 and 1.215
indicate that the Poisson model is not able to capture the dispersion within the
data, especially with respect to the first component (daytime accidents). Here,
the fitted NB-BINAR(1) model (with residual variances of 1.139 and 0.963)
performs much better than the Poisson one. Generally, the observations’
marginal properties are matched quite well by the fitted NB-BINAR(1) model,
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Table 3.4 Accidents counts: CML estimates and maximal log-likelihoods for different
models.

Model Parameter 𝓁max

1 2 3 4 5

Poisson BINAR(1) 6.460 1.099 0.268 0.077 0.087 −1745
(𝜆1, 𝜆2, 𝜆0, a1, a2) (0.241) (0.125) (0.105) (0.025) (0.043)

Negative binomial BINAR(1) 4.449 0.547 0.104 0.043 0.114 −1619
(n, 𝜋1, 𝜋2, a1, a2) (0.588) (0.025) (0.008) (0.038) (0.044)

Figures in parentheses are standard errors.
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Figure 3.9 Plot of SACF for daytime accidents (a) and for corresponding Pearson residuals
(b) from NB-BINAR(1) model, see Example 3.4.2.

with means of 7.289 and 1.496, dispersion indices of 2.504 and 1.267, and zero
probabilities of 0.011 and 0.265, respectively.

Despite these nice marginal features, the NB-BINAR(1) model is also not per-
fectly adequate for the data, which becomes clear by inspecting the SACF of
the Pearson residuals in Figure 3.9b. There, we find significant SACF values for
lags 7, 14, …, which could also have been observed by inspecting the SACF for
the original daytime counts in Figure 3.9a; see also Liu (2012). So there seems
to be a “day-of-week effect” causing this seasonal pattern. For the nighttime
counts, neither the original counts nor their residuals show such seasonality.
Computing the means of x1+j⋅7,1, of x2+j⋅7,1, and so on, we obtain the values

7.827, 8.038, 8.750, 8.827, 4.250, 5.192, 8.115,
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showing an increased mean number of daytime accidents on weekdays. So a
refined model able to deal with the apparent seasonality is required for the data.
For instance, using a separate set of parameters for the NB-BINAR(1) model’s
innovations on weekdays and on the weekend leads to a visible improvement
concerning the seasonality (𝓁max ≈ −1578).

Finally, let us turn to the case of multivariate counts having a finite range;
that is, a range of the form {𝟎,… ,n} ∶= {0,… , n1} ×… × {0,… , nd}. At first
glance, it appears to be possible to combine Definition 3.3.1 for a binomial
AR(1) model with the concept of matrix-binomial thinning (3.31), and to define
a model according to the recursive scheme X t = A ∘ X t−1 + B ∘ (n − X t−1).
However, if the matrices A,B are non-diagonal, it may happen that the upper
limit n is violated, since, for example, a11 ∘ Xt−1,1 + a12 ∘ Xt−1,2 +… might
become larger than n1. So we would have to restrict ourselves to diagonal
thinning matrices to ensure the upper limit n. But then, due to the absence
of an innovations term, the component series would be independent of each
other. So, in summary, a non-trivial multivariate binomial AR(1) model using
matrix-binomial thinning is not possible.

For this reason, restricting to the bivariate case, Scotto et al. (2014) intro-
duced another type of thinning operation, based on the bivariate binomial dis-
tribution of Type II (Example A.3.5). Let X be a bivariate count random variable
with range {𝟎,… ,n} ∶= {0,… , n1} × {0,… , n2}. The bivariate binomial thin-
ning operation “⊗” is defined by requiring the conditional distribution

𝛂⊗ X|X ∼ BVBII(X1,X2,min {X1,X2}; 𝛼1, 𝛼2, 𝜙𝛼), (3.35)

where the thinning parameter 𝛂 = (𝛼1, 𝛼2, 𝜙𝛼)⊤ has to satisfy the restric-
tions given in Example A.3.5. Note that in contrast to matrix-binomial
thinning, bivariate binomial thinning (3.35) generates cross-correlation (if
𝜙𝛼 ≠ 0) and preserves the upper bound X at the same time. Furthermore,
the marginals of 𝛂⊗ X just correspond to univariate binomial thinnings:
(𝛂⊗ X)i|X ∼ Bin(Xi, 𝛼i).

Using this operation, Scotto et al. (2014) defined the bivariate binomial AR(1)
model with upper limit n by extending Definition 3.3.1 as follows: let 𝜋i, 𝜌i for
i = 1, 2 be separate sets of parameters according to Definition 3.3.1, derive 𝛼i, 𝛽i
accordingly. Choose 𝜙𝛼, 𝜙𝛽 such that 𝛂 = (𝛼1, 𝛼2, 𝜙𝛼)⊤ and 𝛃 = (𝛽1, 𝛽2, 𝜙𝛽)⊤
become valid BVB-parameters. Then the BVBII-AR(1) process (X t)ℤ is defined
by the recursion

X t = 𝛂⊗ X t−1 + 𝛃⊗ (n − X t−1), (3.36)

where the thinnings are again performed independently of each other. By con-
struction, the components of this process are just univariate binomial AR(1)
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processes with parameters n1, 𝜋1, 𝜌1 and n2, 𝜋2, 𝜌2, respectively, and these com-
ponents are cross-correlated to each other (Scotto et al., 2014):

Co𝑣[Xt,1,Xt,2] = 𝜙𝛼

√
𝛼1𝛼2(1 − 𝛼1)(1 − 𝛼2)

1 − 𝜌1𝜌2
E
[
min{Xt,1,Xt,2}

]
+ 𝜙𝛽

√
𝛽1𝛽2(1 − 𝛽1)(1 − 𝛽2)

1 − 𝜌1𝜌2
E
[
min{n1 − Xt,1, n2 − Xt,2}

]
.

(3.37)

To numerically compute these and further properties of the model, it should be
noted that (X t)ℤ constitutes a finite Markov chain (so (B.4) holds) with transi-
tion probabilities

pk|l =
min{k1,l1}∑

a1=0

min{k2,l2}∑
a2=0

p(l;𝜶)(a) ⋅ p(n−l;𝜷)(k − a), (3.38)

where p(n;𝛂)(x) abbreviates the pmf of the BVBII(n1, n2,min{n1, n2}; 𝛼1, 𝛼2, 𝜙𝛼)
distribution as given in Example A.3.5. Note that (X t)ℤ is even a primitive
Markov chain and hence 𝜙-mixing with a uniquely determined stationary
marginal distribution. Further properties and a data example are provided by
Scotto et al. (2014).
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4

INGARCH Models for Count Time Series

The models discussed in Chapter 3 used types of thinning operations to trans-
fer the ARMA model to the count data case. Another popular approach for
modeling such stationary processes of counts are the INGARCH models, the
definition of which is related to linear regression models (also see Section 5.1).
Despite their controversial name, these models are particularly attractive for
overdispersed counts with an ARMA-like autocorrelation structure. Results
concerning the basic model with a conditional Poisson distribution are pre-
sented, but generalizations with, for example, a binomial or negative binomial
conditional distribution are also considered.

4.1 Poisson Autoregression

Due to the multiplication problem discussed in Section 2.1, the ARMA mod-
els of Definition B.3.5 are not applicable to the count data case. The models
presented in Chapters 2 and 3 circumvented this problem by replacing the mul-
tiplications with a type of thinning operation, that ensures that these modified
model recursions always produce integer values. The INGARCH models to be
presented in this chapter use another solution to the multiplication problem: a
linear regression of the conditional means Mt ∶= E[Xt |Xt−1,…]. To construct
an AR(1)-like model, for instance, the AR(1) recursion Yt = 𝛼1 Yt−1 + 𝜀t is
transferred to the level of conditional means as Mt = 𝛼1 Xt−1 + 𝛽0. Then
the count at time t is generated by using, say, a conditional Poisson distri-
bution – that is, Xt ∼ Poi(Mt) – thus guaranteeing that the outcomes are
always integer values. This approach is not only related to linear regression;
it also shares analogies with the definition of an ARCH(1) model (Defini-
tion B.4.1.1), where the autoregression is defined at the level of conditional
variances: 𝜎2

t = 𝛽0 + 𝛼1 Y 2
t−1. Such ARCH models are extended beyond pure

autoregression by also including past conditional variances in the model
recursion; see the GARCH equation (B.20). For example, the GARCH(1, 1)
model is determined by 𝜎2

t = 𝛽0 + 𝛼1 Y 2
t−1 + 𝛽1 𝜎2

t−1. Picking up this idea, an

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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INGARCH(1, 1) model is defined by also including a feedback term, now with
respect to the previous conditional mean: Mt = 𝛽0 + 𝛼1 Xt−1 + 𝛽1 Mt−1.

The full INGARCH model was introduced by Rydberg & Shephard (2000),
Heinen (2003) and Ferland et al. (2006). The name indicates that, as mentioned
before, this model can be understood as an integer-valued counterpart to
the conventional GARCH model, but also see the discussion in Remark 4.1.2
below. Conditioned on the past observations, the INGARCH model assumes
an ARMA-like recursion for the conditional mean. Depending on the choice of
the conditional distribution family, different INGARCH models are obtained.
The basic INGARCH model, which is discussed in this section, assumes a
conditional Poisson distribution.

Definition 4.1.1 (INGARCH model) Let (Xt)ℤ be a process with range ℕ0.
The process (Xt)ℤ follows the (Poisson) INGARCH(p, q) model with p ≥ 1 and
q ≥ 0 if

(i) Xt , conditioned on Xt−1,Xt−2,…, is Poisson distributed according to
Poi(Mt), where

(ii) the conditional mean Mt ∶= E[Xt |Xt−1,…] satisfies

Mt = 𝛽0 +
p∑

i=1
𝛼i Xt−i +

q∑
j=1

𝛽j Mt−j

with 𝛽0 > 0 and 𝛼1,… , 𝛼p, 𝛽1,… , 𝛽q ≥ 0.

If q = 0, the model of Definition 4.1.1 is referred to as the INARCH(p) model.

Remark 4.1.2 (Terminology) There is a lot of confusion in the literature
about how to refer to the models given through Definition 4.1.1. In Rydberg &
Shephard (2000), they are referred to as BIN models, in Heinen (2003) as ACP
models (autoregressive conditional Poisson), and in Fokianos et al. (2009) as
(linear) Poisson autoregressive models. The name INGARCH seems to be due
to Ferland et al. (2006), and it is motivated by the analogy between condition (ii)
in Definition 4.1.1 and the GARCH equation (B.20); see the initial discussion.
Certainly, condition (ii) refers to conditional means, while (B.20) refers to con-
ditional variances, which seems to be the main reason why some authors refuse
to use the INGARCH terminology. On the other hand, for the particular Pois-
son INGARCH model, condition (ii) also applies to the conditional variances
in view of the equidispersion property of the conditional Poisson distribution.
Although the analogy between GARCH and INGARCH models is far from
being perfect, we shall use the name INGARCH models in the sequel, as this
name seems to be more often used in the literature than any of its competitors.
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Although having the equidispersed Poisson distribution as a conditional dis-
tribution, the INGARCH model is well suited for overdispersed counts, since
it satisfies

𝜇t ∶= E[Xt] = E[Mt], V [Xt] = 𝜇t + V [Mt] > 𝜇t ,

provided that these moments exist. In fact, Ferland et al. (2006) showed that for
𝛼• + 𝛽• ∶=

∑p
i=1 𝛼i +

∑q
j=1 𝛽j < 1, the INGARCH process exists and is strictly

stationary, with finite first- and second-order moments. In this case, the mean
equals

𝜇 =
𝛽0

1 − 𝛼• − 𝛽•
, (4.1)

and variance and autocovariances are determined by a set of Yule–Walker-like
equations (Weiß, 2009c):

𝛾(k) =
p∑

i=1
𝛼i 𝛾(|k − i|) + min{k−1,q}∑

j=1
𝛽j 𝛾(k − j)

+
q∑

j=k
𝛽j 𝛾M(j − k) for k ≥ 1,

𝛾M(k) =
min{k,p}∑

i=1
𝛼i 𝛾M(|k − i|) + p∑

i=k+1
𝛼i 𝛾(i − k)

+
q∑

j=1
𝛽j 𝛾M(|k − j|) for k ≥ 0,

(4.2)

where 𝛾(k) ∶= Co𝑣[Xt ,Xt−k] and 𝛾M(k) ∶= Co𝑣[Mt ,Mt−k]. Note the analogy to
equations (B.18) for the conventional ARMA model (Appendix B.3), and note
the difference to the ARCH case (Appendix B.4.1), where the non-squared
observations are uncorrelated.

Remark 4.1.3 (INGARCH vs. INARMA) Equation 4.2 shows that, despite
their name, the INGARCH models also form an integer-valued counterpart
to the ARMA models, just like the INARMA models discussed in Section 3.1.
So one may certainly ask about the possible advantages and disadvantages of
these two “competitors”. While the INARMA approach allows for counterparts
to pure AR and MA models (note that a pure MA-like model is not included
in the INGARCH family), a reasonable definition of a full ARMA-like model is
not that obvious but easily created within the INGARCH framework; also see
Example 4.1.4. Even for the purely autoregressive case, where both approaches
can be used, the generated sample paths will often differ from each other in their
structure; see Remark 4.1.7 for illustration. As we shall also later see, analytical
expressions for marginal properties are more difficult in the INGARCH than
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in the INARMA case, while the INGARCH model (by definition) has simple
conditional distributions. The latter is also useful in the context of conditional
ML estimation, because the likelihood function factorizes to

L(𝜽) = P(XT = xT |xT−1,…) ⋅ P(XT−1 = xT−1 |xT−2,…) · · · ,

with the conditional probabilities P(Xt = xt |xt−1,…) stemming from the Pois-
son distribution Poi(Mt). The computation of such conditional probabilities
is more demanding for INARMA models; see (3.12) for the INAR(2) model
as an example. On the plus side of INARMA models, in contrast, their inter-
pretability has to be noted. This may allow for a deeper understanding of the
data-generating process in some applications. Further pros and cons could be
listed here, but the present consideration already makes clear that a general
recommendation of one or other of these approaches cannot be given.

Further results concerning likelihood estimation, especially on the asymp-
totic properties of the resulting ML estimators, are provided by Ferland et al.
(2006), Fokianos et al. (2009) and Cui & Wu (2016).

Example 4.1.4 (INGARCH(1, 1) model) The particular case of the sta-
tionary INGARCH(1, 1) model, where part (ii) of Definition 4.1.1 simplifies
to Mt = 𝛽0 + 𝛼1 Xt−1 + 𝛽1 Mt−1, was further investigated by Heinen (2003),
Ferland et al. (2006) and Fokianos et al. (2009), among others. It was shown
that all moments exist, where the variance equals

𝜎2 =
1 − (𝛼1 + 𝛽1)2 + 𝛼2

1

1 − (𝛼1 + 𝛽1)2 ⋅ 𝜇,

and the ACF is given by

𝜌(k) = (𝛼1 + 𝛽1)k−1 𝛼1 (1 − 𝛽1(𝛼1 + 𝛽1))
1 − (𝛼1 + 𝛽1)2 + 𝛼2

1
for k ≥ 1,

also see (4.2). Furthermore, Theorem 3.1 in Neumann (2011) implies that
such a process is 𝛼-mixing with geometrically decreasing weights (see
Definition B.1.5).

Fokianos (2011) emphasized that the INGARCH(1, 1) process, although
defined using the hidden conditional means (Mt)ℤ (feedback mechanism), is
observation-driven in the sense of Cox (1981); that is, the serial dependence can
be explained by past observations (for a parameter-driven process, in contrast,
serial dependence is caused by a latent process; see also Remark 5.2.1 below).
In particular, it follows that

Mt = 𝛼1

t∑
k=1

𝛽k−1
1 Xt−k + 𝛽t

1 M0 + 𝛽0
1 − 𝛽t

1

1 − 𝛽1
,

that is, the current observation is influenced by all past observations,
but with a weight decreasing exponentially with increasing time lag k. So
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the INGARCH(1, 1) model offers a parsimoniously parametrized way of
accounting for a long memory.

Example 4.1.5 (Transactions counts) We analyze a part of a dataset that
was originally published by Brännäs & Quoreshi (2010). For the working days
between 2 and 22 July 2002, it provides the number of transactions of the Eric-
sson B stock per minute between 9:35 and 17:14. As we shall see below, the
data are characterized by a slowly decaying SACF (long memory). In Brännäs
& Quoreshi (2010), the data are modeled by INMA(q) models (Section 3.1)
with a high model order q. But parts of the data have also been modeled by
the more parsimoniously parametrized INGARCH(1, 1) model; see Fokianos
et al. (2009), Zhu (2012c), Christou & Fokianos (2014) and Davis & Liu (2016),
among others. We shall follow this latter approach and restrict our analyses to
the counts observed on 2 July 2002, which constitute a time series of length
T = 460. A plot of these data is shown in Figure 4.1a.

The SACF in Figure 4.1b takes moderate but slowly decaying values,
and the SPACF, showing several significant values, indicates that a purely
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Figure 4.1 Ericsson stocks: (a) transactions counts, (b) sample autocorrelation, (c) marginal
frequencies. See Example 4.1.5.
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Table 4.1 Transactions counts: CML estimates for Poisson
INGARCH(1,1) model, together with 𝓁max.

𝛽0,CML 𝛽1,CML �̂�1,CML m̂1,CML 𝓁max

0.292 0.832 0.139 12.058 −1430
(0.100) (0.023) (0.018)

autoregressive model will not be appropriate for the data. Therefore, see the dis-
cussion in Example 4.1.4, it is indeed reasonable to try to fit the INGARCH(1, 1)
model to the data. The marginal distribution of the data, (Figure 4.1c), has
mean x ≈ 9.909 and shows a strong degree of overdispersion, Î ≈ 3.307.

As the initial step of parameter estimation, we compute moment estimates
for the parameters 𝛽0, 𝛽1, 𝛼1, in the following way: the quotient �̂�(2)∕�̂�(1)
estimates 𝛼1 + 𝛽1 (𝜌(1̂) ≈ 0.405, �̂�(2) ≈ 0.340), which is used to compute
𝛽0,MM ≈ 1.596 from (4.1). The formula for 𝜌(1) leads to a quadratic equation
in 𝛼1 (given the value for 𝛼1 + 𝛽1), which finally results in �̂�1,MM ≈ 0.286 and
𝛽1,MM ≈ 0.553. These estimates can now be used as initial values for CML
estimation; see also Remark 4.1.3. This, however, is not a trivial task, because
the conditioning requires not only x1 = 13, but also the value m1 of the initial
conditional mean M1:

L(𝜽 |x1,m1) =
T∏

t=2
p(xt | xt−1,mt−1),

where we update mt = 𝛽0 + 𝛼1 xt−1 + 𝛽1 mt−1.

One solution is to specify m1 as, say, m1 ∶= x or m1 ∶= 0 (Fokianos et al., 2009),
but this choice turns out to have a significant effect on the resulting CML
estimates:

(𝛽0,CML, 𝛽1,CML, �̂�1,CML) ≈ (0.581, 0.745, 0.199) with 𝓁max ≈ −1449

if using m1 ∶= 0, while m1 ∶= x leads to

(𝛽0,CML, 𝛽1,CML, �̂�1,CML) ≈ (0.291, 0.831, 0.140) with 𝓁max ≈ −1431.

Therefore, we shall follow the suggestion of Ferland et al. (2006) here and
treat m1 as a further parameter during estimation. We obtain the figures
shown in Table 4.1 (standard errors in parentheses), which are quite close to
the estimates obtained by initializing with m1 ∶= x.

The mean of the fitted model (≈ 9.858) is close to the observed one, and
also its ACF is slowly decaying (0.344, 0.334, 0.324, 0.315,…). Consequently,
the SACF of the Pearson residuals (computed using m̂1,CML as the initial con-
ditional mean) indicates an adequate model. However, the dispersion index of
the fitted model (≈ 1.329) is much too low, which goes along with the Pear-
son residuals having a variance (≈ 2.330) clearly larger than 1, and with the
strongly U-shaped PIT histogram shown in Figure 4.2a. So while the Poisson
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Figure 4.2 PIT histograms based on (a) fitted Poisson INGARCH(1, 1) and (b) GP-INGARCH(1,
1) model. See Examples 4.1.5 and 4.2.4.

INGARCH(1, 1) model is able to describe the observed autocorrelation struc-
ture, it cannot explain the strong volatility of the data. Therefore, we shall pick
up the suggestion by Zhu (2012c) and use modified types of INGARCH models
with a conditional non-Poisson distribution; see Example 4.2.4 below.

It should be mentioned that the slow decay of the SACF of the transactions
counts from Example 4.1.5 is not necessarily caused by a long memory, but
might also be explained by, for example, change points in the process (Kirch
& Kamgaing, 2016, 10.5.2.1). Generally, it is well known that transactions data
often exhibit an intraday pattern because of higher trading activity at the begin-
ning and at the end of a trading day; see, for example, Wood et al. (1985). But
here, for illustration, we continue with the INGARCH(1, 1) modeling.

An important subfamily of the INGARCH models from Definition 4.1.1 is the
class of purely autoregressive (Poisson) INARCH(p) models, where q = 0 and

Mt = 𝛽0 +
p∑

i=1
𝛼i Xt−i, 𝛼• < 1. (4.3)

Such INARCH models were discussed by Rydberg & Shephard (2000) and Weiß
(2009c) in some detail. The INARCH(p) model constitutes a pth-order Markov
model, thus being a competitor to the DL-INAR(p) model (3.5). The Poisson
INARCH(p) model can also be understood as a particular GINAR(p) model,
see the discussion in Section 3.2. It has simple Poisson transition probabilities,

P(Xt = x |xt−1,…) = exp

(
−𝛽0 −

p∑
i=1

𝛼i xt−i

)
(𝛽0 +

∑p
i=1 𝛼i xt−i)x

x!
, (4.4)

which is attractive for CML estimation according to (B.6). It also has a linear
conditional mean and variance, both given by 𝛽0 +

∑p
i=1 𝛼i xt−i (also see (3.8)
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for the DL-INAR(p) model). In particular, equations (4.2) simplify to

𝛾(k) =
p∑

i=1
𝛼i 𝛾(|k − i|) + 𝛿k,0 𝜇 for k ≥ 0, (4.5)

that is, we have the typical AR(p) autocorrelation structure (see (B.13)). As a
consequence, the model order p can be identified by inspecting the (S)PACF.

Comparing with the discussion in Section 3.1, it becomes obvious that the
INGARCH approach is easier to use when handling a higher-order ARMA-like
autocorrelation structure than the INARMA approach; see also Remark 4.1.3.
On the other hand, closed-form expressions for the stationary marginal distri-
bution or for h-step ahead forecasting distributions are difficult to find, even in
the simplest case of an INARCH(1) model.

Example 4.1.6 (INARCH(1) model) The INARCH(1) model constitutes a
counterpart to the INAR(1) model discussed in Section 2.1, and it is a boundary
case of the INGARCH(1, 1) model discussed in Example 4.1.4. Denoting its
model parameters by 𝛽 ∶= 𝛽0 > 0 and 𝛼 ∶= 𝛼1 ∈ (0; 1), the INARCH(1) model
requires Xt to be conditionally Poisson-distributed in the following way:

Xt | Xt−1,Xt−2,… ∼ Poi(𝛽 + 𝛼 Xt−1).

Hence, the transition probabilities, as required for likelihood computation (see
(B.6)), are simply given by

pk|l = e−𝛽−𝛼 l (𝛽 + 𝛼 l)k ∕k!. (4.6)

The conditional variance and mean coincide, and they are both linear in the pre-
vious observation, given by 𝛽 + 𝛼 xt−1. The latter implies that the INARCH(1)
model belongs to the class of CLAR(1) models (Grunwald et al., 2000).

An INARCH(1) process is a stationary, ergodic and 𝛼-mixing Markov chain
(Neumann, 2011). All moments of an INARCH(1) process exist (Ferland et al.,
2006). The marginal cumulants can be determined according to the recursive
scheme provided by Weiß (2009b):

𝜅1 = 𝛽

1 − 𝛼
, 𝜅n = −(1 − 𝛼n)−1

n−1∑
j=1

sn,j 𝜅j for n ≥ 2,

where the coefficients sn,j are the Stirling numbers of the first kind, given by

sn,0 = 0, sn,n = 1, sn+1,j = sn,j−1 − n sn,j

for j = 1,… , n and n ≥ 1. In particular, the marginal mean and variance of an
INARCH(1) process are given by

𝜇 = 𝛽

1 − 𝛼
and 𝜎2 = 𝛽

(1 − 𝛼)(1 − 𝛼2)
, that is, I = 1

1 − 𝛼2 > 1.
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The autocorrelation function equals 𝜌(k) = 𝛼k as in the standard AR(1) case,
and closed-form expressions for the joint (central) moments and cumulants up
to order 4 are provided by Weiß (2010a).

While the 1-step-ahead conditional properties of the INARCH(1)
model are very simple, there is no closed-form formula for the station-
ary marginal distribution, or for the h-step-ahead conditional properties
with h ≥ 2. To obtain these, at least numerically, the MC approximation of
Remarks 2.1.3.4 and 2.6.3 has to be adopted.

Remark 4.1.7 (Comparison to INAR(1) model) At first glance, the
Poisson INAR(1) and INARCH(1) model are very similar; choosing 𝛽 = 𝜆 and
a unique value of 𝛼, they have the same marginal mean and the same ACF
(see Section 2.1.2). But while the Poisson INAR(1) model is unconditionally
equidispersed, the INARCH(1) model shows increasing overdispersion with
increasing 𝛼. Also the whole sample paths generated by these models differ
more and more from each other with increasing 𝛼. This can be seen by
comparing Figure 2.5b (Example 2.1.2.1) with Figure 4.3, where both sample
paths refer to the marginal mean 𝜇 = 3 and the strong autocorrelation level
𝛼 = 0.95. In contrast to Figure 2.5b, the INARCH(1) process leads to long runs
only for the value 0, while we have vivid fluctuations otherwise (note that the
linear term 𝛼 xt−1 of the conditional variance is much larger than 0 except for
xt−1 = 0). Also more extreme counts are observed in the INARCH(1) case,
which can be explained to some extent by the strong level of overdispersion,
I ≈ 10.256.

Figure 4.4 highlights the difference between the conditional variances of the
Poisson INAR(1) and INARCH(1) models, given by 𝛼(1 − 𝛼) ⋅ xt−1 + 𝜇 (1 − 𝛼)
(see (2.6)) and 𝛼 ⋅ xt−1 + 𝜇 (1 − 𝛼) (see Example 4.1.6), respectively. This
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Figure 4.3 Simulated sample path of Poisson INARCH(1) process with 𝜇 = 3 and 𝛼 = 0.95;
see Remark 4.1.7.
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Figure 4.4 Conditional variances of Poisson INAR(1) and INARCH(1) process with 𝜇 = 3 and
(a) 𝛼 = 0.50, (b) 𝛼 = 0.95; see Remark 4.1.7.

difference is much larger for 𝛼 = 0.95 than for 𝛼 = 0.50. For the Poisson
INAR(1) model, the conditional variance shows nearly constant and low
values for 𝛼 = 0.95, explaining the overall tendency to produce long runs (see
Example 2.1.2.1). In contrast, it quickly tends to large values for the Poisson
INARCH(1) model, so runs are observed mainly for zero, with vivid fluctu-
ations otherwise. Further information about the relation between Poisson
INAR(1) and INARCH(1) models can be found in Weiß (2015a).

Example 4.1.8 (Strike counts) We analyze the monthly number of work
stoppages (strikes and lock-outs) of 1000 or more workers, as published by the
US Bureau of Labor Statistics.1 We restrict ourselves to the period 1994–2002,
leading to a time series of length T = 108, as was analyzed by Jung et al. (2005)
and Weiß (2010b), among others. The plot in Figure 4.5a shows similar fluctua-
tions as in the plotted INARCH(1) sample path in Figure 4.3. An analysis of the
SPACF (the SACF is shown in Figure 4.5b) indicates an AR(1)-like autocorrela-
tion structure, with �̂�(1) ≈ 0.573. The marginal distribution has mean x ≈ 4.944
and is significantly overdispersed (Î ≈ 1.587) according to the test (2.14); also
see the plot in Figure 4.5c. So altogether, the INARCH(1) model appears to
be a reasonable candidate for the data, but we also consider the Poisson and
NB-INAR(1) model as well as the NB-RCINAR(1) model as further candidates
(Section 2.5 and Example 3.2.1).

The models’ parameters are estimated by a full maximum likelihood
approach; see Table 4.2 for a summary of the results. The (equidispersed)
Poisson INAR(1) model not only performs worst in terms of AIC and
BIC, but also in respect of its Pearson residuals (variance ≈ 1.354) and its

1 http://www.bls.gov/wsp/.
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Figure 4.5 Strikes: (a) counts, (b) sample autocorrelation, (c) marginal frequencies; see
Example 4.1.8.

U-shaped PIT histogram (see Figure 4.6a; only J = 5 intervals are used since
the time series is rather short). So models that are able to reproduce the
overdispersion are required. The remaining INARCH(1), NB-INAR(1) and
NB-RCINAR(1) model are more adequate in these respects, with marginal
dispersion indices of 1.408, 1.522 and 1.704, respectively, with the Pearson
residuals having variances of 1.026, 0.998 and 1.000, respectively, and with the
PIT histograms being close to uniformity (see the INARCH(1) PIT histogram
in Figure 4.6b for illustration). The AIC and BIC point to the parsimoniously
parametrized INARCH(1) model as being preferred among the candidate
models.

The h-step-ahead conditional distributions (conditioned on xT = 1) and
the stationary marginal distribution (corresponding to h = ∞ due to the
ergodicity) for the fitted INARCH(1) model are computed by the MC approx-
imation of Remarks 2.1.3.4 and 2.6.3. The convergence of the conditional
distributions is illustrated by Figure 4.7 (increasing darkness for increasing
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Table 4.2 Strike counts: ML estimates, AIC and BIC for different models.

Model Parameter AIC BIC

1 2 3

Poisson INARCH(1) 1.723 0.643 470 475
(𝛽, 𝛼) (0.382) (0.080)

Poisson INAR(1) 2.423 0.503 480 485
(𝜆, 𝛼) (0.297) (0.056)

Negative-binomial INAR(1) 3.473 0.613 0.548 475 484
(n, 𝜋, 𝛼) (2.065) (0.129) (0.057)

Negative-binomial RCINAR(1) 9.331 0.657 0.592 473 481
(n, 𝜋, 𝛼) (4.259) (0.105) (0.062)

Figures in parentheses are standard errors.

(a)

P
IT

 h
is

to
gr

am

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

u

(b)

P
IT

 h
is

to
gr

am

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

u

Figure 4.6 PIT histograms based on fitted (a) Poisson INAR(1) and (b) INARCH(1) model; see
Example 4.1.8.

probability value), where the gray colors in the last column refer to the marginal
distribution.

Remark 4.1.9 (Further extensions) As for the thinning-based models (see
Remark 3.1.7), the basic INGARCH approach can be extended in several ways.
Extensions of the INARCH(1) model to account for trend and seasonality are
discussed by Held et al. (2005, 2006). Conditional linear models as before, but
with non-Poisson conditional distributions, are presented in Section 4.2, but
the estimating functions approach described by Thavaneswaran & Ravishanker
(2016) should also be mentioned in this context. Models where the linear
recursion in Definition 4.1.1(ii) is replaced by a log-linear one are discussed
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Figure 4.7 h-step-ahead conditional distributions (conditioned on xT = 1) and stationary
marginal distribution; see Example 4.1.8.

by Fokianos & Tjøstheim (2011), while Fokianos & Tjøstheim (2012) consider
more general non-linear autoregressions. Some of these models are also briefly
discussed in Section 5.1 in the context of regression models.

Keeping the conditionally linear structure but allowing for the inclusion of
covariate information, Agosto et al. (2016) proposed extending the INGARCH
recursion in part (ii) of Definition 4.1.1 to

Mt = 𝛽0 +
p∑

i=1
𝛼i Xt−i +

q∑
j=1

𝛽j Mt−j + h(𝜸,Zt),

where the response function h takes only non-negative real values (also see
Section 5.1). For the case where the covariates Zt are not deterministic but
stem from a Markov chain, Agosto et al. (2016) derive conditions for the exis-
tence of a stationary solution and analyze the asymptotic properties of the ML
estimator.

Finally, a self-exciting threshold (SET) extension of the Poisson INGARCH
model has been proposed by Wang et al. (2014).

4.2 Further Types of INGARCH Models

The standard INGARCH model with its conditional Poisson distribution
exhibits unconditional overdispersion, but the degree of overdispersion is
determined by the actual autocorrelation structure (say, I = 1∕(1 − 𝛼2) for
the Poisson INARCH(1) model from Example 4.1.6). As a consequence, this
model was not able to describe the strong volatility of the transactions counts
in Example 4.1.5. To overcome this limitation, Xu et al. (2012) proposed the
family of dispersed INARCH models (DINARCH), which again assume a linear
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relationship for the conditional mean (see (4.3)), but include an additional
(constant) scaling factor 𝜂 for the conditional variance:

E[Xt | Xt−1,…] = 𝛽0 + 𝛼1 Xt−1 +…+ 𝛼p Xt−p,

V [Xt | Xt−1,…] = 𝜂 ⋅ E[Xt | Xt−1,…].
(4.7)

So the characteristic feature is a time-invariant conditional dispersion index,
being equal to 𝜂. Obviously, the Poisson INARCH model is an instance of the
DINARCH model with 𝜂 = 1.

For the case p = 1 (see Example 4.1.6), the unconditional mean and variance
are given by

𝜇 = 𝛽

1 − 𝛼
and 𝜎2 = 𝜂

1 − 𝛼2 ⋅ 𝜇, (4.8)

that is, 𝜂 allows control of the (unconditional) degree of dispersion indepen-
dently of 𝛼 (Xu et al., 2012).

Example 4.2.1 (NB-INGARCH models) As a particular instance of the
DINARCH family, Xu et al. (2012) proposed a conditional negative binomial
model (see Example A.1.4), where Xt given Xt−1,… follows the NB(nt , 𝜋)
distribution with nt = Mt

𝜋

1−𝜋
and with the conditional mean Mt satisfying

(4.3). So the conditional dispersion parameter 𝜂 is given by 1∕𝜋 and fixed over
time, while the NB parameter n varies according to the observed past.

A different type of NB-INARCH model (even a full NB-INGARCH model) is
proposed by Zhu (2011), who assumes the parameter n of the conditional NB
distribution to be fixed while 𝜋 varies with time: Xt given Xt−1,… follows the
NB(n, 𝜋t) distribution with 𝜋t = 1∕(1 + Mt∕n), that is,

n
1 − 𝜋t

𝜋t
= Mt ∶= 𝛽0 +

p∑
i=1

𝛼i Xt−i +
q∑

j=1
𝛽j Mt−j.

Note that in the original parametrization of Zhu (2011), the parameters
𝛽0,… , 𝛼p do not directly refer to the conditional mean but to the odds
(1 − 𝜋t)∕𝜋t . But to keep it consistent with Definition 4.1.1, the above
parametrization is preferred here.

For Zhu’s NB-INGARCH model, the conditional dispersion index varies with
time according to 1∕𝜋t = 1 + Mt∕n, so this type of NB-INGARCH model dif-
fers from the DINARCH approach (4.7).

Comparing Zhu’s NB-INGARCH(1, 1) model with the standard INGARCH
(1, 1) model from Example 4.1.4, we have the same unconditional mean and
ACF, but the unconditional variance now equals (Zhu, 2011):

𝜎2 =
1 − (𝛼1 + 𝛽1)2 + 𝛼2

1

1 − (𝛼1 + 𝛽1)2 − 𝛼2
1∕n

⋅ 𝜇
(

1 + 𝜇

n

)
.
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Table 4.3 Specific INGARCH models, where the conditional mean Mt ∶= E[Xt | Xt−1,…]
satisfies Mt = 𝛽0 +

∑p
i=1 𝛼i Xt−i +

∑q
j=1 𝛽j Mt−j .

Model Conditional distribution Conditional dispersion index

Poi. INGARCH Poi(Mt) 1
NBXu-INGARCH NB(nt , 𝜋) with nt = Mt

𝜋

1−𝜋
1∕𝜋

NBZhu-INGARCH NB(n, 𝜋t) with 𝜋t = 1∕(1 + Mt∕n) 1 + Mt∕n
GP-INGARCH GP(𝜆t , 𝜃) with 𝜆t = (1 − 𝜃) Mt 1∕(1 − 𝜃)2

ZIP-INGARCH ZIP(𝜆t , 𝜔) with 𝜆t =
1

1−𝜔
Mt 1 + 𝜔

1−𝜔
Mt

The variance corresponding to the INARCH(1) case (Example 4.1.6) follows by
setting 𝛽1 = 0.

A brief overview of the different INGARCH models is provided in Table 4.3.
Both types of NB-INGARCH model (as well as the GP-INGARCH model to

be discussed in the next example) are instances of the CP-INGARCH model
(see Example A.1.2 about the compound Poisson distribution) introduced by
Gonçalves et al. (2015). It is given by

pgfXt |Xt−1 ,…(z) = exp
( Mt

H′
t (1)

(Ht(z) − 1)
)
, (4.9)

where Ht(z) denotes the pgf of the compounding distribution (assumed to be
normalized to Ht(0) = 0 for uniqueness), which is generally allowed to depend
on time t through past observations. If Ht(z) = H(z) is constant in time, then the
above condition 𝛼• + 𝛽• < 1 still guarantees the existence of a strictly station-
ary and ergodic solution for the CP-INGARCH model, having finite first- and
second-order moments (Gonçalves et al., 2015). Further restricting to the case
q = 0, the resulting CP-INARCH model becomes an instance of the DINARCH
model, where 𝜂 = 1 + H′′(1)∕H ′(1).

Example 4.2.2 (GP-INGARCH model) Zhu (2012a) proposed an
INGARCH model with a conditional generalized Poisson distribution
(Example A.1.6). Here, Xt given the past observations Xt−1,… is assumed
to follow the GP(𝜆t, 𝜃) distribution with 𝜆t = (1 − 𝜃) Mt , such that the
conditional dispersion index, given by 1∕(1 − 𝜃)2, is constant in time. There-
fore, the GP-INARCH model belongs to the DINARCH family (4.7) (with
𝜂 = 1∕(1 − 𝜃)2) such that (4.8) holds for the GP-INARCH(1) case. For the
GP-INGARCH(1, 1) model, we have (Zhu, 2012a)

𝜎2 =
1 − (𝛼1 + 𝛽1)2 + 𝛼2

1

1 − (𝛼1 + 𝛽1)2 ⋅
𝜇

(1 − 𝜃)2 ,
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that is, compared to Example 4.1.4, the unconditional variance is modified by
a factor 1∕(1 − 𝜃)2.

Note that Zhu (2012a) also allows 𝜃 to become negative (conditional under-
dispersion), but this case has to be considered with caution in view of the prob-
lems discussed below (Example A.1.6).

The INGARCH approach also allows generation of zero inflation.

Example 4.2.3 (ZIP-INGARCH model) Zhu (2012b) proposed to use a
zero-modified distribution (Example A.1.9) as the conditional distribution for
the INGARCH approach. Among others, he considered the ZIP-INGARCH
model defined by the conditional distribution ZIP(𝜆t, 𝜔) with 𝜆t =

1
1−𝜔

Mt (as
in Example 4.2.1, we use a slightly different parametrization than in the original
proposal by Zhu (2012b)). As a result, the conditional variance is given by

V [Xt |Xt−1,…] =
(

1 + 𝜔

1 − 𝜔
Mt

)
Mt,

that is, the ZIP-INARCH model does not belong to the DINARCH class
(4.7). Picking up Example 4.1.4 again, the unconditional variance of the
ZIP-INGARCH(1, 1) model is obtained as (Zhu, 2012b)

𝜎2 =
1 − (𝛼1 + 𝛽1)2 + 𝛼2

1

1 − (𝛼1 + 𝛽1)2 − 𝜔

1−𝜔
𝛼2

1
⋅ 𝜇

(
1 + 𝜔

1 − 𝜔
𝜇

)
.

The variance corresponding to the INARCH(1) case (Example 4.1.6) follows by
setting 𝛽1 = 0.

Example 4.2.4 (Transactions counts) Let us continue Example 4.1.5
about the transactions counts. Since zeros are observed quite seldom, the
ZIP-INGARCH model is not plausible for the data, but both types of NB-
and the GP-INGARCH(1, 1) model (Examples 4.2.1 and 4.2.2) are reasonable
candidate models (also see Zhu (2012c)). CML estimation is done by analogy
to Example 4.1.5, and the results are summarized in Table 4.4.

Note that the estimates for 𝛽0, 𝛽1, 𝛼1 are very similar for all models. Further-
more, any of the INGARCH(1, 1) models with additional dispersion leads to
a considerable improvement compared to the Poisson INGARCH(1, 1) model
from Example 4.1.5. For instance, the dispersion indices of these models are
2.931, 3.029 and 2.961, respectively, and the variances of their Pearson resid-
uals are 1.035, 1.049 and 1.022, respectively. Furthermore, all PIT histograms
are reasonably close to uniformity; see Figure 4.2b as an example. A decision
on one of these models is difficult; the maximized log-likelihood suggests the
GP-INGARCH(1, 1) model.

Finally, let us have a look at the case of counts having the finite range
{0,… , n} with some fixed upper limit n ∈ ℕ (see also the discussion in
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Table 4.4 Transactions counts: CML estimates for different models, together with 𝓁max.

Model Parameter m̂1 𝓁max

1 2 3 4

Poi. INGARCH(1, 1) 0.292 0.832 0.139 12.058 −1430
(𝛽0, 𝛽1, 𝛼1) (0.100) (0.023) (0.018)

NBXu-INGARCH(1, 1) 0.295 0.836 0.134 0.444 12.939 −1328
(𝛽0, 𝛽1, 𝛼1, 𝜋) (0.145) (0.034) (0.027) (0.030)

NBZhu-INGARCH(1, 1) 0.270 0.845 0.127 7.861 12.038 −1329
(𝛽0, 𝛽1, 𝛼1, n) (0.142) (0.034) (0.026) (0.959)

GP-INGARCH(1, 1) 0.293 0.838 0.132 0.338 13.099 −1327
(𝛽0, 𝛽1, 𝛼1, 𝜃) (0.144) (0.034) (0.026) (0.023)

Figures in parentheses are standard errors.

Section 3.3). None of the above models can be used in such a situation, since
the respective conditional distribution has an unbounded range.

Example 4.2.5 (Binomial INARCH(1) model) A version of the
INARCH(1) model suitable for finite-valued counts was proposed by
Weiß & Pollett (2014). For their binomial INARCH(1) model, they assume

Xt | Xt−1,Xt−2,… ∼ Bin
(

n, 𝛽 + 𝛼
Xt−1

n

)
, (4.10)

where 𝛽, 𝛽 + 𝛼 ∈ (0; 1) has to be satisfied. Analogous to the binomial AR(1)
model from Section 3.3, this gives a stationary, ergodic and 𝜙-mixing Markov
chain, but now with simple binomial 1-step-ahead transition probabilities:

pk|l =
(n

k

) (
𝛽 + 𝛼

l
n

)k (
1 − 𝛽 − 𝛼

l
n

)n−k

. (4.11)

The conditional mean and variance are obtained from the conditional binomial
distribution as

E[Xt |Xt−1] = 𝛼 ⋅ Xt−1 + n𝛽,

V [Xt |Xt−1] = − 𝛼2

n
⋅ X2

t−1 + 𝛼(1 − 2𝛽) ⋅ Xt−1 + n𝛽(1 − 𝛽),
(4.12)

that is, in contrast to (3.22) for the binomial AR(1) model, the conditional vari-
ance is now a quadratic function in Xt−1. Unconditional mean and variance are
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given by (Weiß & Pollett, 2014):

𝜇 = n𝛽
1 − 𝛼

, 𝜎2 =
𝜇
(
1 − 𝜇

n

)
1 −

(
1 − 1

n

)
𝛼2

, that is, IBin = 1
1 −

(
1 − 1

n

)
𝛼2

.

(4.13)

Note that the binomial index of dispersion IBin (see the definition in (2.3)) can
only take values in [1; n). So, analogous to the case of the Poisson INARCH(1)
model from Example 4.1.6, but in contrast to the binomial AR(1) model, we
observe extra-binomial variation, the degree of which is determined through
the autocorrelation parameter 𝛼. The autocorrelation function is given by
𝜌(k) = 𝛼k . Note that 𝛼 and hence 𝜌(k) might also take negative values, which is
in contrast to the case of the INARCH(1) models. Another difference to the
Poisson INARCH(1) model from Example 4.1.6 is the fact that the conditional
variance in (4.13) is not a linear but a quadratic function in Xt−1.

As for the other INARCH(1) models, there are no closed-form expressions
available for the stationary marginal distribution or the h-step-ahead condi-
tional distributions with h ≥ 2. But due to the finite range, and in complete
analogy to the case of the beta-binomial AR(1) model (see the discussion in
Section 3.3), these can be exactly computed numerically by utilizing the Markov
property; see Appendix B.2.1 for details.

Example 4.2.6 (Hantavirus infections) The Robert-Koch-Institut (2016)
collects data about cases of notifiable diseases in Germany. With SurvStat@RKI
2.0, Robert-Koch-Institut (2016) offers a web interface that allows retrieval of
data from their disease database. Here, we shall follow an application presented
by Weiß & Pollett (2014) and analyze some data about infections by the han-
tavirus, which is mainly carried by rodents.2 According to Heyman et al. (2009),
hemorrhagic fever with renal syndrome, caused by the hantavirus and with a
mortality rate of up to 12%, affects tens of thousands of individuals each year
in Europe, and numbers of human cases are rising, perhaps because of mild
winters. As an indicator of the regional spread of hantavirus infections, we con-
sider the weekly number xt of territorial units (out of n = 38 territorial units
according to the “NUTS Level 2”) with at least one new case of a hantavirus
infection. As in Weiß & Pollett (2014), we restrict ourselves to the 2011 data
(T = 52 weeks). Note, however, that we consider updated data (data status at
7 January 2016: two of the counts have been increased by 1 in the meantime);
that is, the later results are slightly different from the ones reported by Weiß &
Pollett (2014).

2 A factsheet about the virus by the European Centre for Disease Prevention and Control can be
found at: http://ecdc.europa.eu/en/healthtopics/hantavirus/.
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Figure 4.8 Hantavirus reports: (a) counts, (b) sample autocorrelation, (c) marginal
frequencies. See Example 4.2.6.

The plot of the time series x1,… , x52 in Figure 4.8a and the pmf plot
in Figure 4.8c show that the counts do not exhaust the full range {0,… , 38}:
there are at most 11 territorial units in a week with new cases of hantavirus
infections. The mean equals x ≈ 4.212, and the dispersion test (3.30) uncovers
a significant degree of extra-binomial variation: ÎBin ≈ 2.047 with P value
< 10−4. The SACF in Figure 4.8b exhibits a medium autocorrelation level,
with �̂�(1) ≈ 0.645. Although the SPACF also shows a significant value at lag 2,
we shall first see if an AR(1)-like model suffices to describe the data. So we
fit the binomial INARCH(1) model from Example 4.2.5 to the data, and the
(beta-)binomial AR(1) model discussed in Section 3.3 for comparison. Full
ML estimates and the corresponding information criteria are summarized in
Table 4.5.

The binomial and the beta-binomial AR(1) model not only perform worst
in terms of AIC and BIC; an analysis of the respective Pearson residuals and
the PIT histogram shows that these models are not adequate for the data.
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Table 4.5 Hanta counts: ML estimates, AIC and BIC for different models.

Model Parameter AIC BIC

1 2 3

Binomial AR(1) 0.112 0.539 226 230
(𝜋, 𝜌) (0.013) (0.070)

Beta-binomial AR(1) 0.114 0.570 0.027 221 227
(𝜋, 𝜌, 𝜙) (0.017) (0.073) (0.015)

Binomial INARCH(1) 0.030 0.734 215 219
(𝛽, 𝛼) (0.011) (0.103)

Figures in parentheses are standard errors.
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Figure 4.9 Hanta counts, see Example 4.2.6: (a) SACF of Pearson residuals and (b) PIT
histogram, both based on fitted binomial INARCH(1) model.

In contrast, the Pearson residuals of the fitted binomial INARCH(1) model
(variance ≈ 1.096, SACF in Figure 4.9a) and its PIT histogram in Figure 4.9b
show that this model does rather well. In particular, the residuals’ SACF in
Figure 4.9a does not suggest a need to use a higher-order model, although
the SPACF of the original time series was significant at lag 2. The marginal
distribution of the fitted binomial INARCH(1) model has mean 4.297 and
binomial dispersion index 2.104, both being close to the empirical values.
An important difference between the three fitted models becomes clear by
looking at their conditional variances; see Figure 4.10. The binomial and the
beta-binomial AR(1) model show increasing variance with increasing xt−1,
whereas the binomial INARCH(1) model has its largest conditional variances
in the center of the range {0,… , 38}.
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Figure 4.10 Hanta counts for Example 4.2.6: conditional variances of fitted models.

In this context, it is worth looking back to Figure 4.8a: it seems that the
counts for t ≥ 30, having reached a higher level, also show more variation. This
phenomenon can be explained by the quadratic conditional variance (4.12);
see Figure 4.10 as well as the detailed discussion in Weiß & Pollett (2014).
A possible alternative for describing these data could be the SET binomial
INARCH model as proposed by Möller (2016).

4.3 Multivariate INGARCH Models

While a lot of thinning-based models for multivariate counts have been
proposed in the literature – see Section 3.4 for some of these models – little
work has been done concerning multivariate extensions of the INGARCH
model. A bivariate Poisson INGARCH(1,1) model is presented in Chapter 4
of Liu (2012); also see the works by Heinen & Rengifo (2003) and Andreassen
(2013). Analogous to Definition 4.1.1, the bivariate counts X t , condi-
tioned on X t−1,X t−2,…, are assumed to be bivariately Poisson distributed
(Example A.3.1) according to MPoi(𝜆0; 𝜆1,t , 𝜆2,t), where the conditional mean
Mt ∶= E[X t |X t−1,…], with Mt,i = 𝜆0 + 𝜆i,t for i = 1, 2, satisfies

Mt = b0 + A X t−1 + B Mt−1, (4.14)

where b0 ∈ (0;∞)2, and where A,B are non-negative matrices. Liu (2012)
shows that a unique stationary solution for (Mt)ℤ given by (4.14) exists if the
largest absolute eigenvalue of A + B is smaller than 1, and if ||A||p < 1 for some
1 ≤ p ≤ ∞. Here, the ∥ ⋅ ∥p denotes the induced norm corresponding to the
conventional vector p-norm. To guarantee ergodicity, ||A||q + 21−1∕q ||B||q < 1
for some 1 ≤ q ≤ ∞ is also required. The stationary mean of X t equals
(I − A − B)−1 b0, and formulae for variance and autocovariance are provided
by Heinen & Rengifo (2003). The latter work mainly concentrates on an
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extension of the Poisson distribution, the so-called double Poisson distribution,
and it deals with the general multivariate case. In addition, to allow for more
flexible cross-correlation, a copula-based approach is presented; see also
Andreassen (2013). A type of multivariate INARCH(1) model (expandable by
trend and seasonal component) was proposed by Held et al. (2005).

An INARCH model for bivariate counts with range {𝟎,… ,n} ∶=
{0,… , n1} × {0,… , n2} was proposed by Scotto et al. (2014). Analogous
to (4.10), their bivariate binomial INARCH(1) model (BVBII-INARCH(1)-
INARCH) assumes the bivariate counts X t , conditioned on X t−1,X t−2,…, to
be BVBII-distributed (Example A.3.5) as

BVBII

(
n1, n2,min{n1, n2}; 𝛽1 + 𝛼1

Xt−1,1

n1
, 𝛽2 + 𝛼2

Xt−1,2

n2
, 𝜙

)
,

(4.15)

where 𝛽i, 𝛼i + 𝛽i ∈ (0; 1) for i = 1, 2, and where

max

{
−

√
𝛽1𝛽2

(1 − 𝛽1)(1 − 𝛽2)
, −

√
(1 − 𝛽1 − 𝛼1)(1 − 𝛽2 − 𝛼2)

(𝛽1 + 𝛼1)(𝛽2 + 𝛼2)

}

< 𝜙 < min

{√
𝛽1(1 − 𝛽2 − 𝛼2)
(1 − 𝛽1)(𝛽2 + 𝛼2)

,

√
(1 − 𝛽1 − 𝛼1)𝛽2

(𝛽1 + 𝛼1)(1 − 𝛽2)

}
.

Scotto et al. (2014) showed that the BVBII-INARCH(1) process constitutes
a stationary, ergodic and 𝜙-mixing Markov chain with the transition proba-
bilities being determined by (4.15), where the components (Xt,i)ℤ for i = 1, 2
are just univariate binomial INARCH(1) processes with parameters 𝛼i, 𝛽i. The
cross-covariance function has the form (Scotto et al., 2014):

Co𝑣[Xt,1,Xt,2] =
𝜙 min{n1, n2}

1 − 𝛼1𝛼2
⋅

E

[√∏
i=1,2

(
𝛽i + 𝛼i

Xt,i

ni

)(
1 − 𝛽i − 𝛼i

Xt,i

ni

) ] (4.16)

and may take also negative values, depending on the sign of 𝜙.
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5

Further Models for Count Time Series

The INARMA and INGARCH approaches described above have become
very popular in recent years for the modeling of stationary and ARMA-like
count processes. But a large number of other count time series models has
also been proposed in the literature. Three of these alternatives are presented
in this chapter: regression models in Section 5.1, hidden-Markov models in
Section 5.2, and NDARMA models in Section 5.3.

5.1 Regression Models

A traditional approach for modeling count data (not just time series data) are
regression models. The main advantage of regression models is their ability to
incorporate covariate information (although also extensions of, for example,
the INARMA models have been developed that include covariate information;
see Remark 3.1.7). Here, we will review some of these regression models for
count time series. Among others, we consider the observation-driven Markov
models proposed by Zeger & Qaqish (1988) in Example 5.1.3, which had a
groundbreaking effect for research on count time series similar to the work of
McKenzie (1985) and Al-Osh & Alzaid (1987) on the thinning-based INAR(1)
model (Section 2.1). It will become clear that the INGARCH model discussed
in Chapter 4.1 can be understood as an instance of the family of count regres-
sion models. A much more detailed discussion of regression models for count
time series can be found in Chapter 4 of the book by Kedem & Fokianos (2002);
further recent references on this topic are provided by Fokianos (2011) and
Tjøstheim (2012).

Let (Xt)ℤ be a count process, and let (Zt)ℤ be a vector-valued covariate pro-
cess (which might also be deterministic). To simplify the discussion, we shall
mainly consider the case of a conditional Poisson distribution (Example A.1.1),
although non-Poisson distributions like the negative binomial distribution
(Example A.1.4) have also been considered in the literature. The conditional
mean (as the parameter of the conditional Poisson distribution) is assumed

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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to be “linked” to a linear expression of the available information. Therefore,
the considered models are commonly referred to as generalized linear models
(GLMs) (Kedem & Fokianos, 2002).

Many of these Poisson regression models for count processes are conditional
regression models in the sense of Fahrmeir & Tutz (2001); that is, they are
defined by specifying the conditional distribution of the counts, given the
available observations and covariates.

Definition 5.1.1 (Conditional regression model) Let (Zt)ℤ be a covariate
process. The process (Xt)ℤ follows a conditional (Poisson) regression model if

(i) Xt , conditioned on Xt−1,… and Zt ,…, is Poisson distributed according to
Poi(Mt), where

(ii) the conditional mean Mt ∶= E[Xt |Xt−1,… ,Zt,…] satisfies

g(Mt) = 𝜽⊤V t

with a link function g and a parameter vector 𝜽, where the design vector V t
is a function of Xt−1,… and Zt,…

The inverse of the link function, h ∶= g−1, is referred to as a response function:
Mt = h(𝜽⊤V t).

Part (i) specifies the random component of the model, while (ii) determines
the systematic component (Kedem & Fokianos, 2002). Note that g (or h = g−1,
respectively) and the parameter range for 𝜽 have to be chosen such that h(𝜽⊤V t)
always leads to a positive value, since the (conditional) mean of a count ran-
dom variable is necessarily positive.1 Choosing the identity link g(u) = u, Mt
becomes a linear function in V t , with the INARCH models as discussed in
Chapter 4.1 being instances of such conditional regression models with identity
link. More generally, models of the form

g(Mt) = 𝜸⊤Zt +
p∑

i=1
𝛼i ⋅(Xt−i, 𝜸

⊤Zt−i) +
q∑

j=1
𝛽j ⋅(Xt−j,Mt−j) (5.1)

are referred to as generalized autoregressive moving-average models (GARMA
models) of order (p, q), where  and  are functions representing the autore-
gressive and moving-average terms (Benjamin et al., 2003; Kedem & Fokianos,
2002). This approach not only includes the INGARCH model according to Def-
inition 4.1.1, but many other important models, some of which are briefly pre-
sented below.

1 The situation would be even more restrictive if the counts Xt had a finite range, for example
being described by a conditional binomial distribution. Then an approach like the one for the
binary regression models discussed in Section 7.4 could be relevant.
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Since the canonical link function (also natural link) of the Poisson distribu-
tion is the log link g(u) = ln u, one often considers a log-linear Poisson model
of the form

Mt = E[Xt |Xt−1,… ,Zt ,…] = exp (𝜽⊤V t), (5.2)

that is, where the conditional mean is determined multiplicatively as
Mt = (e𝜃1)V1 ⋅ (e𝜃2)V2 · · ·. Note that the logarithm is a (bijective and strictly
monotonic increasing) mapping between (0;∞) and ℝ; that is, the right-hand
side of (5.2) will always produce a positive value, independent of the parameter
range for 𝜽.

Example 5.1.2 (Poisson GLARMA model) The observation-driven Pois-
son model proposed by Davis et al. (2003) is related to the GARMA approach
(5.1). Let Yt ∶= ln Mt − 𝜸⊤Zt and et ∶= (Xt − Mt)∕M𝜆

t with 𝜆 ∈ (0; 1] (note
that 𝜆 = 1

2
corresponds to the Pearson residuals). The authors then define the

Poisson GLARMA(p,q) process (generalized linear …) by the recursion

Yt =
p∑

i=1
𝛼i (Yt−i + et−i) +

q∑
j=1

𝛽j et−j,

where the corresponding characteristic polynomials 𝛼(z) and 𝛽(z) are required
to have their roots outside the unit circle (analogous to the basic ARMA model
according to Definition B.3.5).

As a simple example, Davis et al. (2003) consider the case 𝜸⊤Zt = 𝜇 constantly
and (p, q) = (0, 1), that is,

ln Mt = 𝜇 + 𝛽1 et−1 = 𝜇 + 𝛽1
Xt−1 − Mt−1

M𝜆
t−1

with 𝛽1 ≠ 0. Davis et al. (2003) emphasize that (ln Mt)ℤ constitutes a Markov
chain, while the observations process (Xt)ℤ depends on the whole past. They
also derive the formulae E[ln Mt] = 𝜇 and V [ln Mt] = 𝛽2

1 E
[
M1−2𝜆

t−1
]
, where the

latter reduces to the constant term 𝛽2
1 if 𝜆 = 1

2
. Davis et al. (2003) show that

(ln Mt)ℤ has a stationary solution for 𝜆 ∈
[ 1

2
; 1
]
, which is unique for 𝜆 = 1.

Possible properties of such Poisson GLARMA(0, 1) models can be rec-
ognized from Figure 5.1, where we set 𝜆 = 1

2
(Pearson residuals). Parts (a)

and (b) refer to a simulated sample path of length T = 1000 for the model
parametrization 𝜇 = 0, 𝛽1 = 0.75. The plot in (a) shows that the model pro-
duces sporadic extreme observations (x = 1.40, s2 = 6.64), and the SACF
in (b) is of MA(1)-type with a positive value for �̂�(1). The SACF in (c), in
contrast, refers to a sample path where 𝛽1 is negative, 𝛽1 = −0.75. The SACF
is still of MA(1)-type (x = 1.25, s2 = 1.81), but with a negative value for �̂�(1).
This is a major difference to the INARMA models from Section 3.1 and
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Figure 5.1 Poisson GLARMA(0, 1) model with 𝜆 = 1

2
, 𝜇 = 0: (a) plot of simulated sample

path (𝛽1 = 0.75, T = 1000), (b) the corresponding SACF, (c) SACF of another simulated
sample path (𝛽1 = −0.75, T = 1000). See Example 5.1.2.

to the INGARCH models from Section 4.1, where the ACF can only take
non-negative values.

Example 5.1.3 (Log-linear Poisson autoregression) Zeger & Qaqish
(1988) consider observation-driven Markov models of the form

g(Mt) = 𝜸⊤Zt +
p∑

i=1
𝛼i ⋅ fi(Xt−1,… ,Zt ,…),

which constitute an instance of the GARMA(p, 0) model according to (5.1). As
specific cases, they suggest two models, one following the recursion

ln Mt = 𝜸⊤Zt +
p∑

i=1
𝛼i

(
ln (Xt−i + c) − ln

(
exp (𝜸⊤Zt−i) + c

))
, (5.3)
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the other following

ln Mt = 𝜸⊤Zt +
p∑

i=1
𝛼i
(
ln X̃t−i − 𝜸⊤Zt−i

)
, where X̃t ∶= max{Xt , c}.

Here, c > 0 is a constant that avoids problems with the logarithm if Xt−i = 0.
Both models might be understood as log-linear generalizations of the
INARCH(p) model (4.3). This relation is further exploited by Fokianos &
Tjøstheim (2011), who define a model by the log-linear Poisson autoregression

ln Mt = 𝛽0 + 𝛼1 ln (Xt−1 + c) + 𝛽1 ln Mt−1 with c > 0, (5.4)
which constitutes a modification of the Poisson INGARCH(1, 1) model from
Example 4.1.4. But while the INGARCH(1, 1) model has an additive structure,
the one of the log-linear model (5.4) is multiplicative:

Mt = e𝛽0 (Xt−1 + c)𝛼1 M𝛽1
t−1.

Although it has a feedback mechanism, the model is observation-driven, which
follows arguments analogous to Example 4.1.4. The feedback mechanism con-
stitutes a parametrically parsimonious way of creating a long memory.

Fokianos & Tjøstheim (2011) argue that the actual choice of c does not have a
strong effect when fitting the model (5.4) to given data, so they recommend to
simply set c ∶= 1. To allow for consistent ML estimation, Fokianos & Tjøstheim
(2011) show that the range of the real-valued parameters 𝛽0, 𝛼1, 𝛽1 has to be
restricted by the requirement |𝛼1 + 𝛽1| < 1 if 𝛼1, 𝛽1 have the same sign, and by
𝛼2

1 + 𝛽2
1 < 1 otherwise.

Possible features of the model (5.4) (with c ∶= 1) can be studied based on
simulated sample paths (of length T = 10 000). The SACF in Figure 5.2a,
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Figure 5.2 SACF for log-linear model (5.4): (a) (𝛽0, 𝛽1, 𝛼1) = (0.05, 0.72, 0.25),
(b) (𝛽0, 𝛽1, 𝛼1) = (4,−0.25,−0.72). See Example 5.1.3.
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which corresponds to the model (𝛽0, 𝛽1, 𝛼1) = (0.05, 0.72, 0.25) with x = 9.05
and s2 = 14.81 (the choice of the parameter values was motivated by
Example 4.1.5), shows that a slowly decaying and positive-valued autocorre-
lation structure might be obtained, analogous to the Poisson INGARCH(1,
1) model from Example 4.1.4. But in contrast to this model, negative ACF
values are also possible, as illustrated by the SACF shown in Figure 5.2b
(x = 8.87, s2 = 46.58), which was generated based on the parametrization
(𝛽0, 𝛽1, 𝛼1) = (4,−0.25,−0.72).

Example 5.1.4 (Non-linear Poisson autoregression) A further general-
ization of the Poisson INGARCH(1, 1) model is discussed by Neumann (2011),
who defined the non-linear Poisson autoregression

Mt = f (Xt−1,Mt−1) for some f ∶ ℕ0 × [0;∞) → [0;∞).

Here, the function f has to satisfy the contractive condition| f (x,m) − f (x̃, m̃)| ≤ 𝜂1 |x − x̃| + 𝜂2 |m − m̃|
to guarantee a stationary solution, where 𝜂1, 𝜂2 ≥ 0 and 𝜂1 + 𝜂2 < 1. Further-
more, the process is 𝛼-mixing (actually, even 𝛽-mixing) with geometrically
decreasing weights. An extension of the above approach allowing for
non-Poisson conditional distributions is considered by Davis & Liu (2016);
see also Christou & Fokianos (2014) for the particular case of a conditional
negative binomial distribution.

The model by Neumann (2011) not only includes the INGARCH(1, 1) model
as a special case, but also the exponential autoregressive model

Mt = 𝛽0 + 𝛼1 Xt−1 +
(
𝛽1 + a exp (−b M2

t−1)
)

Mt−1

with 𝛽0 ≥ 0 and 𝛼1, 𝛽1, a, b > 0 as proposed by Fokianos et al. (2009) (a = 0 or
b = 0 lead to the INGARCH(1, 1) model).

A similar non-linear Poisson autoregression is proposed by Fokianos &
Tjøstheim (2012),

Mt = f1(Xt−1) + f2(Mt−1) for some f1, f2 ∶ [0;∞) → [0;∞),

where f1, f2 have to satisfy the regularity conditions given in Fokianos &
Tjøstheim (2012) in view of, for example, consistent ML estimation. A partic-
ular instance is given by f1(x) = 𝛼1 x and f2(m) = 𝛽1 m + 𝛽0∕(1 + m)a, where
a = 0 leads to the INGARCH(1, 1) model. For a > 0, the model becomes truly
non-linear.

Remark 5.1.5 (Partial likelihood) To estimate the parameters of a
conditional regression model by a full likelihood approach (Remark B.2.1.2),
knowledge about the distribution of the covariate process would be required,
except for the case where the covariates are purely deterministic. A way of
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circumventing this issue is the partial likelihood approach introduced by
Cox (1975); see also Wong (1986), Kedem & Fokianos (2002) and Fokianos &
Kedem (2004). The idea is to factorize the full likelihood function L(𝜽) as

L(𝜽) =

=∶PL(𝜽)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

P(X1 | Z1,𝜽) ⋅
∏T

t=2
P(Xt | Xt−1,… ,Zt,… ,𝜽)

⋅ P(Z1 | 𝜽) ⋅∏T

t=2
P(Zt | Xt−1,… ,Zt−1,… ,𝜽).

The first factor, PL(𝜽), is referred to as the partial likelihood function, and esti-
mates are obtained by maximizing just this partial likelihood. Note that the tth
factor of PL(𝜽) depends only on data being readily available at time t.

The conditional approach according to Definition 5.1.1 assumes that the
count at time t can be explained by the past observations and the covariate
information up to time t. For a marginal (Poisson) regression model in the sense
of Fahrmeir & Tutz (2001), the past observations are without explanatory
power provided that the current covariates are given. So the marginal distribu-
tion of the counts can be modeled directly. In its basic form, a marginal Poisson
regression model requires Xt , conditioned on Zt , to be Poisson distributed
according to Poi(Mt), where the mean Mt ∶= E[Xt | Zt] satisfies

g(Mt) = 𝜽⊤V t (5.5)

with the design vector V t now being a function of only Zt . A typical example is
the seasonal log-linear model being used by Höhle & Paul (2008) for epidemic
counts, defined by

ln(Mt) = 𝛾0 + 𝛾1 t +
S∑

s=1

(
𝛾2s cos (s 𝜔t) + 𝛾2s+1 sin (s 𝜔t)

)
, (5.6)

where 𝜔 = 2𝜋∕p with period p.

Example 5.1.6 (Legionnaires’ disease infections) Legionnaires’ disease,
which often leads to pneumonia for infected persons, with a mortality rate of up
to 15%, is caused by Legionella bacteria, which can be found in hot water sys-
tems. Infections happen by inhaling droplets of contaminated water; Legion-
naires’ disease is not spread from person to person.2 In an analogous way to
Example 4.2.6, we consider a count time series obtained from the database
SurvStat@RKI 2.0 of the Robert-Koch-Institut (2016) (data as at 22 January
2016). The counts x1,… , xT provide the weekly numbers of new infections with
Legionnaires’ disease in Germany, for the period 2002–2008 (T = 365).

2 A factsheet for the general public by the European Centre for Disease Prevention and Control
is available from: http://ecdc.europa.eu/en/healthtopics/legionnaires_disease/.
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Figure 5.3 Legionnaires’ disease: (a) counts, (b) sample autocorrelation, (c) Pearson
residuals’ SACF (w. r. t. NB model). See Example 5.1.6.

A plot of the data is shown in Figure 5.3a. A seasonal behavior is obvious,
but also a slightly increasing trend. The seasonality is also apparent from the
ACF in Figure 5.3b, and further inspection of a periodogram confirms that
period p = 52 is dominant (referring to the ≈ 52 weeks per year). So we start
by fitting a marginal regression model to the data: the seasonal log-linear
Poisson model (5.6), where S = 1 is chosen (larger values of S did not lead to
significant estimates). For improved estimation, the original linear term 𝛾1 t
in (5.6) was reparametrized as 𝛾1 t∕T . The obtained ML estimates are shown
in Table 5.1. To check the model adequacy, Pearson residuals are computed.
While the residuals’ ACF confirms the fitted marginal regression model, their
variance of 1.396 indicates overdispersion, thus voting against the Poisson
model.

For ease of presentation, we have concentrated on Poisson regression models
until now, but any other count distribution could also be used for construct-
ing a regression model, for example a zero-inflated Poisson distribution, as in
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Table 5.1 Legionnaires’ disease counts: ML estimates, AIC and BIC for different models.

Model Parameter AIC BIC

𝛾0 𝛾1 𝛾2 𝛾3 n

Poi. SLL 2.069 0.478 –0.142 –0.322 2014 2029
(𝛾0, …, 𝛾3) (0.035) (0.057) (0.023) (0.024)

NB SLL 2.068 0.480 –0.138 –0.322 27.957 1995 2014
(𝛾0, …, 𝛾3, n) (0.041) (0.067) (0.027) (0.028) (7.721)

Figures in parentheses are standard errors.
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Figure 5.4 Plot of the Legionnaires’ disease counts, together with median and
2.5%-/97.5%-quantiles of the fitted NB(n, 𝜋t) distribution; see Example 5.1.6.

Yang et al. (2013). In view of the overdispersion observed for the data, we shall
now consider a modified seasonal log-linear model, based on the negative bino-
mial distribution (Example A.1.4). Analogous to the NB-INGARCH model by
Zhu (2011) (see Example 4.2.1, Höhle & Paul (2008), Davis et al. (2009) and
Christou & Fokianos (2014)), we consider the approach n 1−𝜋t

𝜋t
∶= Mt (with Mt

still following (5.6)); that is, 𝜋t varies with time according to Mt , whereas the
NB-parameter n is an additional parameter. As a consequence, the variance at
time t equals Mt (1 + Mt∕n). The ML-fitted seasonal log-linear NB model in
Table 5.1 not only leads to improved AIC and BIC, but also the Pearson resid-
uals confirm the model adequacy (variance 1.021, ACF shown in Figure 5.3c).
Note the significantly positive estimate for 𝛾1; according to the fitted NB model,
the mean number of Legionnaires’ disease infections increases in time with fac-
tor exp ( 0.480

T
t) ≈ 1.001316t , corresponding to about a 7.1% increase per year.

This is also visible from Figure 5.4, where the median as well as the 2.5%- and
97.5%-quantiles of the fitted model with time-varying marginal distribution
NB(n, 𝜋t) are shown.
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Example 5.1.7 (Cryptosporidiosis infections) As in Example 5.1.6, we
consider a time series x1,… , xT of weekly counts of new infections in Germany
(period 2002–2008, T = 365), again taken from the SurvStat@RKI 2.0 database
(Robert-Koch-Institut, 2016, data as at 22 January 2016). But now these counts
refer to cryptosporidiosis infections, which cause watery diarrhoea. Cryp-
tosporidiosis is commonly transmitted by infected water or food, but in
contrast to Legionnaires’ disease, it can also be passed from person to person
by direct contact.3 The plot in Figure 5.5a shows a strong seasonal pattern (again
period p = 52) such that the seasonal log-linear Poisson model (5.6) (with lin-
ear term 𝛾1 t∕T) is again a reasonable first candidate for the data (now we use
S = 2; that is, we allow for a half-year effect). An analysis of the corresponding
Pearson residuals, however, not only indicates strong overdispersion (vari-
ance 3.030), but this time, the residuals also exhibit significant autocorrelations:
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Figure 5.5 Cryptosporidiosis: (a) counts, and for the Pearson residuals’ w. r. t. marginal
model: (b) the SACF and (c) the SPACF. See Example 5.1.6.

3 Factsheet for the general public by the European Centre for Disease Prevention and Control
(ECDC): http://ecdc.europa.eu/en/healthtopics/cryptosporidiosis/.
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the plots of SACF and SPACF in Figures 5.5b and 5.5c, respectively, indicate
an AR(2)-like autocorrelation structure. Therefore, a conditional regression
model with an additional autoregressive component appears to be more appro-
priate for the data. This might be obtained by adding the autoregressive terms
directly to the means Mt from (5.6) (as for INARCH models) as suggested by
Held et al. (2006). Alternatively, the log-linear autoregressive model (5.3) of
Zeger & Qaqish (1988) (Example 5.1.3) can be used. We shall follow the latter
approach here; that is, we consider the second-order model defined by

ln Mt =

=∶ ln𝜇0,t(𝜸)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝛾0 + 𝛾1 t∕T +
∑2

s=1
(𝛾2s cos(s 𝜔t) + 𝛾2s+1 sin(s 𝜔t))

+
∑2

i=1 𝛼i
(
ln (Xt−i + 1) − ln

(
𝜇0,t−i(𝜸) + 1

))
.

In view of the overdispersion, a negative binomial conditional distribution
with parametrization n 1−𝜋t

𝜋t
∶= Mt is used. The obtained CML estimates and

corresponding standard errors are displayed in Table 5.2.

Table 5.2 Cryptosporidiosis counts: ML estimates for NB SLL model with additional
AR(2) part.

𝛾0 𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 n 𝛼1 𝛼2

2.803 0.451 –0.101 –0.630 –0.185 0.039 18.023 0.418 0.130
(0.077) (0.129) (0.051) (0.050) (0.047) (0.047) (2.654) (0.052) (0.050)

Figures in parentheses are standard errors.

The Pearson residuals computed for this negative binomial log-linear autore-
gressive model have variance 1.023, and their SACF indicates an adequate auto-
correlation structure. The plot in Figure 5.6, where a graph for the conditional
means Mt has been added, shows that the model explains the data quite well.
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Figure 5.6 Plot of the Cryptosporidiosis counts together with conditional means; see
Example 5.1.7.
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Similar to the Legionnaires’ disease counts from Example 5.1.6, the linear
term is significantly positive; that is, the mean number of cryptosporidiosis
infections also increases with time according to the model. But the main differ-
ence between the model for Legionnaires’ disease and the one for cryptosporid-
iosis infections is the additional autoregressive part (of order 2) for the latter. A
possible explanation could be that cryptosporidiosis may spread from person
to person (the disease may last up to two weeks); that is, the autoregressive part
serves as the “epidemic component” (Held et al., 2006).

An immediate extension of the above marginal models towards parameter-
driven models is obtained by assuming an additional latent process – one may
also assume that a part of the covariate process is unobservable – say, (𝜖t)ℤ.
Then the conditional means defined by Mt ∶= E[Xt | Zt, 𝜖t ,…] are modeled by
the approach in (5.5).

Example 5.1.8 (Parameter-driven regression models) A famous
instance of such a marginal model is the parameter-driven regression model of
Zeger (1988). Let (𝜖t)ℤ be a positive real-valued and weakly stationary process
with E[𝜖t] = 1 and Co𝑣[𝜖t , 𝜖t−k] = 𝜎2

𝜖 ⋅ 𝜌𝜖(k). Conditioned on the latent process
(𝜖t)ℤ (and possibly on deterministic covariate information), (Xt)ℤ is assumed
to be a process of independent counts with

E[Xt | zt, 𝜖t , 𝜖t−1,…] = V [Xt | zt, 𝜖t , 𝜖t−1,…] = 𝜖t ⋅ exp (𝜸⊤zt),

where zt is the covariate known at time t. Hence, the time-varying marginal
mean and variance follow as

𝜇t ∶= E[Xt] = exp (𝜸⊤zt), V [Xt] = 𝜇t + 𝜎2
𝜖 𝜇2

t ,

see Zeger (1988), while the ACF is obtained as

𝜌t(k) ∶= Corr[Xt ,Xt−k] =
𝜌𝜖(k)√

(1 + (𝜇t 𝜎
2
𝜖 )−1)(1 + (𝜇t−k 𝜎2

𝜖 )−1)
.

The model of Zeger (1988) for the case of a conditional Poisson distribution is
further discussed in Davis et al. (2000), while a related approach using a con-
ditional negative binomial distribution is proposed by Davis et al. (2009). In
particular, Chan & Ledolter (1995) and Davis et al. (2000) consider the special
case where 𝜖t follows a lognormal distribution (for identifiability reasons, Davis
et al. (2000) set the mean of 𝜖t equal to 1). Defining 𝜖t ∶= ln 𝜖t ∼ N(−𝜎2

𝜖
, 𝜎2

𝜖
),

the model recursion can then be rewritten as

Xt | zt , 𝜖t , 𝜖t−1,… ∼ Poi
(
exp (𝜖t + 𝜸⊤zt)

)
.

It holds that 𝛾𝜖(k) = exp
(
𝛾𝜖(k)

)
− 1; see Davis et al. (2000).
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While the stochastic properties of the parameter-driven model of Zeger
(1988) are easily obtained, parameter estimation is much more demanding;
possible approaches are presented by Zeger (1988) and Davis et al. (2000, 2009).

Parameter-driven models for multivariate count processes have been pro-
posed by Jørgensen et al. (1999) and Jung et al. (2011). The state space model by
Jørgensen et al. (1999) uses a conditional Poisson distribution and assumes the
latent process to be a type of gamma Markov process; the covariate informa-
tion is embedded with a log-link approach. The dynamic factor model by Jung
et al. (2011) generates the components of the d-dimensional counts from condi-
tionally independent Poisson distributions. The corresponding d-dimensional
vectors of Poisson means constitute a latent process and are determined by
three latent factors (log-linear model), which themselves are assumed to be
independent Gaussian AR(1) processes. More information on these and fur-
ther models for multivariate count time series can be found in the survey by
Karlis (2016).

5.2 Hidden-Markov Models

A very popular type of parameter-driven model for count processes is the
hidden-Markov model (HMM); actually, such HMMs can be defined for any
kind of range, even for categorical processes; see Section 7.3. According to
Ephraim & Merhav (2002), the first paper about HMMs was the one by Baum
& Petrie (1966), who referred to them as “probabilistic functions of Markov
chains”; they in fact focussed on the categorical case discussed in Section 7.3.
This section gives an introduction to these models (for the count data case),
while a much more comprehensive treatment of HMMs is provided by the
book by Zucchini & MacDonald (2009); also the survey article by Ephraim &
Merhav (2002) is recommended for further reading.

HMMs assume a bivariate process (Xt,Qt)ℕ0
, where the Xt are the observable

random variables, whereas the Qt are the hidden states (latent states) with range
 = {0,… , d


} where d


∈ ℕ. Note that the numbers 0,… , d


just constitute

a numerical coding of the hidden states, which are assumed to be of categori-
cal nature (possibly not even ordinal; see Chapter 6 for more details). Possible
choices for the observations’ range are discussed below. The (categorical) state
process (Qt)ℕ0

is assumed to be a homogeneous Markov chain (Appendix B.2).
Given the state process, the observation process (Xt)ℕ0

is serially independent
with its pmf being solely determined through the current state Qt (in this sense,
we are concerned with a “probabilistic function” of a Markov chain; see Baum
& Petrie (1966)). A common graphical representation of this data-generating
mechanism is shown in Figure 5.7.
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· · · · · ·Qt−1 Qt+1Qt

Xt−1 Xt+1Xt

Figure 5.7 Graphical representation of the data-generating mechanism of an HMM.

Remark 5.2.1 (State space models) HMMs are special types of state space
models. Let (Xt ,Qt)ℕ0

be a bivariate and discrete-valued process. Then the tth
conditional probability splits into

P(Xt ,Qt | Xt−1,… ,Qt−1,…)
= P(Xt | Xt−1,… ,Qt ,…) ⋅ P(Qt | Xt−1,… ,Qt−1,…).

(5.7)

The process (Xt,Qt)ℕ0
follows a (generalized) state space model (Brockwell &

Davis, 2016, Section 9.8) if the first conditional probability in (5.7) is assumed
to simplify to

P(Xt | Xt−1,… ,Qt ,…) = P(Xt | Qt) for all t ∈ ℕ0. (5.8)

So the conditional distribution of Xt is completely determined by the current
state Qt (as also assumed for HMMs); Equation 5.8 is referred to as the obser-
vation equation.

Next, consider the second conditional probability in (5.7). According to Cox
(1981), (Xt,Qt)ℕ0

is classified as being parameter-driven if the following state
equation holds:

P(Qt | Xt−1,… ,Qt−1,…) = P(Qt | Qt−1,…), (5.9)

that is, together with (5.8), the distribution of the observation Xt is determined
by the latent states; see also Example 5.1.8. Equation 5.9 also holds for HMMs,
where it is further assumed that P(Qt | Qt−1,…) = P(Qt | Qt−1); that is, the state
process (Qt)ℕ0

is simply assumed to be a Markov chain (Appendix B.2).
In contrast, (Xt,Qt)ℕ0

is classified as being observation-driven (Cox, 1981) if
the state equation equals

P(Qt | Xt−1,… ,Qt−1,…) = P(Qt | Xt−1,…), (5.10)

that is, summing out Qt in (5.7) and (5.8), the distribution of the observation Xt
would be solely determined by the past observations Xt−1,…

Let us return to HMMs. These models are defined by two sets of parame-
ters: one determining the distribution of the state process (Qt)ℕ0

, and another
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concerning the conditional distribution of the observation Xt given the current
state Qt (state-dependent distribution). The state process (Qt)ℕ0

is assumed to
satisfy the above state equation (5.9) and, in addition, to be a homogeneous
Markov chain with the state transition probabilities being given by

P(Qt = q | Qt−1 = r) = aq|r for all q, r ∈  = {0,… , d

}. (5.11)

Let A = (aq|r)q,r denote the corresponding transition matrix. The initial distri-
bution p0 of Q0 either leads to additional model parameters, or it is determined
by a stationarity assumption; that is, p0 ∶= 𝝅, where 𝝅 satisfies the invariance
equation A 𝝅 = 𝝅 (see (B.4)). We shall restrict ourselves to stationary HMMs
here; that is, P(Qt = q) = 𝜋q for all q ∈  and all t ∈ ℕ0.

Concerning the observations, the observation equation (5.8) has to hold;
that is,

P(Xt | Xt−1,… ,Qt ,…) = P(Xt | Qt) for all t ∈ ℕ.

These state-dependent distributions are also assumed to be time-homogeneous,
say p(⋅|q) for the states q ∈ . So P(Xt = x | Qt = q) = p(x|q) for all t.

In applications, parametric distributions are assumed for the p(⋅|q). For
illustration, we shall mainly focus on the Poisson HMM, but any other count
model could be used as well, or even different models for different states.
As mentioned before, HMMs might be adapted to any kind of range for
the observations (whereas the states are always categorical), for example, to
continuous-valued cases like ℝ or to purely categorical cases, as discussed in
Section 7.3. The Poisson HMM assumes the distribution of Xt , conditioned on
Qt = q, to be the Poisson distribution Poi(𝜆q); that is,

P(Xt = x | Qt = q) = e−𝜆q ⋅
𝜆x

q

x!
, (5.12)

and consequently E[Xt | Qt = q] = 𝜆q = V [Xt | Qt = q]. The complete set of
model parameters is given by 𝜆0,… , 𝜆d



> 0 and a0|0, a0|1,… , ad

|d



∈ [0; 1],
where

∑d


q=0 aq|r = 1 has to hold for all r ∈ .
Let us look at some stochastic properties of the resulting observation process

(Xt)ℕ0
(Zucchini & MacDonald, 2009, Section 2.2). Let P(x), as a function

of x ∈ ℕ0, denote the diagonal matrices P(x) ∶= diag(p(x|0),… , p(x|d

)) ∈

[0; 1](d
+1) × (d


+1). Then the marginal pmf and the bivariate probabilities are

computed as

P(Xt = x) =
∑
q∈

p(x|q) 𝜋q = 𝟏⊤ P(x) 𝝅,

P(Xt = x,Xt−k = y) = 𝟏⊤ P(x) Ak P(y) 𝝅,
(5.13)

where 𝟏 denotes the vector of ones. To express mean 𝜇 = E[Xt] and vari-
ance 𝜎2 = V [Xt], let us introduce the notation 𝝁 = (𝜇0,… , 𝜇d



)⊤ with
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𝜇q ∶= E[Xt | Qt = q], and 𝜎2
q ∶= V [Xt | Qt = q]. Then it follows that

𝜇 =
∑
q∈

𝜋q 𝜇q = 𝝅⊤ 𝝁,

𝜎2 =
∑
q∈

𝜋q (𝜎2
q + 𝜇2

q) − 𝜇2.
(5.14)

The autocovariance 𝛾(k) = Co𝑣[Xt ,Xt−k] equals

𝛾(k) =
∑

q,r∈
(Ak)q,r𝜋r 𝜇q𝜇r − 𝜇2. (5.15)

For the limiting behavior of Ak for k → ∞, see Remark B.2.2.1 on the
Perron–Frobenius theorem.

Example 5.2.2 (Poisson HMM) For the Poisson HMM (5.12),
Equations 5.13–5.15 further simplify. Equation 5.13 implies that the marginal
pmf of a Poisson HMM is a mixture of Poisson distributions. In particular,
(5.14) simplifies to

𝜇 =
∑
q∈

𝜋q 𝜆q, 𝜎2 = 𝜇 +
∑
q∈

𝜋q 𝜆2
q − 𝜇2

≥ 𝜇,

that is, the Poisson HMM is marginally overdispersed; the more diverse the
mixed Poisson distributions, the stronger the overdispersion. This is illustrated
by Figure 5.8a, where the pmfs of two stationary three-state Poisson HMMs are
shown: both have the same state transition matrix (also see Example 7.1.1),

A =
⎛⎜⎜⎝
0.90 0.05 0.25
0.05 0.80 0.05
0.05 0.15 0.70

⎞⎟⎟⎠ with 𝝅 =
⎛⎜⎜⎝
0.6
0.2
0.2

⎞⎟⎟⎠ ,
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Figure 5.8 Pmf (a) and ACF (b) of two three-state Poisson HMMs; see Example 5.2.2.
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but different state-dependent Poisson distributions. The black pmf corresponds
to the Poisson means 𝜆0 = 1, 𝜆1 = 2, 𝜆2 = 3, and it has mean 1.6 and disper-
sion ratio 1.4. The gray pmf, in contrast, has the much more distant Poisson
means 𝜆0 = 1, 𝜆1 = 5, 𝜆2 = 9, which lead to mean 3.4 and to a very strong level
of overdispersion, at about 4.012.

For the special case of a two-state Poisson HMM (that is, with d

= 1), mean

and variance further simplify to

𝜇 = 𝜋0 𝜆0 + 𝜋1 𝜆1, 𝜎2 = 𝜇 + 𝜋0𝜋1 (𝜆0 − 𝜆1)2.

It is also known that the state transition probabilities aq|r for q, r ∈ {0, 1} can be
rewritten in the form aq|r = (1 − 𝜌) 𝜋q + 𝜌 𝛿q,r with 𝜋0 = 1 − 𝜋1 and with a 𝜌 ∈
(max{− 𝜋1

𝜋0
,− 𝜋0

𝜋1
}; 1); see (7.6). Furthermore, the powers of A become (Ak)q,r =

(1 − 𝜌k) 𝜋q + 𝜌k 𝛿q,r . Hence, the autocovariance function (5.15) simplifies to

𝛾(k) = 𝜌k
∑
q∈

𝜋q 𝜆2
q − 𝜌k 𝜇2 = 𝜌k (𝜎2 − 𝜇).

So the ACF 𝜌(k) = (1 − 𝜇∕𝜎2) 𝜌k is exponentially decaying, and the damping
effect of the factor (1 − 𝜇∕𝜎2) decreases with increasing overdispersion (an
analogous conclusion holds for the ACFs of the three-state Poisson HMMs
shown in Figure 5.8b). Note that the formulae for 𝛾(k) and 𝜌(k) also hold for
an arbitrary number d


+ 1 of states, provided that the states follow a DAR(1)

model (see Example 7.2.2).

Next, we turn to the question of parameter estimation. A widely used
approach is the Baum–Welch algorithm, which is an instance of the
expectation-maximization (EM) algorithm; see Chapter 4 in Zucchini &
MacDonald (2009) for a detailed description. Alternatively, a direct (numer-
ical) maximization of the likelihood function can be performed. Provided
that accurate starting values have been selected, the latter approach usually
converges much faster than the Baum–Welch algorithm; see Bulla & Berzel
(2008). Also, MacDonald (2014) concludes that the direct maximization of the
likelihood is often advantageous. Therefore, we shall concentrate on this latter
approach here.

Remark 5.2.3 (Likelihood estimation) The likelihood function of a HMM
with parameter vector 𝜽 (see also Remark B.2.1.2), given the observations
x1,… , xT , can be computed as (Zucchini & MacDonald, 2009, Chapter 3)

L(𝜽) = 𝟏⊤ P(xT ) AP(xT−1) A · · · P(x1) 𝝅.

Obviously, the following recursive scheme holds:

𝜶1 = P(x1) 𝝅, 𝜶t = P(xt) A 𝜶t−1, L(𝜽) = 𝟏⊤ 𝜶T .
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Here, 𝜶t is the vector of forward probabilities at time t:

𝛼t,q = P(Qt = q, Xt = xt,… ,X1 = x1) for all q ∈ . (5.16)

Later, we shall also need the backward probabilities (Zucchini & MacDonald,
2009, Section 4.1)

𝛽t,q = P(Qt = q, Xt+1 = xt+1,… ,XT = xT ) for all q ∈ , (5.17)

which follow recursively from 𝜷T = 𝟏 and 𝜷⊤
t = 𝜷⊤

t+1 P(xt+1) A.
Once L(𝜽) has been implemented according to the above scheme, it can be

maximized by using a numerical optimization routine; see also the discussion
in Remark B.2.1.2. Common asymptotic approximations for the standard errors
and distribution of the ML estimator, however, have to be treated with caution.
For example, a very large sample size might be required to obtain a reasonable
approximation. See the discussion in Section 3.6 of Zucchini & MacDonald
(2009).

It should be pointed out that for large T , one may experience numerical
underflow when computing 𝜶t . For such a case, Zucchini & MacDonald (2009)
recommend computing (𝑤t∕𝑤t−1,𝝓t) instead of 𝜶t , where 𝑤t ∶= 𝟏⊤ 𝜶t and
𝝓t ∶= 𝜶t∕𝑤t . Note that the recursive scheme 𝑤t∕𝑤t−1 ⋅ 𝝓t = P(xt) A 𝝓t−1
holds. So one computes

𝑤1 = 𝟏⊤ 𝜶1, 𝝓1 = 𝜶1∕𝑤1;

ut ∶= P(xt) A 𝝓t−1,
𝑤t

𝑤t−1
= 𝟏⊤ ut , 𝝓t = ut

/
𝑤t

𝑤t−1

(5.18)

for t = 2, 3,… The likelihood function is obtained as

L(𝜽) = 𝑤T =
𝑤T

𝑤T−1
· · ·

𝑤2

𝑤1
⋅𝑤1.

The forward probabilities defined in the Remark 5.2.3 are not only useful in
view of likelihood computation, but also for forecasting future observations.
The observations’ h-step-ahead forecasting distribution, given the observations
x1,… , xt , is computed as (Zucchini & MacDonald, 2009, Section 5.2):

pt,h(x) ∶= P(Xt+h = x | xt,… , x1) =
𝟏⊤ P(x) Ah 𝜶t

𝟏⊤ 𝜶t
. (5.19)

Note that these probabilities are easily updated for increasing t according to
the recursive scheme in (5.16). Such an updating is also required if residuals
are to be computed for the fitted model. While the forecast pseudo-residuals
(Zucchini & MacDonald, 2009, Section 6.2.3) can be computed exactly using
(5.19) with h = 1, the standardized Pearson residuals (Section 2.4) need to be
approximated by computing E[Xk

t+1 | xt,… , x1] ≈
∑M

x=0 xk pt,1(x), with M being
sufficiently large.
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In some applications, it might also be necessary to predict a future state of
the HMM; in this case,

P(Qt+h = q | xt,… , x1) =
e⊤q Ah 𝜶t

𝟏⊤ 𝜶t
(5.20)

should be used, where eq is the qth unit vector (Example A.3.3).

Remark 5.2.4 (Decoding the hidden states) Schemes for identifying
the hidden states, a task commonly referred to as decoding, are derived
in Section 5.3 of Zucchini & MacDonald (2009). Here, we present brief
summaries of these schemes.

Local decoding refers to the identification of the single hidden state Qt , given
the observations x1,… , xT . The following approach is based on the forward
probabilities (5.16) and backward probabilities (5.17) defined in Remark 5.2.3.
Since 𝛼t,q ⋅ 𝛽t,q = P(Qt = q, XT ,… ,X1) can be shown to hold, the “most plau-
sible” state at time t is given by

q̂t ∶= arg maxq P(Qt = q | xT ,… , x1) = arg maxq
𝛼t,q ⋅ 𝛽t,q

𝟏⊤ 𝜶T
.

Global decoding refers to the identification of the complete series of hid-
den states q1,… , qT . To find the sequence of states maximizing P(QT =
qT ,… ,Q1 = q1 | xT ,… , x1), the Viterbi algorithm can be used. For all q ∈ ,
define the probabilities

m1,q ∶= P(Q1 = q, X1 = x1) = p(x1|q) 𝜋q,

mt+1,q ∶= maxq1,…,qt
P(Qt+1 = q,Qt = qt ,… ,Q1 = q1,

Xt+1 = xt+1,… ,X1 = x1),

which are computed recursively as

mt+1,q = p(xt+1|q) ⋅ maxr{mt,r ⋅ aq|r} for t ≥ 1.

Then the decoded states are obtained as

q̂T ∶= arg maxq{mT ,q},
q̂t ∶= arg maxq{mt,q ⋅ aq̂t+1|q} for t = T − 1,… , 1.

Note that the results of local and global decoding might differ from each other.

Example 5.2.5 (Download counts) Let us pick up again the time series of
download counts, as discussed in Section 2.5 and Example 3.2.1. These seri-
ally dependent and overdispersed counts have been shown to be reasonably
described by an NB-INAR(1) or NB-RCINAR(1) model. Now we shall inves-
tigate if a Poisson HMM might also be appropriate for these data. Since the
number of parameters increases quadratically in the number of states ((d


+ 1)2
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parameters if there are d

+ 1 states), we shall first try a two-state Poisson

HMM (that is, with d

= 1). In this case (𝓁max ≈ −548.9), the ML-estimated

Markov model for the state process is

ÂML ≈
(

0.803 0.395
0.197 0.605

)
, �̂�ML ≈

(
0.668
0.332

)
.

So, for example, the overall probability of being in state 0 is about 66.8%, and
the probability for remaining in state 0 even equals about 80.3%. In each of
the states 0 and 1, we have a conditional Poisson model, with the estimated
means being about 0.995 (std. err. 0.127) in state 0 and 5.267 (std. err. 0.409) in
state 1, respectively. So the predominant state 0 corresponds to “low download
activity”, while the less frequent state 1 might be interpreted as “high download
activity”.

To check if this simple two-state Poisson HMM is adequate for the data,
let us first look at some properties of the fitted model. While mean (≈ 2.415)
and ACF (≈ 0.256, 0.105,…) of the fitted model are reasonably close to the
corresponding sample values (Section 2.5), the marginal variance appears to
be slightly too small (dispersion index 2.676 vs. 3.127). A similar observation
(now with respect to the conditional variance) is made if looking at the Pearson
residuals; these have a variance of about 1.113. Hence, in contrast to the above
NB-INAR(1) or NB-RCINAR(1) models, the fitted two-state Poisson HMM is
not able to fully explain the observed (conditional) variance. Therefore, let us
fit a three-state Poisson HMM (d


= 2; that is, with nine model parameters) to

the data. For the state process, this leads to

ÂML ≈
⎛⎜⎜⎝
0.713 0.282 0.158
0.245 0.599 0.502
0.042 0.118 0.341

⎞⎟⎟⎠ , �̂�ML ≈
⎛⎜⎜⎝
0.473
0.421
0.106

⎞⎟⎟⎠ ,
where the second and third column do not sum up to exactly 1 because of
rounding. For the corresponding state-dependent Poisson distributions, we
obtain the estimates �̂� ≈ (0.631, 2.979, 8.230)⊤ with approximate standard
errors (0.151, 0.426, 0.917)⊤. So from a practical point of view, we now dis-
tinguish between phases of low (state 0), medium (state 1) and high (state 2)
download activity. While states 0 and 1 are “inert” in the sense that the
respective conditional probabilities â0|0, â1|1 for remaining in the present state
are largest among all conditional probabilities âq|0, âq|1, state 2 will most likely
change to state 1. As a consequence, we can only expect rather short periods of
continuously high download activity. Another major difference is the marginal
probabilities �̂�ML for these states, with state 2 happening only rarely (≈ 10.6%)
and with states 0 and 1 being roughly equiprobable.

The fitted three-state Poisson HMM allows for a refined explanation of the
time series, but how does it perform compared to the other models? First, it can
be observed that it leads to the maximal log-likelihood, namely 𝓁max ≈ −536.2
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Figure 5.9 Download counts, see Example 5.2.5: (a) marginal frequencies (black) together
with PMF of fitted three-state Poisson HMM (gray), and (b) PIT histogram based on this fitted
model.
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Figure 5.10 Plot of the download counts together with globally decoded states of fitted
three-state Poisson HMM (mean �̂�q, ML is shown in gray if state equals q). See Example 5.2.5.

compared to 𝓁max ≈ −543.0 for the NB-INAR(1) model and to 𝓁max ≈ −539.4
for the NB-RCINAR(1) model. Due to the large number of model parameters,
however, it has worse values for AIC and BIC: 1090 and 1123, respectively. Let
us further investigate the properties of the fitted model. Its marginal pmf is
rather close to the empirical one (Figure 5.9a), having the mean ≈ 2.422 and
dispersion index ≈ 3.150, and the ACF of the fitted model, 0.274, 0.120,…, is
also reasonable. Analyzing the Pearson residuals, we find no significant auto-
correlations, and their variance ≈ 0.969 is close to 1 this time. Finally, the PIT
histogram in Figure 5.9b is close to uniformity (see Figure 2.9 for comparison).
So, in summary, besides the drawback of a large number of parameters, the
three-state Poisson HMM does rather well for the download counts, and it is
also easy to interpret.

Related to this last aspect, let us decode the hidden states as described in
Remark 5.2.4. The result of a global decoding (using the Viterbi algorithm) is



�

� �

�

116 An Introduction to Discrete-Valued Time Series

shown in Figure 5.10, where the qth state is represented by the corresponding
Poisson mean �̂�q, ML. As already conjectured from the estimated transition
matrix ÂML, we observe long runs of the states 0 and 1, but only short runs
or sporadic occurrences of the state 2. If we had done a local decoding for all
t = 1,… , 267 instead, only three states would have been decoded differently:
at times t = 142, 144, 145, we would have obtained the state 2 instead of state 1.

Remark 5.2.6 (Further extensions) There are a number of ways of
generalizing the basic HMM; see Chapter 8 in Zucchini & MacDonald (2009)
for a detailed survey. As an example, one may allow the state process (Qt)ℕ0

to follow a higher-order Markov model, possibly with additional parametric
assumptions like those discussed in Section 7.1 (for example, the MTD(p) or
DAR(p) models). Other options are the inclusion of covariate information or
additional dependencies at the observation level, for example analogues of
Markov-switching autoregressive models; see also Remark 7.3.5.

Also the more general state space approach discussed in Remark 5.2.1 offers a
way of obtaining further models for count processes. While we considered the
case of a finite and discrete state space for the ease of presentation, one can also
allow for, say, a continuous-valued range; see Section 9.8 in Brockwell & Davis
(2016) for details. Doing this, the parameter-driven model of Chan & Ledolter
(1995) and Davis et al. (2000) according to Example 5.1.8 belongs to the class
of generalized state space models, with the lognormally distributed 𝜖t as the
latent state at time t. An observation-driven example is the Poisson model pro-
posed by Harvey & Fernandes (1989), where the states are conditionally gamma
distributed, given the previous observations.

5.3 Discrete ARMA Models

The “new” discrete ARMA (NDARMA) models were proposed by Jacobs &
Lewis (1983). They generate an ARMA-like dependence structure through
some kind of random mixture. There are several ways of formulating these
models, for example through a backshift mechanism, as in Jacobs & Lewis
(1983), or by using Pegram’s operator, as in Biswas & Song (2009). Here, we
follow the approach of Weiß & Göb (2008) to give a representation close to the
conventional ARMA recursion.

Definition 5.3.1 (NDARMA model for counts) Let the observations
(Xt)ℤ and the innovations (𝜖t)ℤ be count processes, where (𝜖t)ℤ is i.i.d. with
P(𝜖t = i) = 𝜋i, and where 𝜖t is independent of (Xs)s<t . The random mixture is
obtained through the i.i.d. multinomial random vectors

(𝛼t,1,… , 𝛼t,p, 𝛽t,0,… , 𝛽t,q) ∼ MULT(1;𝜙1,… , 𝜙p, 𝜑0,… , 𝜑q),
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which are independent of (𝜖t)ℤ and of (Xs)s<t . Then (Xt)ℤ is said to be an
NDARMA(p, q) process if it follows the recursion

Xt = 𝛼t,1 ⋅ Xt−1 +…+ 𝛼t,p ⋅ Xt−p + 𝛽t,0 ⋅ 𝜖t +…+ 𝛽t,q ⋅ 𝜖t−q. (5.21)

The cases q = 0 and p = 0 are referred to as a DAR(p) process and DMA(q)
process, respectively.

Note that exactly one out of 𝛼t,1,… , 𝛽t,q becomes 1; all others are equal to 0.
Hence the NDARMA recursion (5.21) implies that each observation Xt chooses
either one of the past observations Xt−1,… ,Xt−p or one of the past (unob-
servable) innovations 𝜖t ,… , 𝜖t−q. Because of this mechanism, the stationary
marginal distribution of Xt is identical to that of 𝜖t ; that is, P(Xt = i) = 𝜋i =
P(𝜖t = i), and we always have

P(Xt = i | Xt−k = j) = 𝜋i ⋅ (1 − 𝜌(k)) + 𝛿i,j ⋅ 𝜌(k).

The autocorrelations are non-negative and can be determined from the
Yule–Walker equations (Jacobs & Lewis, 1983)

𝜌(k) =
p∑

j=1
𝜙j ⋅ 𝜌(|k − j|) + q−k∑

i=0
𝜑i+k ⋅ r(i) for k ≥ 1, (5.22)

where the r(i) satisfy

r(i) =
i−1∑

j=max{0,i−p}
𝜙i−j ⋅ r(j) + 𝜑i𝟙(0 ≤ i ≤ q),

which implies r(i) = 0 for i < 0, and r(0) = 𝜑0. While these properties might
suggest that the NDARMA models should be very attractive in practice for
ARMA-like count processes, they have an important limitation: the sample
paths generated by NDARMA processes tend to show long runs (constant seg-
ments) of a certain count value. This is illustrated by Figure 5.11, where the
plotted sample path differs markedly from the corresponding INAR(1) path in
Figure 2.5b and the INARCH(1) path in Figure 4.3. Since these long runs and
large jumps between them are a rather uncommon pattern in real count time
series, the NDARMA models are rarely used in the count data context, although
we shall see in Section 7.2 that they are quite useful when considering categor-
ical time series. An important exception is the modeling of video traffic data
(Tanwir & Perros, 2014), as briefly sketched in the following example.

Example 5.3.2 (Video traffic modeling) A video can be understood as a
sequence of frames, where each frame is displayed for, say, 1/30 of a second.
To reduce the amount of data corresponding to a video sequence, many differ-
ent video compression schemes have been developed, making use of (among
other approaches) the fact that successive frames belonging to the same scene
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Figure 5.11 Simulated sample path of Poisson DAR(1) process with 𝜇 = 3 and 𝜙1 = 0.95.

are usually very similar to each other. The resulting sequence of frame sizes
(say, the number of bytes per frame) is typically characterized by large variation
and a strong autocorrelation (also by seasonality caused by regular patterns of
so-called I-, B- and P-frames); see Tanwir & Perros (2014) for more details.

Videoconference traffic data is often characterized by high autocorrelation
and low motion. As shown by Heyman et al. (1992) and Lazaris & Koutsakis
(2010), a DAR(1) model with a (truncated) negative binomial marginal distribu-
tion is well-suited to describing multiplexed videoconference traffic data (with
separate models for I-, B- and P-frames), but may not be appropriate for sin-
gle traces (according to Lazaris & Koutsakis (2010), at least five traces need to
be superpositioned), and not for video sequences with frequent scene changes
(Heyman & Lakshman, 1996; Tanwir & Perros, 2014). These results appear
plausible in view of the characteristic feature of NDARMA models to produce
runs of certain values.
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Part II

Categorical Time Series

The time series discussed in Part I had discrete and quantitative ranges, which
allowed us to apply standard analytic tools used for real-valued time series
analysis: the time series plot, the autocorrelation function, and many more.
In the second part of this book, we consider another type of discrete-valued
time series where we skip the second of the aforementioned assumptions.
In other words, the time series now exhibit a qualitative range consisting
of a finite number of categories (including the special case of a binary time
series). In some applications, the categorical range exhibits at least a natural
ordering; that is, it is ordinal. Otherwise, if not even such an inherent ordering
exists, the range is said to be nominal. In particular, a nominal range implies
a number of difficulties when trying to analyze the time series: completely
different measures of dispersion or serial dependence have to be developed,
and a visualization of the time series is quite demanding; see Chapter 6.

In addition, the modeling of categorical processes requires new approaches;
see Chapter 7. The previously discussed INARMA and INGARCH models can-
not be applied, but it is possible to adapt NDARMA models to the categorical
case, thus offering some kind of counterpart to conventional ARMA models.
The serial dependence structure of these discrete ARMA models, which can-
not be expressed in terms of the autocorrelation function (since the range is
qualitative), shows an ARMA-like behavior if an appropriate measure of serial
dependence is taken as a basis. Like the NDARMA models, hidden-Markov
models are also easily applied to categorical processes, while regression models
require more extensive modifications. Besides these adjustments of models
from Chapter 5, tailor-made solutions, such as parsimoniously parametrized
Markov models, are also surveyed.

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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6

Analyzing Categorical Time Series

In Part II of this book, we shall be concerned with categorical processes (Xt)ℕ;
that is, the range  of Xt is not only assumed to be discrete, but also to be quali-
tative, consisting of a finite number d + 1 of categories, with d ∈ ℕ (state space).
The time series x1,… , xT stemming from this kind of process are referred to
as categorical time series. In some applications, the range of (Xt)ℕ exhibits at
least a natural ordering; it is then referred to as an ordinal range. In other
cases, not even such an inherent order exists (a nominal range). In Brenčič
et al. (2015), for instance, time series about atmospheric circulation patterns are
analyzed. Each day is assigned 1 out of 41 categories, called elementary circula-
tion mechanisms (ECMs); although there are some relationships (similarities)
between these categories (for example, they can be arranged in four groups),
the categories do not exhibit an inherent ordering; that is, we are concerned
with a nominal range. In contrast, Chang et al. (1984) consider time series for
daily precipitation and distinguish between dry days, days with medium or with
strong precipitation, thus leading to an ordinal time series. Another example of
nominal “time” series are nucleotide sequences (a range of four DNA bases) and
protein sequences (twenty amino acids) (Churchill, 1989; Krogh et al., 1994;
Dehnert et al., 2003), although again similarities exist within these types of
nominal range (Taylor, 1986). The time series of electroencephalographic (EEG)
sleep states (per minute), as analyzed by Stoffer et al. (2000), are also ordinal
time series.

Here, unless stated otherwise, we shall consider the more general case of a
nominal range. So even if there is some ordering, we do not make use of it but
assume that each random variable Xt takes one of a finite number of unordered
categories. To simplify notation, we adapt the convention from Appendix B.2
and assume the possible outcomes to be arranged in a certain lexicographical
order,  = {s0, s1,… , sd}.

As discussed in the context of Example A.3.3, a categorical random vari-
able Xt can be represented equivalently as a binary random vector Y t , with the
range consisting of the unit vectors e0,… , ed ∈ {0, 1}d+1, by defining Y t = ej

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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if Xt = sj. We shall sometimes switch to this kind of representation, referred to
as a binarization, if it allows us to simplify expressions.

6.1 Introduction to Categorical Time Series Analysis

For (stationary) real-valued time series, a huge toolbox for analysis and
modeling is readily available and well known to a broad audience. To highlight
a few basic approaches, the time series are visualized by simply plotting the
observed values against time, the marginal properties such as location and
dispersion may be measured in terms of mean/median and variance/quartile
range, respectively, and serial dependence is commonly quantified in terms of
autocorrelation; see also Section 2.3.

Things change if the time series is categorical. As an example, since the
elementary mathematical operations are not applicable for such a qualita-
tive range, moments like the mean or the autocovariance can no longer be
computed. In the ordinal case, at least a few methods can be preserved. For
example, a time series plot is still feasible by arranging the possible outcomes
in their natural ordering along the Y-axis, and the location can be measured by
the median (more generally, quantiles and cdf are defined for ordinal data). But
in the purely nominal case (as mainly considered here), not even these basic
analytic tools are applicable. Therefore, tailor-made solutions are required for
visualizing such time series, or for quantifying location, dispersion and serial
dependence.

Example 6.1.1 (Ordinal vs. nominal data) In Table 1 of Stoffer et al.
(2000)1 we find a categorical time series of length T = 107, which expresses
the EEG sleep state (per minute) for an infant 24–36 hours after birth. The
range is ordinal, with the six possible states (in their natural ordering):

• ‘qt’ (quiet sleep, trace alternant)
• ‘qh’ (quiet sleep, high voltage)
• ‘tr’ (transitional sleep)
• ‘al’ (active sleep, low voltage)
• ‘ah’ (active sleep, high voltage)
• ‘aw’ (awake).

The observed frequencies are as shown in Table 6.1.
So the median equals ‘al’, while the mode (most frequent category) is given

by ‘qt’. The time series plot shown in Figure 6.1 has a meaningful interpretation,
since the six states are arranged in their natural ordering along the y-axis. For
a purely nominal range, in contrast, any arrangement of the states along the

1 See www.stat.pitt.edu/stoffer/specrev.pdf.
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Table 6.1 Frequency table of infant EEG sleep states data.

State qt qh tr al ah aw

Absolute frequency 33 3 12 27 32 0
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Figure 6.1 Time series plot of infant EEG sleep states (per minute); see Example 6.1.1.

ordinate would be arbitrary and hence misleading. Different approaches are
required for a visual representation.

In the sequel, when calling a categorical process (Xt)ℕ stationary, we refer to
the concept of strict stationarity according to Definition B.1.3. While specific
models for such stationary categorical processes are discussed in Chapter 7, the
particular instance of an i.i.d. categorical process will be of importance here,
since it constitutes the benchmark when trying to uncover serial dependence.

Example 6.1.2 (Rate evolution graph) As already emphasized in
Example 6.1.1, the widely-used time series plot cannot be applied to a purely
nominal time series in a meaningful way. There are several proposals for a
visual analysis of a nominal time series; see the survey by Weiß (2008d).
Although none of them seems to be a perfect substitute for the time series
plot, the rate evolution graph as suggested by Ribler (1997) is at least an easily
implemented visual tool that can be used for stationarity analysis. If y1,… , yT
denotes the binarization of the available time series, then component-wise
graphs of the cumulated sums ct ∶=

∑t
s=1 ys – that is, the component series

ct,i for i = 0,… , d – are plotted in one graph against time t. The slope of the
graphs is an estimate for the corresponding marginal probability. If the process
is stationary, then the graphs should be approximately linear in t, while visible
violations of linearity indicate non-stationarity.
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Table 6.2 Frequency table of wood pewee data.

State 1 2 3

Absolute frequency 691 357 279
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Figure 6.2 Rate evolution graph of wood pewee data; see Example 6.1.2.

For illustration, let us consider a time series referring to the morning twi-
light song of the wood pewee, a North American song bird famous for its great
vocal abilities. The time series data (length T = 1327) are printed in Table 12
of Raftery & Tavaré (1994).2 The data date back to Craig (1943) – apart from a
few deviations, they correspond to Record 9 given there – and were analyzed
afterwards by several authors, including Raftery & Tavaré (1994) and Berchtold
(2002). The wood pewee song is composed of three different phrases, labeled
‘1’, ‘2’ and ‘3’ (Craig, 1943, p. 21):

• The gliding phrases:
‘1’ “pee-ah-wee”
‘2’ “pee-oh”

• The rhythmic phrase:
‘3’ “ah-di-dee”.

So the range of the time series is of size d + 1 = 3. The observed frequencies
are as shown in Table 6.2: Hence, the mode (the most frequent phrase) is given
by ‘1’. The rate evolution graph shown in Figure 6.2 indicates a stationary
behavior (at least with respect to the marginal distribution), since the three
graphs appear roughly linear. Their slopes are computed (via linear regression)
at about 0.509 for state ‘1’, 0.265 for ‘2’ and 0.210 for ‘3’, respectively, expressing

2 See www.stat.washington.edu/raftery/Research/PDF/tavare1994.pdf.
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the overall “rates” (estimated marginal probabilities) for the wood pewee’s
phrases.

An application leading to a visibly non-linear rate evolution graph is pre-
sented by Brenčič et al. (2015), who analyzed a time series about atmospheric
circulation patterns. Other tools for visually analyzing a categorical time series,
such as the IFS (iterated function systems) circle transformation (Weiß, 2008d),
look for the occurrence of patterns; that is, the occurrence of tuples (“strings”)
s ∈  r or of sets of such tuples. A comprehensive survey of tools for visualizing
time series data in general (not restricted to the categorical case) is provided by
Aigner et al. (2011).

Remark 6.1.3 (Frequency-domain analysis) At this point, it is worth
mentioning the so-called spectral envelope developed by Stoffer et al. (1993,
2000), see also Section 7.9 in the textbook by Shumway & Stoffer (2011). The
idea is to look at different numerical codings (called scalings) of the categorical
process: for 𝜷 ∈ ℝd+1, 𝜷⊤Y t represents the coding of the Xt range  by the
numbers 𝛽0,… , 𝛽d ∈ ℝ. As a simple example, 𝜷 = (1, 1, 0,… , 0)⊤ implies that
(Xt)ℕ is mapped onto a binary process, where ‘1’ occurs if either s0 or s1 are
observed, and ‘0’ otherwise.

Depending on the particular coding, certain periodicities might be observed
in the time series. For a given frequency 𝜔, the idea is now to determine
the “most striking” 𝜷 = 𝜷(𝜔) (in some sense). For this purpose, Stoffer et al.
(1993, 2000) apply a Fourier transform3 and compute the spectral density
f (𝜔; 𝜷), or a sample version of it for given time series data. If 𝜎2(𝜷) denotes
the variance of 𝜷⊤Y t , then 𝜷(𝜔) is chosen to maximize f (𝜔;𝜷)∕𝜎2(𝜷). The
corresponding maximal value, or

𝜆(𝜔) = sup
𝜷≠𝛼⋅𝟏

f (𝜔;𝜷)
𝜎2(𝜷)

to be more precise, is called the spectral envelope of the process (Xt)ℕ. So 𝜆(𝜔)
expresses the maximal proportion of the variance that can be explained by the
frequency𝜔, and this maximal proportion is reached if the optimal scaling 𝜷(𝜔)
is used. More details on the computation of 𝜆(𝜔) and on corresponding sample
versions �̂�(𝜔) can be found in Stoffer et al. (1993, 2000) and Shumway & Stoffer
(2011). If �̂�(𝜔) is plotted against 𝜔, a visual frequency analysis of the categorical
time series is possible. For illustration, Figure 6.3 shows the spectral envelope
of the wood pewee data from Example 6.1.2. The plot was created by adapt-
ing Examples 7.17 and 7.18 in Shumway & Stoffer (2011). It can be seen that
frequencies around 1/4 and 1/2 are dominant, an observation that will also be
plausible in view of our analyses in Example 6.3.1 below.

3 A related approach based on the Walsh–Fourier transform was proposed by Stoffer (1987).
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Figure 6.3 Spectral envelope of wood pewee data; see Remark 6.1.3.

6.2 Marginal Properties of Categorical Time Series

Let (Xt)ℕ be a stationary categorical process with marginal distribution 𝝅 =
(𝜋s0

,… , 𝜋sd
)⊤. Given the segment X1,… ,XT from this process, we estimate 𝝅

by the vector �̂� of relative frequencies computed from X1,… ,XT , which is also
expressed as �̂� = 1

T

∑T
t=1 Y t by using the above binarization of the process.

Especially if d is large, the complete (estimated) marginal distribution might be
difficult to interpret. So, as with real-valued data, it is necessary in practice to
reduce the full information about the marginal distribution into a few metrics
that concentrate on features such as location and dispersion.

Measuring the location of a categorical random variable X (or to estimate it
from X1,… ,XT ) is rather straightforward; see also Examples 6.1.1 and 6.1.2. In
any case, it is possible to compute “the” (sample) mode, although such a mode
is sometimes not uniquely determined. If X is even ordinal, then the median
(or any other quantile) can be used to express the “center” of𝝅 or �̂�, respectively.

Categorical dispersion is not that obvious in the beginning. Even in the ordi-
nal case, a quantile-based dispersion measure such as the inter quartile range
(IQR) is not applicable, since a difference between categories is not defined
(one might use the number of categories between the quartiles as a substitute).
Therefore, let us first think about the intuitive meaning of dispersion. For a
real-valued random variable Z, measures such as variance or IQR ultimately
aim at expressing uncertainty. The smaller the dispersion of Z, the better we
can predict the outcome of Z. Adapting this intuitive understanding of disper-
sion to the categorical case, we have maximal dispersion if all probabilities 𝜋j
are equal to each other, because then, every outcome is equally probable and a
reasonable prediction is impossible. So a uniform distribution in  constitutes
one extreme of categorical dispersion. At the other extreme, if 𝜋j = 1 for one
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j ∈  and 0 otherwise (one-point distribution, so 𝝅 equals one of the unit vec-
tors e0,… , ed), then we are able to perfectly predict the outcome of X, so X has
minimal dispersion in this sense.

Remark 6.2.1 (Categorical dispersion) Note that categorical dispersion
as characterized before is just the opposite phenomenon to the concentration
of a categorical distribution. Furthermore, this concept also has a meaningful
interpretation in the ordinal case. Nevertheless, in the ordinal case, a different
approach is also possible. Here, it would also be reasonable to define maximal
dispersion as an extreme two-point distribution, where the minimal and the
maximal value of the range have probability 0.5 each; see Kiesl (2003) for
instance. But we shall not consider the latter approach here.

Now that the extremes of categorical dispersion are known, we can think of
dispersion measures 𝜈 that map these extremes at the extremes of their range.
In fact, several measures for this purpose are readily available in the literature;
see the survey in Appendix A of Weiß & Göb (2008), for instance. Furthermore,
any concentration index can be used as a measure of dispersion.

For the sake of simplicity, we consider measures 𝜈 with range [0; 1], where 0
refers to minimal dispersion, and 1 to maximal dispersion. Two popular
(and, in the author’s opinion, quite useful) measures of categorical dispersion
are the Gini index and entropy. We define the (sample) Gini index as

𝜈G = d + 1
d

(
1 −

∑
j∈

𝜋2
j

)
and �̂�G = d + 1

d

(
1 −

∑
j∈

�̂�2
j

)
, (6.1)

respectively. The theoretical Gini index 𝜈G has range [0; 1], where increasing
values indicate increasing dispersion, with the extremes 𝜈G = 0 iff Xt has
a one-point distribution, and 𝜈G = 1 iff Xt has a uniform distribution. The
sample Gini index �̂�G is asymptotically normally distributed in the i.i.d. case,

and the variance is approximated by 4
T

(
d+1

d

)2
(∑

j∈𝜋
3
j −

(∑
j∈𝜋

2
j

)2
)

.

Furthermore, although it is a biased estimator of 𝜈G, its bias is easily corrected
in the i.i.d. case by considering T

T−1
�̂�G instead (Weiß, 2011a).

As an alternative, we define the (sample) entropy as

𝜈E = −1
ln (d + 1)

∑
j∈

𝜋j ln𝜋j and �̂�E = −1
ln (d + 1)

∑
j∈

�̂�j ln �̂�j, (6.2)

respectively, where we always use the convention 0 ⋅ ln 0 ∶= 0. 𝜈E has the same
properties as mentioned for the theoretical Gini index. In the i.i.d. case, �̂�E
is also asymptotically normally distributed, now with approximate variance
1
T

1
ln (d+1)2

(∑
j∈𝜋j

(
ln𝜋j

)2 −
(∑

j∈𝜋j ln𝜋j
)2
)

, but there is no simple way to
exactly correct the bias of �̂�E (Weiß, 2013b).
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Example 6.2.2 (Marginal properties) For the (nominal) wood pewee data
from Example 6.1.2, we get the point estimates 0.918 and 0.929 for the Gini
index and entropy, respectively, both indicating a rather large degree of dis-
persion. In fact, the estimated marginal distribution (0.521, 0.269, 0.210)⊤ is
reasonably close to a uniform distribution. For the (ordinal) sleep states data
from Example 6.2.2, in contrast, the corresponding estimates 0.886 and 0.791,
respectively, indicate less dispersion, which is again also visible from the esti-
mated marginal distribution (0.308, 0.028, 0.112, 0.252, 0.299, 0.000)⊤.

If we would like to do a bias correction or compute confidence intervals for
the dispersion measures in Example 6.2.2, we would first need to further inves-
tigate the serial dependence structure of the available time series, say to estab-
lish a possible i.i.d.-behavior such that the above asymptotics could be used.
Corresponding tools for measuring serial dependence are presented in the next
section.

6.3 Serial Dependence of Categorical Time Series

For the count time series considered in Part I, we simply used the well-known
autocorrelation function to analyze the serial dependence structure; see
Section 2.3. But this function is not defined in the categorical case (neither
nominal nor ordinal), so different approaches are required. Before presenting
particular measures, let us again start with some more general thoughts. As for
the autocorrelation function, we shall look at pairs (Xt,Xt−k) with k ≥ 1 from
the underlying stationary categorical process. If, after having observed Xt−k ,
it is possible to perfectly predict Xt , then it would be plausible to refer to Xt
and Xt−k as perfectly dependent. If, in contrast, knowledge about Xt−k would
not help in these respects, then Xt and Xt−k would seem to be independent.

To translate this intuition into formulae, let us introduce the notation
pij(k) ∶= P(Xt = i, Xt−k = j) with i, j ∈  for the lagged bivariate proba-
bilities, with the sample counterpart p̂ij(k) being the relative frequency
of (i, j) within the pairs (Xk+1,X1),… , (XT ,XT−k). Using the binarization,
we can express the latter as (p̂ij(k))i,j∈ = 1

T−k

∑T
t=k+1 Y t Y⊤

t−k ; that is,
p̂sisj

(k) = 1
T−k

∑T
t=k+1 Yt,i Yt−k,j. The corresponding conditional bivariate prob-

abilities are denoted as pi|j(k) ∶= P(Xt = i | Xt−k = j) = pij(k)∕𝜋j for i, j ∈  ;
see also Appendix B.2. To avoid computational difficulties, we assume that all
marginal probabilities are truly positive (𝜋j > 0 for all j ∈ ); otherwise, we
would first have to reduce the state space.

Following Weiß & Göb (2008), we now say that:

• we have perfect (unsigned) serial dependence at lag k ∈ ℕ iff for any j ∈  ,
the conditional distribution p⋅|j(k) is a one-point distribution
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• we have perfect serial independence at lag k ∈ ℕ iff pij(k) = 𝜋i 𝜋j for any
i, j ∈  (or, equivalently, if pi|j(k) = 𝜋i).

The term “unsigned” was used above for the following reason: the autocor-
relation function may take positive or negative values, hence being a signed
measure, and positive autocorrelation implies, amongst other things, that large
values tend to be followed by large values (and vice versa). This motivates us to
introduce an analogous concept of signed categorical dependence, where posi-
tive dependence implies that the process tends to stay in the state it has reached
(and vice versa). So again following Weiß & Göb (2008), and given that we have
already established perfect serial dependence at lag k (in the unsigned sense
above), we now say that

• we even have perfect positive serial dependence iff all pi|i(k) = 1, or
• we even have perfect negative serial dependence iff all pi|i(k) = 0.

The latter implies that Xt necessarily has to take a state other than Xt−k . A
number of measures of unsigned serial dependence have been proposed in the
literature so far (Dehnert et al., 2003; Weiß & Göb, 2008; Biswas & Song, 2009;
Weiß, 2013b). We shall consider one such measure here, namely Cramer’s 𝑣,
where the selection is motivated by the attractive properties of the theoretical 𝑣
as well as of the sample version �̂� of this measure. It is defined by

𝑣(k) ∶=

√√√√ 1
d

∑
i,j∈

(pij(k) − 𝜋i𝜋j)2

𝜋i𝜋j
and

�̂�(k) ∶=

√√√√ 1
d

∑
i,j∈

(p̂ij(k) − �̂�i�̂�j)2

�̂�i�̂�j
, respectively.

(6.3)

𝑣(k) has the range [0; 1], where the boundaries 0 and 1 are reached iff we have
perfect serial independence/dependence at lag k. The distribution of its sample
counterpart �̂�(k), in the case of an underlying i.i.d. process, is asymptotically
approximated by a 𝜒2-distribution (Weiß, 2013b): T d �̂�2(k) ∼

a
𝜒2

d2 .
This relationship is quite useful in practice, since it allows us to uncover sig-

nificant serial dependence. If the null of serial independence at lag k is to be
tested on (approximate) level 𝛼, and if 𝜒2

d2; 1−𝛼 denotes the (1 − 𝛼)-quantile of

the 𝜒2
d2 -distribution, then we will reject the null if �̂�(k) >

√
1

T d
𝜒2

d2; 1−𝛼 . This
critical value can also be plotted into a graph of �̂�(k) against k, as a substitute
for the ACF plot familiar from real-valued time series analysis; see also Remark
2.3.1. On the other hand, this asymptotic result also shows that �̂�(k) is generally
a biased estimator of 𝑣(k).
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As a measure of signed serial dependence, we consider the (sample) Cohen’s 𝜅

𝜅(k) =

∑
j∈

(
pjj(k) − 𝜋2

j

)
1 −

∑
j∈ 𝜋2

j
and �̂�(k) ∶=

∑
j∈

(
p̂jj(k) − �̂�2

j

)
1 −

∑
j∈ �̂�2

j
. (6.4)

The range of 𝜅(k) is given by
[
−

∑
j∈𝜋

2
j

1−
∑

j∈𝜋
2
j
; 1

]
, where 0 corresponds to serial

independence, with positive (negative) values indicating positive (negative)
serial dependence at lag k. For the i.i.d. case, Weiß (2011a) showed that �̂�(k)
is asymptotically normally distributed, with approximate mean −1∕T and
variance 1

T
(1 − (1 + 2

∑
j∈𝜋

3
j − 3

∑
j∈𝜋

2
j )∕(1 −

∑
j∈𝜋

2
j )

2). So there is only a
small negative bias, which is easily corrected by adding 1∕T to �̂�(k), and the
asymptotic result can again be applied to test for significant dependence.

Example 6.3.1 (Serial dependence plots) Let us have a look again at the
wood pewee time series from Example 6.1.2. On level 𝛼 = 0.05, we want to
test for serial dependence in the data. Instead of evaluating the results numer-
ically, we will draw a “serial dependence plot” analogous to the common plots
of the sample ACF. With T = 1327 and d = 2, it follows that the critical value
for �̂�(k) equals about 0.060. For �̂�(k), we also require information about the
marginal distribution to compute the asymptotic distribution. So we plug �̂�

instead of 𝝅 into the above asymptotic formula and obtain the two-sided crit-
ical values −0.040 and 0.038. The resulting plots are shown in Figure 6.4. Both
indicate strong significant serial dependencies. As a consequence, returning to
the discussion at the end of Section 6.2, confidence intervals for 𝜈G or 𝜈E could
not be constructed with the asymptotics given there, since these rely on an i.i.d.
assumption. Besides the serial dependencies being very strong, regular patterns
can also be observed. �̂�(k) shows larger values at even lags k than at the adja-
cent odd lags. An even more complex pattern is observed for �̂�(k), with negative
values at odd lags, positive values at even lags, and with much larger values at
lags of the form k = 4l than k = 4l − 2. These periodicities appear plausible in
view of our earlier discussion in Remark 6.1.3. They also match the analyses
of Raftery & Tavaré (1994) and Berchtold (2002), who emphasize the repeated
occurrence of certain patterns, especially the pattern “1312”.

At this point, it is also illuminating to look at the “partial versions” of �̂�(k)
and �̂�(k); that is, at a partial Cramer’s 𝑣 and a partial Cohen’s 𝜅, defined by
exactly the same relation as in Theorem B.3.4, but replacing 𝜌 by 𝑣 or 𝜅; see
also the discussion in Section 7.2. For both partial measures, a rather abrupt
decline after lag 4 can be observed (see Table 6.3).

This indicates some kind of fourth-order autoregressive dependence, which
is in line with a result in Berchtold (2002), where a fourth-order Markov model
performed quite well. Many details about Markov models are provided in
Section 7.1.
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Figure 6.4 Serial dependence plots of wood pewee data based on (a) Cramer’s �̂�(k), (b)
Cohen’s �̂�(k). See Example 6.3.1.

For completeness, the serial dependence plots for the EEG sleep state data
(Example 6.1.1) are also shown, in Figure 6.5, although these data are even
ordinal. This specific application illustrates a possible issue with Cramer’s 𝑣:
for short time series (here, we have T = 107), it may be that some states are
not observed (the state ‘aw’ in this case). To circumvent division by zero when

Table 6.3 Partial Cramer’s 𝑣 and partial Cohen’s 𝜅 for wood pewee data.

k 1 2 3 4 5 6 7

�̂�part(k) 0.626 0.665 −0.207 0.315 0.053 −0.027 0.024
�̂�part(k) −0.542 −0.157 −0.564 0.431 0.143 0.137 −0.041
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Figure 6.5 Serial dependence plots of EEG sleep state data, based on (a) Cramer’s �̂�(k), (b)
Cohen’s �̂�(k); see Example 6.1.1.

computing (6.3), all summands related to ‘aw’ have been dropped while com-
puting �̂�(k). The dependence measure �̂�(k), in contrast, is robust with respect
to zero frequencies.

Let us conclude this section with the special case of a binary process (that is,
d = 1). If the range of Xt is coded by 0 and 1, then a quantitative interpretation is
possible, since each Xt then simply follows a Bernoulli distribution with 𝜋1 = 𝜋

and 𝜋0 = 1 − 𝜋; see Example A.2.1.

Example 6.3.2 (Serial dependence for binary processes) Computing the
Gini index (6.1), we obtain 𝜈G = 2 (1 − (1 − 𝜋)2 − 𝜋2) = 4𝜋(1 − 𝜋), so except
the factor 4, this coincides with the variance of Xt .

For the autocovariance function, in turn, we get 𝛾(k) = E[Xt Xt−k] − E[Xt]2 =
p11(k) − 𝜋2. Furthermore, p00(k) = 1 − 𝜋 − p01(k) = 1 − 𝜋 − 𝜋 + p11(k), so
p00(k) − (1 − 𝜋)2 equals p11(k) − 𝜋2. Altogether, this shows that

𝜌(k) = 𝛾(k)
𝛾(0)

=
1
2

∑
j∈{0,1}

(
pjj(k) − 𝜋2

j

)
1
2

∑
j∈{0,1}

(
𝜋j − 𝜋2

j

) = 𝜅(k);

that is, autocorrelation function and Cohen’s 𝜅 are identical to each other in
the binary case. Analogously, it follows that 𝑣(k) = |𝜌(k)| in this case.
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7

Models for Categorical Time Series

As in Part I, Markov models are very attractive for categorical processes,
because of the ease of interpreting the model, making likelihood inferences
(see Remark B.2.1.2 in the appendix) and making forecasts. However, without
further restrictions concerning the conditional distributions, the number
of model parameters becomes quite large. Therefore, Section 7.1 presents
approaches for defining parsimoniously parametrized Markov models. One of
these approaches is linked to a family of discrete ARMA models, which exhibit
an ARMA-like serial dependence structure and allow also for non-Markovian
forms of dependence; see Section 7.2. Note that the count data version of this
model was discussed in Section 5.3. Two other approaches from Chapter 5,
namely hidden-Markov models and regression models, can also be adapted to
the categorical case, as described in Sections 7.3 and 7.4, respectively.

7.1 Parsimoniously Parametrized Markov Models

Perhaps the most obvious approach to model a categorical process (Xt)ℤ with
state space = {s0,… , sd} is to use a (homogeneous) pth-order Markov model;
see (B.1) for the definition:

P(Xt = x | Xt−1 = x−1,…) = p(x | x−1,… , x−p).

The idea of having a limited memory is often plausible in practice, and the
Markov assumption is also advantageous, say for parameter estimation (see
Remark B.2.1.2) or for forecasting. Concerning the latter application, it is
important to note that a pth-order Markov process can always be transformed
into a first-order one (for p = 1, we speak of a Markov chain; see Appendix B.2)
by considering the vector-valued process (X t)ℤ with X t ∶= (Xt,… ,Xt−p+1)⊤.
And for a Markov chain with transition matrix P, in turn, h-step-ahead transi-
tion probabilities are obtained as the entries of the matrix Ph. So, to summarize,
h-step-ahead conditional distributions of the form P(XT+h | xT ,… , xT−p+1) are
calculated with relatively little effort for a pth-order Markov process.

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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Then, point forecasts are computed as a mode of this conditional distribu-
tion, or, for an ordinal process, as the median. In the ordinal case, it is obvious
how to define a prediction region on level ≥ 1 − 𝛼: for a two-sided region, the
limits are defined based on the 𝛼∕2- and the (1 − 𝛼∕2)-quantile of the condi-
tional distribution, while one uses the 𝛼- or (1 − 𝛼)-quantile, respectively, in
case of a one-sided region (“best/worst-case scenario”). If 𝛼 is very small, how-
ever, it may be that one ends up with a trivial region (say, the full range ). The
same problem may occur in the nominal case, but here, in addition, a reason-
able definition of a prediction region is more difficult because of the lack of a
natural ordering. Commonly, one defines a prediction set for XT+h to consist of
the most frequent states in  (most frequent with respect to the h-step-ahead
conditional distribution) such that the required level ≥ 1 − 𝛼 is ensured.

Example 7.1.1 (Three-state Markov chain) Let us consider two examples
of a three-state Markov chain (d = 2, = {s0, s1, s2}), which are defined by their
transition matrices

P1 =
⎛⎜⎜⎝

0.90 0.05 0.25
0.05 0.80 0.05
0.05 0.15 0.70

⎞⎟⎟⎠ , P2 =
⎛⎜⎜⎝

0.10 0.05 0.60
0.85 0.05 0.25
0.05 0.90 0.15

⎞⎟⎟⎠ .
Solving the invariance equation (B.4), we obtain the corresponding stationary
marginal distributions as

𝝅1 = (0.6, 0.2, 0.2)⊤, 𝝅2 ≈ (0.273, 0.345, 0.381)⊤,
where the latter does not sum exactly to 1 because of rounding. 𝝅2 is closer
to a uniform distribution than 𝝅1; this manifests itself in the Gini dispersions
𝜈G,1 = 0.84 and 𝜈G,2 ≈ 0.991, respectively.

The transition matrix P1 concentrates its probability mass along the diago-
nal; that is, each state tends to be followed by itself (positive dependence). This
is illustrated by the directed graph in Figure 7.1a, where the thickness of the
edges represents the size of the respective transition probabilities, and where
the positive dependence causes the loops to be dominant. Different behavior is
observed for the Markov chain P2, where the diagonal probabilities are close to
zero (negative dependence) and hence the loops in Figure 7.1b are rather thin.
The most probable rules are “s0 ⇒ s1”, “s1 ⇒ s2” and “s2 ⇒ s0”, as can be seen
from the dominant edges in Figure 7.1b.

The respective extent of serial dependence is illustrated by the serial depen-
dence plots shown in Figure 7.1, where only Cohen’s 𝜅 is able to distinguish
between the positive and negative dependencies. The positive values of 𝜅(k)
for k = 3, 6,… in part (d) are reasonable, since the above rules imply a probable
return to the starting state after three time units.

The computation of the serial dependence measures (6.3), (6.4) for a Markov
chain with transition matrix P and stationary marginal distribution 𝝅, as in
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Figure 7.1 Visual representation of two three-state Markov chains (a) P1 and (b) P2; see
Example 7.1.1.
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Figure 7.2 Serial dependence plots of two three-state Markov chains: (a, b) P1 and (c, d) P2;
see Example 7.1.1.

Example 7.1.1, is done by first computing the matrices P(k) ∶= (pij(k))i,j of
bivariate joint probabilities via P(k) = Pk diag(𝜋0,… , 𝜋d).

While a full Markov model might be a feasible approach if p is very small,
higher orders p will cause a practical problem: a general pth-order Markov
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process (that is, where the conditional probabilities are not further restricted
by parametric assumptions) has a huge number of model parameters,
d (d + 1)p, which increases exponentially in p. This problem becomes visible in
Figure 7.3, where the possible paths in the past for increasing p are illustrated.
Each path x−1,… , x−p (out of (d + 1)p such paths) requires d parameters to
be specified to obtain the conditional distribution p(⋅ | x−1,… , x−p), thus
leading to altogether d (d + 1)p parameters. For the EEG sleep state data from
Example 6.1.1, for instance, we have d + 1 = 6 states such that a first-order
Markov model would already require 30 parameters to be estimated (from
only T = 107 observations available).

To make Markov models more useful in practice, the number of parameters
has to be reduced. One suggestion in this direction is due to Bühlmann &
Wyner (1999): the variable-length Markov model (VLMM). Here, the “em-
bedding Markov model” possibly has a rather large order p, but then several
branches of the tree in Figure 7.3 are “cut” by assuming identical conditional
distributions; that is, by assuming shortened tuples (x−1,… , x−c) ∈ c with
c < p such that

P(Xt = x | Xt−1 = x−1,… ,Xt−p = x−p) = p(x | x−1,… , x−c) (7.1)

for all (x−c−1,… , x−p) ∈ p−c and all x ∈  . Hence, if the last c observations have
been equal to x−1,… , x−c, the remaining past is negligible. So the order p of
the embedding Markov model determines the maximal length of the required
memory, but depending on the observed past, a shorter memory may also suf-
fice, which explains the name “variable-length” Markov model. While this kind
of parameter reduction is reasonable at a first glance, the number of possible
VLMMs is very large, so the model choice is non-trivial. Algorithms for con-
structing VLMMs have been proposed by Ron et al. (1996).

s0

s0

s0

Xt Xt–1 Xt–2 Xt–3
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Figure 7.3 Tree structure of Markov model: past observations influencing current outcome.
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Another proposal to reduce the number of parameters of the full Markov
model aims at introducing parametric relations between the conditional
probabilities: the pth-order mixture transition distribution (MTD(p)) model
of Raftery (1985). The idea is to start with a (full) Markov chain with transition
matrix Q = (qi|j)i,j∈ (Appendix B.2), and to define the pth-order conditional
probabilities as a mixture of these transition probabilities:

p(x | x−1,… , x−p) ∶=
p∑

j=1
𝜆j qx|x−j

for all x, x−1,… , x−p ∈  . (7.2)

Here,
∑p

j=1 𝜆j = 1 is required. A common further restriction is to assume all
𝜆j ≥ 0, but it would even be possible to allow some 𝜆j to be negative (Raftery,
1985).

While the general pth-order Markov model has d (d + 1)p parameters, this
number is now reduced to d (d + 1) + p − 1; that is, we have the number of
parameters for a Markov chain (the ones from Q) plus only one additional
parameter for each increment of p. Since the conditional probabilities are just
some kind of weighted mean of transition probabilities from Q, Raftery (1985)
showed that the stationary marginal distribution 𝝅 for positive Q is simply
obtained as the solution of

Q 𝝅 = 𝝅, (7.3)

see also (B.4). Furthermore, Raftery (1985) showed that the bivariate proba-
bilities pij(k) satisfy a set of Yule–Walker-type equations. Denoting P(k) ∶=
(pij(k))i,j for k ∈ ℕ, and P(0) ∶= diag(𝜋0,… , 𝜋d), then

P(k) =
p∑

r=1
𝜆r Q P(|k − r|). (7.4)

For p = 2, for instance, we immediately obtain that P(1) = (I − 𝜆2 Q)−1𝜆1
Q P(0), and the remaining P(k)s are computed via (7.4). In this way, (7.4) can
be used to compute serial dependence measures such as Cramer’s 𝑣(k) from
(6.3) or Cohen’s 𝜅(k) from (6.4), although simple closed-form results will
usually not be available due to the general form of Q. Note that because of
(7.3), Equation 7.4 can also be rewritten in a centered version as

P(k) − 𝝅 𝝅⊤ =
p∑

r=1
𝜆r Q (P(|k − r|) − 𝝅 𝝅⊤).

Approaches for parameter estimation are discussed by Raftery & Tavaré (1994).
For a survey of results for MTD models, see Berchtold & Raftery (2001).

Example 7.1.2 (Three-state MTD(2) processes) Let us pick up
Example 7.1.1. We define two three-state MTD(2) models by setting Q1 ∶= P1
and Q2 ∶= P2, so the stationary marginal distributions remain 𝝅1,𝝅2 as before;
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Figure 7.4 Serial dependence plots of three-state MTD(2) models : (a, b) (Q1, 𝜆) and (c, d)
(Q2, 𝜆); see Example 7.1.2.

see (7.3). We choose 𝜆1 ∶= 𝜆 ∶= 0.2 and 𝜆2 ∶= 1 − 𝜆 = 0.8 such that lag 2 gets
a higher weight than lag 1. Comparing the resulting serial dependence plots in
Figure 7.4 with those of the corresponding Markov chains (the MTD(1) model)
in Figure 7.2, we see increased values for even lags k but reduced ones for
odd lags, as to be expected from the chosen weights. Furthermore, especially
for model 1, we generally observe increased values for higher lags; that is, the
second-order model indeed leads to a longer memory.

A further reduction in the number of parameters is obtained by assuming
parametric relations for Q. Jacobs & Lewis (1978c) and Pegram (1980) suggest
defining qi|j ∶= (1 − 𝜆) 𝜋i + 𝜆 𝛿i,j with 𝜆 ∈ (0; 1) such that

p(x | x−1,… , x−p) = (1 − 𝜆) 𝜋x + 𝜆

p∑
j=1

𝜆j 𝛿x,x−j
. (7.5)

Jacobs & Lewis (1978c) require 𝜆j ≥ 0 and refer to these models as the discrete
autoregressive models of order p (DAR(p)), while Pegram (1980) even allows
some 𝜆j to be negative (see above). This model has only d + p parameters. We
shall provide a more detailed discussion of it in Section 7.2 when considering
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the extension to a full discrete ARMA model. Also, the discussion of another
type of parsimoniously parametrized Markov model, namely the autoregressive
logit model, is postponed until later; see Example 7.4.4.

Example 7.1.3 (Binary Markov chain) To conclude this section, let us
have a look at the special case of a binary Markov process (that is, d = 1),
where we use the coding  = {0, 1} for the state space to simplify the notation,
as in Example 6.3.2. If the Markov order equals p = 1 (so a binary Markov
chain; see Appendix B.2), then we have only two model parameters. A useful
parametrization in the stationary case is

P =
(

p0|0 p0|1
p1|0 p1|1

)
=
(

(1 − 𝜋)(1 − 𝜌) + 𝜌 (1 − 𝜋)(1 − 𝜌)
𝜋(1 − 𝜌) 𝜋(1 − 𝜌) + 𝜌

)
. (7.6)

Then 𝜋 ∈ (0; 1) determines the marginal distribution, P(Xt = 1) = 𝜋 =
1 − P(Xt = 0), and 𝜌 ∈ (max

{ −𝜋
1−𝜋

,
1−𝜋
−𝜋

}
; 1) controls the serial dependence

structure, as we have an AR(1)-like autocorrelation function 𝜌(k) = 𝜌k . Denot-
ing 𝜋1 ∶= 𝜋 and 𝜋0 ∶= 1 − 𝜋, the transition probabilities in (7.6) can also be
written as 𝜋i|j = (1 − 𝜌) 𝜋i + 𝜌 𝛿i,j, which shows that a binary Markov chain has
a DAR(1)-like dependence structure; see (7.5).

With increasing p, not only the number of parameters of a binary Markov
model increases rapidly (2p); in general, we also do not have an AR(p)-like
autocorrelation structure anymore. An exception is the binary version of the
MTD(p) model. If Q is assumed to be parametrized as in (7.6) – that is, qi|j =
(1 − 𝜌) 𝜋i + 𝜌 𝛿i,j – then it immediately follows that (7.5) holds. This implies an
AR(p)-like autocorrelation structure; see Section 7.2 below.

A closely related approach to the binary MTD(p) and DAR(p) models
is the binary AR(p) model of Kanter (1975), which was extended to a full
binary ARMA(p, q) model by McKenzie (1981) and Weiß (2009d). The model
recursion looks somewhat artificial, as it uses addition modulo 2. On the other
hand, this definition also allows for negative autocorrelations; see the cited
references for further details.

7.2 Discrete ARMA Models

Based on preliminary works (Jacobs & Lewis, 1978a–1978c) on discrete coun-
terparts to the ARMA(1, q) and AR(p) model, respectively, Jacobs & Lewis
(1983) introduced two types of discrete counterparts to the full ARMA(p, q)
model. In particular the second of these models, referred to as the NDARMA
model by Jacobs & Lewis (1983), is quite attractive, since its definition and
serial dependence structure are very close to those of a conventional ARMA
model; see also our discussion of the count data version of this model in
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Section 5.3. Let us pick up Definition 5.3.1 and adapt it to the categorical case
(Weiß & Göb, 2008).

Definition 7.2.1 (NDARMA model) Let the observations (Xt)ℤ and the
innovations (𝜖t)ℤ be categorical processes with state space  , where (𝜖t)ℤ is
i.i.d. with marginal distribution 𝝅, and where 𝜖t is independent of (Xs)s<t . The
random mixture is obtained through the i.i.d. multinomial random vectors

(𝛼t,1,… , 𝛼t,p, 𝛽t,0,… , 𝛽t,q) ∼ MULT(1; 𝜙1,… , 𝜙p, 𝜑0,… , 𝜑q),

which are independent of (𝜖t)ℤ and of (Xs)s<t . Then (Xt)ℤ is said to be an
NDARMA(p, q) process (and the cases q = 0 and p = 0 are referred to as a
DAR(p) process and a DMA(q) process, respectively) if it follows the recursion

Xt = 𝛼t,1 ⋅ Xt−1 +…+ 𝛼t,p ⋅ Xt−p + 𝛽t,0 ⋅ 𝜖t +…+ 𝛽t,q ⋅ 𝜖t−q. (7.7)

Here, if the state space  is not numerically coded, we assume 0 ⋅ s = 0, 1 ⋅ s = s
and s + 0 = s for each s ∈  .

Note that the NDARMA(p, q) model has only d + p + q parameters.
Although its recursion is written down in an “ARMA” style, Xt does nothing
but choose the state of either Xt−1 or … or 𝜖t−q. So Xt is generated as a random
choice from Xt−1,… , 𝜖t−q (a random mixture). But as we shall see in (7.9),
the ARMA-like notation is indeed adequate and reasonable for NDARMA
processes.

With the same argument as in Section 5.3, it follows that Xt and 𝜖t have
the same stationary marginal distribution; that is, P(Xt = i) = 𝜋i = P(𝜖t = i) for
all i ∈  . It is useful to know that an NDARMA model can always be repre-
sented by a (p + q)-dimensional finite Markov chain with a primitive transition
matrix (Jacobs & Lewis, 1983; Weiß, 2013b). Using this Markov representa-
tion, Weiß (2013b) showed that an NDARMA process is 𝜙-mixing with expo-
nentially decreasing weights (see Definition B.1.5) such that the central limit
theorem (CLT) in Billingsley (1999, p. 200) is applicable. Conditional distribu-
tions of an NDARMA process are determined by

P(Xt = i0 | Xt−1 = i1,… , 𝜖t−1 = j1,…)
= 𝜑0 𝜋i0

+
∑p

r=1 𝛿i0,ir
𝜙r +

∑q
s=1 𝛿i0,js

𝜑s,
(7.8)

which reduces to an expression like the one in (7.5) for the DAR(p) case
(q = 0). Only in the latter case, we have Markov dependence (of order p), while
an NDARMA(p, q) process (Xt)ℤ with q ≥ 1 is not Markovian, although it can
be represented as a (p + q)-dimensional Markov chain.

Let us now investigate the serial dependence structure of an NDARMA
(p, q) process (Xt)ℤ using the concepts described in Section 6.3. Only positive
dependence is possible (implying that NDARMA processes tend to show long
runs of their states); that is, 𝜅(k) ≥ 0, and it even holds that 𝜅(k) = 𝑣(k) (Weiß &
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Göb, 2008). These properties can be utilized to identify if an NDARMA model
might be appropriate for a set of time series data (by looking at the sample
versions �̂�(k), �̂�(k)). For example, the serial dependence measures for the wood
pewee time series shown in Figure 6.4 clearly deviate from NDARMA behavior,
with negative dependencies and strong deviation between �̂�(k) and �̂�(k).

Since both measures lead to identical results anyway, let us focus on 𝜅(k) in
the following. 𝜅(k) itself is obtained from a set of Yule–Walker-type equations
(Weiß & Göb, 2008):

𝜅(k) =
p∑

j=1
𝜙j ⋅ 𝜅(|k − j|) + q−k∑

i=0
𝜑i+k ⋅ r(i) for k ≥ 1, (7.9)

where the r(i) satisfy

r(i) =
i−1∑

j=max{0,i−p}
𝜙i−j ⋅ r(j) + 𝜑i 𝟙(0 ≤ i ≤ q),

which implies r(i) = 0 for i < 0, and r(0) = 𝜑0. Note the analogy to (5.22) for
the autocorrelation function in the count data case. The relation between 𝜅(k)
and the bivariate distributions with lag k is given by

pi|j(k) = 𝜋i ⋅ (1 − 𝜅(k)) + 𝛿i,j ⋅ 𝜅(k), (7.10)
see Weiß & Göb (2008). The equations (7.9) can now be applied in an analogous
way to the use of the original Yule–Walker equations for an ARMA process;
see Appendix B.3. For a DMA(q) model (p = 0), we have r(i) = 𝜑i. Hence,
𝜅(k) =

∑q−k
i=0 𝜑i 𝜑i+k such that 𝜅(k) vanishes after lag q; see (B.11) for the

corresponding MA(q) result. So the model order q can be estimated using �̂�(k)
or �̂�(k), as described in Appendix B.3.

For a DAR(p) model (q = 0), in turn, we have 𝜅(k) =
∑p

j=1 𝜙j ⋅ 𝜅(|k − j|),
which corresponds exactly to the AR(p) result (B.13). Hence, defining the
partial Cohen’s 𝜅 (or partial Cramer’s 𝑣) with exactly the same relation as in
Theorem B.3.4 (just replacing 𝜌 by 𝜅 or 𝑣), we obtain a tool for identifying
the autoregressive order p: 𝜅part(k) = 𝑣part(k) = 0 for lags k > p. These results
also apply to the binary MTD(p) model; see Section 7.1, which was shown to
have an DAR(p) dependence structure, and where 𝜌(k) = 𝜅(k) according to
Example 6.3.1.

Example 7.2.2 (DAR(1) model) The DAR(1) model constitutes a parsi-
moniously parametrized Markov chain with 𝜅(k) = 𝜙k

1. Its transition matrix is
given by

P =

⎛⎜⎜⎜⎜⎝
𝜋0(1 − 𝜙1) + 𝜙1 𝜋0(1 − 𝜙1) … 𝜋0(1 − 𝜙1)
𝜋1(1 − 𝜙1) 𝜋1(1 − 𝜙1) + 𝜙1 ⋮

⋮ ⋱

𝜋d(1 − 𝜙1) 𝜋d(1 − 𝜙1) … 𝜋d(1 − 𝜙1) + 𝜙1

⎞⎟⎟⎟⎟⎠
, (7.11)
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see (7.8); that is, the diagonal probabilities are increased by 𝜙1 compared to the
non-diagonal ones, thus increasing the tendency to stay in the current state
(positive dependence). This structure is completely analogous to the transi-
tion matrix of a binary Markov chain; see (7.6). Note that the h-step-ahead
transition probabilities do not need to be computed from Ph, but they are
directly available from (7.10) as pi|j(h) = 𝜋i (1 − 𝜙h

1) + 𝛿i,j 𝜙
h
1. This shows that

pi|j(h) → 𝜋i geometrically fast, confirming the ergodicity of the DAR(1)
process (Appendix B.2.2).

Remark 7.2.3 (Derived processes) If (Xt)ℤ is a process exhibiting a certain
serial dependence structure, and if (Zt)ℤ is derived from it by applying a deter-
ministic function f ; that is, Zt ∶= f (Xt) – for example Zt equals one component
of the binarization Y t of Xt – then, generally, the serial dependence structure is
not preserved. For instance, if (Xt)ℤ is a Markov chain and Zt ∶= Yt,j for some
j ∈  , then (Zt)ℤ is usually not a Markov chain anymore. An exception is the
NDARMA process, where, due to the construction (7.7), any binarization (Yt,j)ℤ
shows the same serial dependence structure as the parent process (Xt)ℤ. An
analogous statement also holds for hidden-Markov processes, as discussed in
Section 7.3.

Now let us look at the sample measures of dispersion from Section 6.2 and the
sample measures of serial dependence from Section 6.3. There, we presented
the asymptotic properties of these measures if applied to i.i.d. categorical pro-
cesses. Now let us analyze what changes if these measures are applied to an
underlying NDARMA process.

The asymptotic results for the Gini index (6.1) and the entropy (6.2) are
easily adapted. As shown by Weiß (2013b), they are still asymptotically
normally distributed, and the i.i.d. variance just has to be inflated by the factor

c ∶= 1 + 2 ⋅
∞∑

k=1
𝜅(k) < ∞. (7.12)

While c = 1 in the i.i.d. case, it is given by c = (1 + 𝜙1)∕(1 − 𝜙1) for a DAR(1)
model, as an example. So altogether, we have

V [�̂�G] ≈
4c
T

(
d + 1

d

)2
(∑

j∈
𝜋3

j −
(∑

j∈
𝜋2

j

)2
)
,

V [�̂�E] ≈
c
T

1
ln (d + 1)2

(∑
j∈

𝜋j (ln𝜋j)2 −
(∑

j∈
𝜋j ⋅ ln𝜋j

)2
)
.

(7.13)

At least for the sample Gini index, an exact bias correction is possible. As shown
by Weiß (2013b),
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E[�̂�G] = 𝜈G

(
1 − 1

T
⋅

(
1 + 2

T−1∑
k=1

(1 − k
T
) ⋅ 𝜅(k)

))
≥ 𝜈G

T − c
T

. (7.14)

The latter formula provides a simple way to obtain an approximate bias correc-
tion, and it is exact in the i.i.d. case.

For the sample serial dependence measures from Section 6.3, asymptotic
normality can also be established, and explicit expressions for the asymptotic
variances can be derived. But these expressions are much more complex
than in the i.i.d. case, so we refer the reader to Weiß (2013b) for further
details.

Let us now look at applications of discrete ARMA models. An application
of count time series to video traffic count data was sketched in Example 5.3.2.
For categorical time series, Chang et al. (1984) and Delleur et al. (1989) used
discrete ARMA models for modeling daily precipitation. While Chang et al.
(1984) used a three-state model (that is, d = 2) representing either dry days,
days with medium or with strong precipitation, Delleur et al. (1989) used a
two-state model (that is, d = 1) to just distinguish between wet and dry days.
If the rainfall quantity also has to be considered, Delleur et al. (1989) propose
using a state-dependent exponential distribution, analogous to the correspond-
ing approach with HMMs (Sections 5.2 and 7.3). Another field of application
of discrete ARMA models is DNA sequence data; see, for example, Dehnert
et al. (2003). Returning to this application, let us consider the DNA sequence
corresponding to the bovine leukemia virus.

Example 7.2.4 (Bovine leukemia DNA data) We consider a “time”
series that was analyzed in Weiß & Göb (2008) and Weiß (2013b): the DNA
sequence of the bovine leukemia virus, which was published by the National
Center for Biotechnology Information (NCBI).1 It is of length T = 8419,
and its range consists of the d + 1 = 4 DNA bases ‘a’, ‘c’, ‘g’ and ‘t’ (adenine,
cytosine, guanine and thymine, respectively). Certainly, such a biological
sequence cannot be assumed to be a realization of a stochastic process, but
corresponding stochastic models are commonly applied in practice as a tool
for summarizing properties of the considered sequence; see Churchill (1989)
and Dehnert et al. (2003), for instance.

For the bovine leukemia DNA data, the rate evolution graph shown in
Figure 7.5a indicates stationary behavior. The estimated marginal distribution
�̂� = (0.220, 0.331, 0.210, 0.239)⊤ is quite close to a uniform distribution (with
the mode being ‘c’). So it is not surprising that the point estimates 0.988 and
0.987 for Gini index and entropy, respectively, are close to 1, indicating a
strong degree of dispersion.

1 See http://www.ncbi.nlm.nih.gov/nuccore/NC_001414?%3Fdb=nucleotide.
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Figure 7.5 Bovine leukemia DNA data: (a) rate evolution graph; serial dependence plots
based on (b) Cramer’s �̂�(k) and (c) Cohen’s �̂�(k). See Example 7.2.4.

The serial dependence plots shown in Figure 7.5 both exhibit significant serial
dependencies, especially for lags 1 and 2, although the absolute extent is rather
small, even at lag 1. This, together with an analysis of the corresponding par-
tial �̂� and �̂�, indicates that an AR(1)- or AR(2)-like model might be appropriate
for the series. The values of �̂�(k) and �̂�(k) are also relatively close to each other,
and the ones of �̂�(k) are mainly positive. So we shall try to fit the DAR(1) and
DAR(2) models to the data, as well as the MTD(1) (full first-order Markov
model) and MTD(2) model as further candidate models. In any case, final esti-
mates are obtained using the conditional maximum likelihood (CML) approach
(see Remark B.2.1.2), and they are computed with a numerical optimization
routine.

Let us start with the DAR(1) and DAR(2) models. After obtaining initial esti-
mates based on �̂� and �̂�(k) (the “method of moments”), the CML estimates
are computed by maximizing the respective conditional log-likelihood func-
tions 𝓁(𝜽 | xp,… , x1) =

∑T
t=p+1 ln p(xt | xt−1,… , xt−p) from (B.6). The required

transition probabilities are given by (7.8), with p = 1, 2 and q = 0, leading to the
CML estimates shown in Table 7.1.



�

� �

�

Models for Categorical Time Series 145

Table 7.1 Bovine leukemia DNA data: CML estimates for DAR(p) models, together
with maximized log-likelihood and BIC.

DAR �̂�a,CML �̂�c,CML �̂�g,CML �̂�t,CML �̂�1,CML �̂�2,CML
T

T−p
𝓁max BIC

p = 1 0.220 0.331 0.208 0.241 0.081 −11 446 22 927
p = 2 0.219 0.331 0.209 0.241 0.079 0.020 −11 440 22 926

It can be seen that there is just a little difference between the fitted DAR(1)
and DAR(2) models, so the more parsimonious DAR(1) model appears to
be preferable. It is a Markov chain, the transition matrix of which is easily
computed; see Example 7.2.2. We just have to multiply the marginal proba-
bilities �̂�⋅,CML by 1 − �̂�1,CML and to increase the diagonal elements by �̂�1,CML,
leading to

P̂DAR(1) ≈
⎛⎜⎜⎜⎝

0.283 0.202 0.202 0.202
0.304 0.385 0.304 0.304
0.192 0.192 0.272 0.192
0.222 0.222 0.222 0.302

⎞⎟⎟⎟⎠ ,
where some columns do not sum up to exactly 1 because of rounding. The
columns of P̂DAR(1) are the 1-step-ahead conditional distributions and might be
applied to determine the conditional modes as the point forecasts. Note that ‘c’
is always the most probable state; that is, ‘c’ is the 1-step-ahead point forecast
independent of the previous observation. The h-step-ahead forecast distribu-
tions for h ≥ 2 are computed in the same way but by replacing �̂�1,CML by �̂�h

1,CML;
see Example 7.2.2. However, since �̂�1,CML ≈ 0.081 is already rather close to 0,
they barely differ from the marginal distribution.

For the MTD models, it turned out that the MTD(2) model does not lead to a
visible improvement compared to the MTD(1) model, the parameter estimate
for 𝜆2 is nearly equal to 0. So we concentrate on the fitted MTD(1) model; that
is, a standard Markov chain model with 12 parameters (transition probabili-
ties). CML estimation leads to the following transition matrix and stationary
marginal distribution (the latter being computed from the invariance equation
(B.4)):

P̂MTD(1) ≈
⎛⎜⎜⎜⎝

0.282 0.202 0.233 0.170
0.268 0.392 0.297 0.336
0.226 0.134 0.298 0.225
0.224 0.272 0.172 0.270

⎞⎟⎟⎟⎠ , �̂�MTD(1) ≈
⎛⎜⎜⎜⎝

0.218
0.331
0.210
0.240

⎞⎟⎟⎟⎠ ,
where again some columns do not sum exactly to 1 because of rounding.
Considering the conditional modes as the point forecasts, we obtain the
rules “a ⇒ a”, “c ⇒ c”, “g ⇒ g”, and “t ⇒ c”, which differs from the DAR(1)
rule, which always predicts ‘c’. But the 2-step-ahead conditional distribu-
tions – that is, the columns of P̂2

MTD(1)– are again very close to �̂�MTD(1), so the
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Table 7.2 Gini index and entropy for Bovine leukemia
DNA data, and for fitted models.

Observed DAR(1) Full Markov

𝜈G 0.98767 0.98763 0.98757
𝜈E 0.98736 0.98728 0.98725

2-step-ahead mode forecast is always equal to ‘c’. This is not surprising in view
of the Perron–Frobenius theorem (Remark B.2.2.1), since the second largest
eigenvalue is rather small, at about 0.156.

In terms of the BIC (≈ 22 825), the full Markov model should be preferred to
the DAR(1) model. Comparing the marginal properties of the fitted models to
the observed ones, the DAR(1) model does reproduce the observed dispersion
slightly better (see Table 7.2): while the full Markov model does better in
terms of the serial dependence structure. For instance, it has 𝜅(1) ≈ 0.0803
and 𝑣(1) ≈ 0.1131 (observed values 0.0804 and 0.1134, respectively), while
𝜅(k) = 𝑣(k) ≈ 0.0806k for the fitted DAR(1) model. For computing these
serial dependence measures, we make use of the fact that the matrix (pij(k))
of bivariate probabilities of a Markov chain is computed as Pk diag(𝝅); see
Appendix B.2.1.

Altogether, the full Markov model seems preferable. Nevertheless, let us
conclude this example with the following exercise. Using the fitted DAR(1)
model, the constant c from (7.12) becomes ≈ 1.175. Following (7.14), we com-
pute the bias-corrected point estimate of the Gini index as T

T−c
�̂�G ≈ 0.98780.

The approximate standard errors are obtained from (7.13) as 0.00141 (Gini)
and 0.00163 (entropy), so approximate 95% confidence intervals follow as
[0.98504; 0.99057] and [0.98417; 0.99055], respectively.

7.3 Hidden-Markov Models

Another important type of model for categorical processes with a
non-Markovian serial dependence structure is the hidden-Markov model
(HMM), which we are already familiar with from the count data case; see
Section 5.2 as well as the book by Zucchini & MacDonald (2009) and the
survey article by Ephraim & Merhav (2002). HMMs refer to a bivariate
process (Xt,Qt)ℕ0

, in which the hidden states Qt (latent states) constitute a
homogeneous Markov chain (Appendix B.2) with range  = {0,… , d


} and

d

∈ ℕ, and where the observable random variables Xt (now also categorical

with state space  = {s0, s1,… , sd}) are generated conditionally independently,
given the state process; see Figure 5.7 for an illustration of the data-generating
mechanism.
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As mentioned in Section 5.2, we may interpret a HMM as a “probabilistic
function of a Markov chain” (Baum & Petrie (1966); see also Remark 7.3.3).
While we shall again concentrate on HMMs for stationary processes, these
models can also be used for non-stationary processes by, for example, includ-
ing covariate information (Remark 5.2.6). HMMs for categorical processes have
been applied in many contexts: in biological sequence analysis (Churchill, 1989;
Krogh et al., 1994) and especially in fields related to natural languages:
• speech recognition (Rabiner, 1989): transforming spoken into written text
• text recognition (Makhoul et al., 1994; Natarajan et al., 2001): handwriting

recognition or optical character recognition
• part-of-speech tagging (Cutting et al., 1992; Thede & Harper, 1999): where

each word in a text is assigned its correct part of speech.
As described in Section 5.2, an HMM for (Xt ,Qt)ℕ0

is defined based on three
assumptions:
• the observation equation (5.8):

P(Xt | Xt−1,… ,Qt ,…) = P(Xt | Qt) for all t ∈ ℕ0,

• the state equation (5.9):
P(Qt | Xt−1,… ,Qt−1,…) = P(Qt | Qt−1,…),

• the Markov assumption with state transition probabilities (5.11):
P(Qt = q | Qt−1 = r) = aq|r for all q, r ∈  = {0,… , d


}.

As before, we denote the hidden states’ transition matrix by A = (aq|r)q,r . The
initial distribution p0 of Q0 is assumed to be determined by the stationarity
assumption; that is, p0 ∶= 𝝅, where 𝝅 satisfies the invariance equation A 𝝅 = 𝝅

(see (B.4)). In contrast to Section 5.2, the time-homogeneous state-dependent
distributions p(⋅|q) – that is, P(Xt = x | Qt = q) = p(x|q) for all t – are categori-
cal distributions, each having d parameters. So altogether, we have d


(d


+ 1)

parameters for the hidden states, plus d (d

+ 1) parameters related to the

observations.
Most of the stochastic properties discussed in Section 5.2 directly carry over

to the categorical case (certainly except those referring to moments, since the
latter do not exist for categorical random variables). For instance, defining again
the diagonal matrices P(x) ∶= diag(p(x|0),… , p(x|d


)) ∈ [0; 1](d

+1) × (d

+1) for

x ∈  , the marginal pmf and the bivariate probabilities are given by (5.13); that
is, by

P(Xt = x) =
∑
q∈

p(x|q) 𝜋q = 𝟏⊤ P(x) 𝝅,

P(Xt = x,Xt−k = y) = 𝟏⊤ P(x) Ak P(y) 𝝅.
(7.15)
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Furthermore, maximum likelihood (ML) estimation is still possible, as
described in Remark 5.2.3, the forecast distributions (5.19) and (5.20) remain
valid, and both decoding schemes from Remark 5.2.4 are also applicable in the
categorical case.

As the main difference, the serial dependence structure of the HMM’s obser-
vations can no longer be described in terms of the ACF, and measures such as
Cramer’s 𝑣 (6.3) or Cohen’s 𝜅 (6.4) have to be computed using (7.15). Measures
of categorical dispersion (Section 6.2), such as the Gini index (6.1) or entropy
(6.2), are also available in this way.

Example 7.3.1 (Two-state HMM) Analogous to Example 5.2.2, let us con-
sider the special case of a categorical HMM with only two hidden states; that
is, with d


= 1. From (7.6), we know that the state transition probabilities aq|r

for q, r ∈ {0, 1} can be rewritten in the form aq|r = (1 − 𝜌) 𝜋q + 𝜌 𝛿q,r with
𝜋0 = 1 − 𝜋1 and with a 𝜌 ∈ (max{− 𝜋1

𝜋0
,− 𝜋0

𝜋1
}; 1). Furthermore, the powers

of A become (Ak)q,r = (1 − 𝜌k) 𝜋q + 𝜌k 𝛿q,r .
As a result, it follows that

P(Xt = x,Xt−k = y) − P(Xt = x) P(Xt−k = y)
(7.15)
= 𝟏⊤ P(x) (Ak − 𝝅 𝟏⊤) P(y) 𝝅 = 𝟏⊤ P(x) (𝜌k (𝛿q,r − 𝜋q))q,r P(y) 𝝅,

which simplifies to

𝜌k ⋅ 𝜋0𝜋1 (p(x|0) − p(x|1)) (p(y|0) − p(y|1)).
So both Cramer’s 𝑣(k) (6.3) and Cohen’s 𝜅(k) (6.4) are proportional to 𝜌k , anal-
ogous to the count data case from Example 5.2.2, where the ACF was propor-
tional to 𝜌k . This serial dependence caused by the underlying Markov chain,
however, becomes damped if the state-dependent distributions p(⋅|0) and p(⋅|1)
do not differ much, since then (p(x|0) − p(x|1)) (p(y|0) − p(y|1)) is close to zero.
See Example 5.2.2 for an analogous conclusion in the count data case.

Example 7.3.2 (Three-state HMM) We define two stationary three-state
HMMs using the same state transition matrix A as in Example 5.2.2 (see
also Example 7.1.1), but with categorical observations having the state space
 = {s0, s1, s2, s3} (d = 3) and the following state-dependent distributions:

HMM1; x = HMM2; x =
p(x|q) s0 s1 s2 s3 s0 s1 s2 s3
q = 0 0.4 0.2 0.2 0.2 0.80 0.10 0.05 0.05

1 0.2 0.4 0.3 0.1 0.05 0.80 0.10 0.05
2 0.1 0.2 0.4 0.3 0.05 0.05 0.40 0.50

So for both models, the hidden state ‘0’ tends to observation ‘s0’, ‘1’ to observa-
tion ‘s1’, and ‘2’ to observations ‘s2’ or ‘s3’. But while this tendency is rather weak
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for model 1 (here, the different state-dependent distributions are quite close to
each other), it is very pronounced for model 2. As expected from Example 7.3.1,
model 1 causes a strong damping of the underlying Markov chain’s serial depen-
dence structure (see Figure 7.2a,b):

HMM1; k = HMM2; k =
1 2 3 4 1 2 3 4

𝜅(k) 0.031 0.022 0.016 0.011 0.293 0.213 0.156 0.114
𝑣(k) 0.038 0.028 0.021 0.016 0.291 0.212 0.157 0.119

The marginal distributions of the observations (7.15) are computed as
(0.30, 0.24, 0.26, 0.20)⊤ and (0.50, 0.23, 0.13, 0.14)⊤, respectively, so the first
one shows more dispersion (Gini index 0.993 vs. 0.881).

Picking up Remark 7.2.3, it is obvious by model construction that any
binarization (Yt,j)ℕ0

of the HMM’s observation process (Xt)ℕ0
, with Yt,j = 𝛿Xt ,j

for a j ∈  , follows an HMM again, now with state-dependent probabilities
P(Yt,j = 1 | Qt = q) = p(j|q) and P(Yt,j = 0 | Qt = q) = 1 − p(j|q). For such a
binary HMM, in turn, moments and hence the ACF will be well-defined,
where the relationship between ACF and 𝑣, 𝜅 has already been investigated;
see Example 6.3.2.

Remark 7.3.3 (Markov representation) In Baum & Petrie (1966), an
HMM is introduced as a “probabilistic function of a Markov chain”. But in the
same article, it is also shown that an HMM can be expressed as a deterministic
function of (another) Markov chain; see also Remark 7.2.3. The idea is quite
simple: define the bivariate process (Zt)ℕ0

by Zt ∶= (Xt ,Qt)⊤, then (Zt)ℕ0
is a

finite Markov chain with transition probabilities

P(Zt = (x, q)⊤ | Zt−1 = (y, r)⊤)
= P(Xt = x | Qt = q) P(Qt = q | Qt−1 = r) = p(x|q) aq|r.

The observable random variables Xt are obtained from the Markovian vari-
ables Zt by applying the deterministic function f (z) ∶= z1. As a benefit of this
representation, if the finite Markov chain (Zt)ℕ0

can be shown to satisfy, say,
some mixing properties (see Definition B.1.5 and Appendix B.2.2), these carry
over to the observations process (Xt)ℕ0

, since this is obtained by just applying a
deterministic function to (Zt)ℕ0

.

Example 7.3.4 (Bovine leukemia DNA data) Let us continue
Example 7.2.4, where we modeled the bovine leukemia DNA series with
its d + 1 = 4 observable states ‘a’, ‘c’, ‘g’ and ‘t’. As an alternative to the models
considered before, we shall now try to fit a two-state HMM. Since the time
series is rather long (T = 8419), we are faced with the numerical issues
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mentioned at the end of Remark 5.2.3, so the likelihood computation has to be
based on (𝑤t∕𝑤t−1,𝝓t) instead of 𝜶t ; see formula (5.18).

The (full) ML estimates of the two-state HMM are

ÂML ≈
(

0.549 0.349
0.451 0.651

)
and �̂�ML ≈

(
0.436
0.564

)
for the hidden states’ stationary Markov model, and the state-dependent
distributions are estimated as

x =
p̂ML(x|q) ‘a’ ‘c’ ‘g’ ‘t’

q = 0 0.449 0.000 0.481 0.070
1 0.043 0.589 0.000 0.368

The maximal log-likelihood equals ≈ −11 412, which is less than for the full
Markov model from Example 7.2.4 ( T

T−1
𝓁max ≈ −11 358), but better than for

the DAR models fitted there. At this point, it should also be mentioned that
a three-state HMM does not lead to a visible improvement in terms of model
performance (see also the discussion below): the full Markov model remains
the preferred choice. However, it is interesting to further interpret and analyze
the fitted two-state HMM.

Looking at the state-dependent distributions p̂ML(⋅|q), it becomes clear that
the hidden state 0 mainly leads to either observation ‘a’ or ‘g’, while state 1 goes
along with ‘c’ and ‘t’. Such a separation is plausible, since the nucleotides ‘a’ and
‘g’ form the group of purines, while ‘c’ and ‘t’ are the pyrimidines. So state 0
might be interpreted as a “purine state”, while state 1 constitutes a “pyrimidine
state”. The corresponding transition matrix ÂML has maximal entries on the
diagonal, so a purine tends to be followed by a purine again, for example, but
the probability for changing between both groups is also rather large. Overall,
�̂�ML shows that the “pyrimidine state” is dominant.

The observations’ marginal distribution within the fitted model, given by
equation (7.15), equals about (0.220, 0.331, 0.210, 0.239)⊤ and thus agrees with
the marginal frequencies up to three decimal places. There is, however, a visible
discrepancy between the sample dependence measures �̂�(k), �̂�(k) on the one
hand (as plotted in Figure 7.5), and the theoretical 𝑣(k), 𝜅(k) within the fitted
model on the other hand. For the latter, we compute (𝑣(k))k = (0.092, 0.018,…)
and (𝜅(k))k = (0.055, 0.011,…), respectively, both being lower than the cor-
responding sample values. This confirms our earlier conclusion that the
two-state HMM is not the optimal choice for the bovine leukemia DNA
series.

Remark 7.3.5 (Higher-order HMM) As pointed out in Remark 5.2.6,
there are several ways of extending the basic HMM to higher-order models,
for example by using a higher-order Markov model (such as an MTD or DAR
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model) for the hidden states (Zucchini & MacDonald, 2009, Section 8.3). With
respect to categorical processes, the double-chain Markov model (DCMM),
as proposed by Berchtold (1999), is particularly worth mentioning. Here, the
current observation Xt is influenced by both the current state Qt and the past
observation Xt−1. So the observation equation (5.8) is modified to

P(Xt | Xt−1,… ,Qt ,…) = P(Xt | Xt−1,Qt) for all t ∈ ℕ0.

A further extension of this model was developed by Berchtold (2002), who
allows for pth-order dependence with respect to past observations, and for
qth-order Markov dependence concerning the hidden states; that is, (5.8) and
(5.9) become

P(Xt | Xt−1,… ,Qt ,…) = P(Xt | Xt−1,… ,Xt−p,Qt) and
P(Qt | Xt−1,… ,Qt−1,…) = P(Qt | Qt−1,… ,Qt−q).

This DCMM(p, q) model was applied by Berchtold (2002) to a categorical time
series representing the song of a wood pewee (as presented in Examples 6.1.2,
6.2.2 and 6.3.1), and to a categorical time series expressing the behavior of
young rhesus monkeys, with four behaviors: “passive”, “explore”, “fear/disturb”
and “play”).

7.4 Regression Models

In Section 5.1, we introduced regression models for time series of counts, the
main advantage of which is their ability to easily incorporate covariate informa-
tion, the latter being represented by the (possibly deterministic) vector-valued
covariate process (Zt)ℤ. In our discussion, we focussed on generalized linear
models (GLMs), where the observations’ conditional mean is linked to a
linear expression of the “available information”. The available information is
not necessarily limited to the covariate information, but it may also include
past observations of the process, as in the case of the conditional regression
models according to Definition 5.1.1. If, however, only the current covariate
is required for “explaining” the current observation, then we referred to such
a situation as a marginal regression model (5.5) (Fahrmeir & Tutz, 2001). In
the sequel, we shall see that the regression approach can also be adapted to
the case of the observations process (Xt)ℤ being categorical. A much more
detailed discussion of such categorical regression models together with several
real-data examples is provided in Chapters 2 and 3 of the book by Kedem &
Fokianos (2002).

Before turning to the general categorical case, let us first look at the special
situation, where (Xt)ℤ is a binary process with the state space being coded as
 = {0, 1} (see Example 6.3.2); that is, where the Xt are Bernoulli random vari-
ables (Example A.2.1). The parameter of the Bernoulli distribution is its “success
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probability”, which is also equal to its mean. Hence, it lends itself to proceed in
the same way as in Section 5.1; that is, to define a GLM with respect to this
mean parameter. So Definition 5.1.1 now reads as follows.

Definition 7.4.1 (Binary regression model) Let (Zt)ℤ be a covariate pro-
cess. The binary process (Xt)ℤ follows a conditional binary regression model if

(i) Xt , conditioned on Xt−1,… and Zt ,…, is Bernoulli distributed according to
Bin(1, 𝜋t), where

(ii) the conditional mean 𝜋t ∶= E[Xt | Xt−1,… ,Zt,…] satisfies

g(𝜋t) = 𝜽⊤V t

with a link function g and a parameter vector 𝜽, where the design vector V t
is a function of Xt−1,… and Zt,…

The inverse of the link function, h ∶= g−1, is referred to as a response function:
𝜋t = h(𝜽⊤V t).

The definition (5.5) of a marginal regression model is adapted accordingly.
Note that 𝜋t is expressed equivalently as 𝜋t = P(Xt = 1 | Xt−1,… ,Zt ,…);
this allows for a simplified notation of the (partial) likelihood function
(Remark 5.1.5), since P(Xt | Xt−1,… ,Zt ,… ,𝜽) now equals 𝜋

Xt
t (1 − 𝜋t)1−Xt . A

detailed discussion of likelihood estimation for binary regression models is
provided by Slud & Kedem (1994).

While in the count data case, we had to ensure that h(𝜽⊤V t) always pro-
duces a positive value, here, we even have to ensure that the value of h(𝜽⊤V t)
is in the interval (0; 1). If one wants to avoid severe restrictions concerning the
parameter range for 𝜽, it is recommended to use response functions h with
range (0; 1); for example, a (strictly monotonic increasing) cdf. The most com-
mon choice is the cdf of the standard logistic distribution, leading to a logit
model.

Example 7.4.2 (Binary logit model) The logit link, which is the canonical
link function of the Bernoulli distribution, is given by

g(u) = ln u
1 − u

and h(u) = eu

1 + eu = 1
1 + e−u ,

Looking at the definition of g, we may interpret a logit GLM as a log-linear
model with respect to the odds 𝜋t∕(1 − 𝜋t); the quantity ln

(
𝜋t∕(1 − 𝜋t)

)
is also referred to as the log-odds. In particular, the conditional odds are
again determined multiplicatively as 𝜋t∕(1 − 𝜋t) = (e𝜃1)V1 ⋅ (e𝜃2)V2 … Further
motivating arguments for the particular choice of a logit model are presented
by Slud & Kedem (1994) and in Section 2.1.1 of Kedem & Fokianos (2002).
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A simple autoregressive logit model was defined by Kedem & Fokianos (2002)
and Fokianos & Kedem (2004)

ln
(

𝜋t

1 − 𝜋t

)
= 𝛽0 + 𝛼1 Xt−1 +…+ 𝛼p Xt−p. (7.16)

Binary logit models with a feedback mechanism (analogous to the
INGARCH(1, 1) model from Example 4.1.4) are discussed by Moysiadis
& Fokianos (2014); for example, the basic model

𝜆t ∶= ln
(

𝜋t

1 − 𝜋t

)
= 𝛽0 + 𝛼1 Xt−1 + 𝛽1 𝜆t−1, (7.17)

where the condition |𝛼1| + 4 |𝛽1| < 1 ensures a stationary solution.

Possible alternatives to the logit approach are the probit model (based on the
cdf of the standard normal distribution), the log–log model (cdf of standard
maximum extreme value distribution), or the complementary log–log model
(cdf of standard minimum extreme value distribution); see Section 2.1 in
Kedem & Fokianos (2002) for further details.

To extend the methods described before to the general categorical case – that
is, where Xt has the state space  = {s0, s1,… , sd} – it is helpful to look at the
binarization Y t of Xt , defined by Y t = ej if Xt = sj, with e0,… , ed ∈ {0, 1}d+1

being the unit vectors (see Example A.3.3). If Xt is distributed according to
𝝅t = (𝜋t,0,… , 𝜋t,d)⊤ ∈ 𝕊d+1 (unit simplex, see Remark A.3.4), then Y t is multi-
nomially distributed according to MULT(1; 𝜋t,0,… , 𝜋t,d), and its jth compo-
nent Yt,j follows the Bernoulli distribution Bin(1, 𝜋t,j). The basic idea in the
sequel is to apply the above binary approaches (especially the logit approach)
to these components Yt,j.

Because of the sum constraint Yt,0 +…+ Yt,d = 1, it is reasonable to concen-
trate on the reduced vectors Y ∗

t ∶= (Yt,1,… ,Yt,d)⊤ (then Yt,0 = 1 − Yt,1 −…−
Yt,d), the distribution of which is denoted by MULT∗(1; 𝜋t,1,… , 𝜋t,d) according
to Example A.3.3. To further simplify the notation, we define the open d-part
unit simplex

𝕊∗
d ∶= {u ∈ (0; 1)d | u1 +…+ ud < 1};

then 𝝅∗
t = (𝜋t,1,… , 𝜋t,d)⊤ satisfies 𝝅∗

t ∈ 𝕊∗
d, and we just write Y ∗

t ∼ MULT∗

(1; 𝝅∗
t ).

Following Fahrmeir & Kaufmann (1987), Kedem & Fokianos (2002) and
Fokianos & Kedem (2003), we now extend Definition 7.4.1 to a conditional
categorical regression model.

Definition 7.4.3 (Categorical regression model) Let (Zt)ℤ be a covariate
process, and represent the categorical process (Xt)ℤ as (Y ∗

t )ℤ. The process (Y ∗
t )ℤ

follows a conditional categorical regression model if
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(i) Y ∗
t , conditioned on Y ∗

t−1,… and Zt ,…, is multinomially distributed accord-
ing to MULT∗(1; 𝝅∗

t ), where
(ii) the conditional mean 𝝅∗

t ∶= E[Y ∗
t | Y ∗

t−1,… ,Zt ,…] satisfies

𝝅∗
t = h(V⊤

t 𝜽)

with a response function h ∶ ℝd → 𝕊∗
d (inverse link function) and a param-

eter vector 𝜽, where the design matrix Vt has d columns and is a function
of Y ∗

t−1,… and Zt ,…

Analogous to the binary case, the probabilities P(Xt | Xt−1,… ,Zt ,… ,𝜽)
are expressed in a simple way, namely as

∏d
j=0 𝜋t,j

Yt,j (the component 𝜋t,j
of 𝝅t expresses P(Xt = sj |…)). These probabilities are required for (partial)
likelihood computation. Likelihood estimation for categorical regression
models is discussed by Fahrmeir & Kaufmann (1987) and Fokianos & Kedem
(2003) as well as in the book by Kedem & Fokianos (2002).

To illustrate Definition 7.4.3, let us consider a particular instance of a cate-
gorical GLM: the categorical logit model as discussed by Kedem & Fokianos
(2002) and Fokianos & Kedem (2003).

Example 7.4.4 (Categorical logit model) Let us assume that V t is a
k-dimensional design vector (as a function of Y ∗

t−1,… and Zt ,…), and let
𝜽1,… ,𝜽d be k-dimensional parameter vectors. A categorical GLM is obtained
by defining 𝜽 ∈ ℝkd and Vt with dimension kd × d via

𝜽 =
⎛⎜⎜⎝

𝜽1
⋮
𝜽d

⎞⎟⎟⎠ , Vt =
⎛⎜⎜⎜⎝

V t 𝟎 … 𝟎
𝟎 V t ⋱ ⋮
⋮ ⋱ ⋱ 𝟎
𝟎 … 𝟎 V t

⎞⎟⎟⎟⎠ .
Then V⊤

t 𝜽 is a d-dimensional column vector, the jth component of which just
equals V⊤

t 𝜽j = 𝜽⊤

j V t .
A common choice for the response function h ∶ ℝd → 𝕊∗

d is the multinomial
logit, where the jth component hj(u) of h(u) equals

hj(z) =
exp zj

1 +
∑d

i=1 exp zi

for j = 1,… , d.

Then the systematic component of the model becomes

𝜋t,j =
exp (𝜽⊤

j V t)

1 +
∑d

i=1 exp (𝜽⊤

i V t)
for j = 1,… , d, (7.18)

and 𝜋t,0 follows as 𝜋t,0 = 1∕(1 +
∑d

i=1 exp (𝜽⊤

i V t)).
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It should be noted that this model can be rewritten by considering odds with
respect to the 0th category:

𝜋t,j

𝜋t,0
= exp (𝜽⊤

j V t) or ln
(
𝜋t,j

𝜋t,0

)
= 𝜽⊤

j V t ,

respectively, for j = 1,… , d. If comparing the ith and jth category with
i, j = 1,… , d, in contrast, it follows that

𝜋t,j

𝜋t,i
= exp ((𝜽j − 𝜽i)⊤V t) and ln

(
𝜋t,j

𝜋t,i

)
= (𝜽j − 𝜽i)⊤V t .

A particular example of the categorical logit model described in
Example 7.4.4 is a pth-order autoregressive model (analogous to (7.16);
see also Kedem & Fokianos (2002) and Fokianos & Kedem (2003)), where
V t is composed of 1,Y ∗

t−1,… ,Y ∗
t−p; that is, of dimension d p + 1. Hence,

the total number of model parameters is given by d (d p + 1), with the
components’ parameter vectors 𝜽1,… ,𝜽d being of dimension d p + 1. So the
pth-order autoregressive logit model can be understood as a parsimoniously
parametrized pth-order Markov model; see also Section 7.1. Partitioning
the components of 𝜽j as 𝜽j = (𝛽j,0,𝜶j,1,… ,𝜶j,p)⊤ with the 𝜶j,i consisting of
d parameters, we can rewrite the autoregressive logit model’s recursion as

𝜽⊤

j V t = 𝛽j,0 + 𝜶⊤

j,1Y ∗
t−1 +…+ 𝜶⊤

j,pY ∗
t−p. (7.19)

A non-Markovian categorical regression model with an additional feedback
component, analogous to equation (7.17), was developed by Moysiadis &
Fokianos (2014).

Example 7.4.5 (Bovine leukemia DNA data) Let us continue
Examples 7.2.4 and 7.3.4 about the bovine leukemia DNA series (length
T = 8419) with state space  = {‘a’, ‘c’, ‘g’, ‘t’} of size d + 1 = 4. In view of the
AR-like serial dependence structure of these data, we try to fit the autoregres-
sive logit model as described in (7.19). For model order p, it has d (d p + 1)
parameters. The d = 3 components of Y ∗

t refer to the states s1 = ‘c’, s2 = ‘g’ and
s3 = ‘t’, and Xt = ‘a’ is represented by Y ∗

t = 𝟎.
For model order p = 1, we have d (d + 1) = 12 parameters, which is exactly

the same number as for a full Markov chain model; see Section 7.1. In fact, the
first-order autoregressive logit model and a full Markov chain are equivalent
to each other; the logit model just constitutes a reparametrization of the
Markov chain. This reparametrization, however, is quite useful in practice,
because it avoids constraints for the model parameters and thus simplifies their
estimation. We also consider the model orders 2 and 3, leading to 21 and 30
model parameters, respectively. These numbers are already quite large, but
much lower than for a full second- or third-order Markov model (48 and 192,
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Table 7.3 Bovine leukemia DNA data: maximized log-likelihood, AIC and BIC for AR(p) logit
models.

T
T−p

𝓁max AIC BIC

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
−11 358 −11 330 −11 323 22 740 22 703 22 706 22 824 22 851 22 917

respectively). The obtained (rounded) values for the maximized (conditional)
log-likelihood as well as the AIC and BIC are shown in Table 7.3.

So the BIC prefers the first-order logit model (full MC), while the AIC prefers
the second-order one. Note that the values obtained for the first-order logit
model slightly deviate from those in Example 7.2.4 for the Markov chain. This is
caused by the use of different numerical optimization routines, namely uncon-
strained vs. constrained optimization.

In view of the diffuse picture caused by the information criteria, let us com-
pare some stochastic properties of the fitted first- and second-order logit mod-
els with the corresponding observed ones. The required transition probabilities
p(k|l) and p(k|l,m) are computed from (7.18) and (7.19), respectively, by insert-
ing the estimated parameter values (the latter are not shown here to save space).
Marginal distribution and serial dependence measures for the first-order logit
model (full MC) have already been checked in Example 7.2.4.

For the second-order logit model, it would again be possible to compute the
considered characteristics exactly, by transforming the model into a bivariate
Markov chain (see the discussion below (B.1) in Appendix B.1). But for the
sake of simplicity, the fitted model was used to simulate a time series of
length 10 million, the sample properties of which serve as an approximation
to the true model’s values. For the marginal distribution, we obtain about
(0.220, 0.332, 0.210, 0.239)⊤ (which does not sum up to exactly 1 because of
rounding), which is very close to �̂� as reported in Example 7.2.4. Furthermore,
the serial dependence structure is represented very well now also for lag 2:
𝑣(1) ≈ 0.114, 𝑣(2) ≈ 0.044 and 𝜅(1) ≈ 0.080, 𝜅(2) ≈ 0.025, respectively. So if
the additional number of parameters compared to the first-order model is
acceptable, the second-order logit model appears to be preferable.

We conclude this section by pointing out that the regression approach
can also be used for ordinal time series; see Kedem & Fokianos (2002) and
Fokianos & Kedem (2003). To simplify the presentation, we first discuss a
marginal regression model, but the model is easily extended to a conditional
regression model.

Example 7.4.6 (Ordinal regression model) Let the states in  exhibit
a natural ordering, s0 < s1 < … < sd. The idea is to assume that Xt or Y t ,
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respectively, is generated from a latent real-valued random variable Qt in the
following way:

Xt = sj iff Qt − 𝜸⊤Zt ∈ [𝜂j−1; 𝜂j), (7.20)

where −∞ = 𝜂−1 < 𝜂0 < … < 𝜂d−1 < 𝜂d = +∞ are threshold parameters. Here,
Zt is the covariate information at time t, and the Qt are assumed to be i.i.d. If FQ
denotes the cdf of Qt , then

𝜋t,j = P(Xt = sj | Zt = zt) = FQ(𝜂j + 𝜸⊤zt) − FQ(𝜂j−1 + 𝜸⊤zt),

P(Xt ≤ sj | Zt = zt) = FQ(𝜂j + 𝜸⊤zt) for j = 0,… , d.
(7.21)

The model parameters to be estimated are 𝜂0,… , 𝜂d−1 as well as 𝜸.
In the special case of FQ being the cdf of the standard logistic distribu-

tion – that is, FQ(u) = 1∕(1 + exp (−u)) – the resulting model is referred to as
the proportional odds model or ordered logit model. Then (7.21) becomes

ln
(P(Xt ≤ sj | Zt = zt)

P(Xt > sj | Zt = zt)

)
= 𝜂j + 𝜸⊤zt. (7.22)

An example of the ordered logit model with d + 1 = 6 states s0 < s1 < … < s5,
and with threshold parameters −∞ = 𝜂−1 < … < 𝜂5 = +∞ according to
(7.20), is shown in Figure 7.6a. There, the probability density function (pdf)
fQ(u) = exp (−u)∕(1 + exp (−u))2 of the standard logistic distribution is plot-
ted together with the threshold values 𝜂0 = −2.2, 𝜂1 = −1.3, 𝜂2 = −0.4, 𝜂3 =
0.7, 𝜂4 = 1.9 as well as with the resulting probability masses. As an example,
the probability that the latent random variable Qt takes a value between 𝜂2
and 𝜂3 (this corresponds to state ‘s3’) equals ≈ 0.267.

Remark 7.4.7 Note that the ordinal approach (7.21) can be embedded into
the Definition 7.4.3 of categorical regression models. We have to set

𝜽 =
⎛⎜⎜⎜⎝

𝜂0
⋮

𝜂d−1
𝜸

⎞⎟⎟⎟⎠ , Vt =

⎛⎜⎜⎜⎜⎝
1 0 … 0
0 ⋱ ⋱ ⋮
⋮ ⋱ 1 0
0 … 0 1

Zt … Zt Zt

⎞⎟⎟⎟⎟⎠
,

then V⊤
t 𝜽 = (𝜂0 + 𝜸⊤Zt,… , 𝜂d−1 + 𝜸⊤Zt)⊤. Furthermore, we define the

response function h ∶ ℝd → 𝕊∗
d by

h1(u) = FQ(u1), hj(u) = FQ(uj) − FQ(uj−1) for j = 2,… , d.

Then the model from Definition 7.4.3 becomes (7.21).

The ordinal regression approach of Example 7.4.6 is easily modified to obtain
an autoregressive model. As for model (7.19), we skip one component of the
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Figure 7.6 (a) Standard logistic distribution with threshold values; see Example 7.4.6.
Ordinal logit AR(1) model from Example 7.4.8: (b) Cohen’s 𝜅, (c) simulated sample path.

binarization Y t of Xt . But in view of the thresholds (7.20), this time, it is advan-
tageous to define Y★

t ∶= (Yt,0,… ,Yt,d−1)⊤ following MULT∗(1;𝜋t,0,… , 𝜋t,d−1)
(Example A.3.3). Combining approaches (7.19) and (7.22), we define an ordinal
autoregressive logit model as (Fokianos & Kedem, 2003):

ln
(P(Xt ≤ sj | Xt−1,…)

P(Xt > sj | Xt−1,…)

)
= 𝜂j + 𝜶⊤

1 Y★
t−1 +…+ 𝜶⊤

p Y★
t−p. (7.23)

Note that the d-dimensional parameter vectors 𝜶1,… ,𝜶p do not depend on j
(certainly, this would also be possible), so that the model has only d (p + 1)
parameters.

Example 7.4.8 (Ordinal logit autoregression) Let us pick up the ordinal
logit approach with d + 1 = 6 states s0 < s1 < … < s5 from Example 7.4.6, and
let us construct an autoregressive model (7.23) of order p = 1. Note that this
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model is a (parsimoniously parametrized) ordinal Markov chain with transition
probabilities

P(Xt = sj | Xt−1) = FQ(𝜂j + 𝜶⊤
1 Y★

t−1) − FQ(𝜂j−1 + 𝜶⊤
1 Y★

t−1) (= 𝜋t,j),

see (7.21). In model (7.23), the event that Xt−1 equals the largest state ‘s5’
is represented by the vector Y★

t−1 = (0,… , 0)⊤, such that the expression
for the log-odds (7.23) reduces to 𝜂j. If we aim at having a model with
positive dependence, then a large state should be followed by a large state
with a high probability, which is not the case for the choice of the thresh-
old values in Example 7.4.6; see Figure 7.6a. Therefore, for the present
example, we shift these values by −3; a negative shift such that more prob-
ability mass is left above the largest threshold 𝜂4. So we use 𝜂0 = −5.2,
𝜂1 = −4.3, 𝜂2 = −3.4, 𝜂3 = −2.3, 𝜂4 = −1.1. As a result, the probabilities for
falling between 𝜂j−1 and 𝜂j (this is the conditional distribution for Xt given
Xt−1 = s5) become approximately 0.005, 0.008, 0.019, 0.059, 0.159, 0.750 for
j = 0,… , 5. In particular, ‘s5’ is followed by ‘s5’ with about 75% probability.

The components of the autoregressive parameter vector 𝜶1, in turn,
are chosen as positive values. Since the smallest state corresponds
to Y★

t−1 = (1, 0, 0, 0, 0)⊤, the second smallest to (0, 1, 0, 0, 0)⊤ and so on,
and since positive dependence requires that small values tend to be fol-
lowed by small ones, we choose 𝛼1,0 ≥ 𝛼1,1 ≥ …: 𝜶1 ∶= (6, 4, 3.5, 3.5, 2)⊤. So
altogether, the model’s transition matrix becomes

P ≈

⎛⎜⎜⎜⎜⎜⎜⎝

0.690 0.231 0.154 0.154 0.039 0.005
0.156 0.194 0.156 0.156 0.052 0.008
0.085 0.220 0.215 0.215 0.107 0.019
0.045 0.200 0.244 0.244 0.228 0.059
0.017 0.102 0.148 0.148 0.285 0.159
0.007 0.052 0.083 0.083 0.289 0.750

⎞⎟⎟⎟⎟⎟⎟⎠
,

where not all columns sum to 1 because of rounding. As an example, the first
column gives the conditional distribution for Xt given Xt−1 = s0, which implies
that ‘s0’ is followed by ‘s0’ with about 69.0% probability, and by the next largest
state ‘s1’ with about 15.6% probability. This “inertia” for the smallest and largest
state, respectively, becomes visible in the simulated sample path shown in
Figure 7.6c, and it causes Cohen’s 𝜅 in Figure 7.6b to take positive values.

The stationary marginal distribution is computed according to the invariance
equation (B.4) in the appendix as (0.230, 0.106, 0.118, 0.141, 0.134, 0.271)⊤, so
the boundary states ‘s0’ and ‘s5’ are the most probable ones. Overall, this distri-
bution is quite close to a uniform distribution, which explains the large values
for the Gini index (6.1) and entropy (6.2), given by 0.973 and 0.964, respectively.

For further information on ordinal regression models, consult Kedem &
Fokianos (2002) and Fokianos & Kedem (2003).
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Part III

Monitoring Discrete-Valued Processes

In Parts I and II, we learned about models for discrete-valued processes and
how to fit them to the given time series data. Once an appropriate model for
the considered process has been found, it can be applied with respect to the
further course of the process. The perhaps most common application of a
given model is to forecast future realizations of the process, a topic that was
discussed earlier in this book in the context of each of the respective models,
especially in Section 2.6. In the following, we focus on another field for apply-
ing fitted models, namely the monitoring of the process. This is often called
statistical process control (SPC). Instead of predicting outcomes conforming
with the process model, the aim of SPC is to detect a possible deviation from
the assumed (in-control) model as early as possible, but certainly without
producing false alarms all the time. This might be useful in detecting the
outbreak of disease epidemics, the deterioration of customer service, or a
malfunction during production. An important tool for process monitoring
is the control chart, or, more precisely in the context of a discrete-valued
process, the attributes control chart. As a new observation arrives, a control
statistic is computed and plotted on the chart; if the statistic violates the chart’s
control limits, an alarm is triggered to indicate that the process has possibly
run out of control.

After providing a brief introduction to the discipline of SPC in general in
Section 8.1, the remaining sections of Chapter 8 deal with types of control
charts for count processes, where the tth control statistic is computed based
on the counts available up to time t. Approaches like Shewhart, cumulative
sum (CUSUM) and exponentially weighted moving-average (EWMA) control
charts are discussed, together with the corresponding chart design and ways
of analyzing their performance. Then in Chapter 9, analogous issues are
considered for the case of categorical processes. Here, one strategy is to

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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take samples from the process and to determine the frequency distribution
of the categories within each sample. This information is used to compute
the statistic to be plotted on the chart. Continuous process monitoring is
also possible, where each new observation is accompanied by a new control
statistic.
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8

Control Charts for Count Processes

8.1 Introduction to Statistical Process Control

Methods of statistical process control (SPC) help to monitor and improve
processes in manufacturing and service industries, and they are also often
used in fields such as public-health surveillance. For the given process, relevant
quality characteristics are measured over time, thus leading to a (possibly
multivariate) stochastic process (Xt)ℕ of continuous-valued or discrete-valued
random variables (variables data or attributes data, respectively). Examples
of such quality characteristics could be the diameter of a drill hole (variables
data) or the number of non-conformities (attributes data) in a produced item,
or the number of infections in a health-related example. One of the most
important SPC tools is the control chart, which requires the relevant quality
characteristics to be measured online. Control charts are applied to a process
operating in a stable state (in control); that is, (Xt)ℕ is assumed to be stationary
according to a specified model (the in-control model). As a new measurement
arrives, it is used to compute a statistic (possibly also incorporating past values
of the quality characteristic), which is then plotted on the control chart with
its control limits. If the statistic violates the limits, then an alarm is triggered
to signal that the process may not be stable anymore (out of control). So the
process is interrupted, and it is checked if the alarm indeed results from an
assignable cause (say, a shift or drift in the process mean); the time when the
process left its in-control model is said to be the change point (more formal
definitions are given below). In this case, corrective actions are required before
continuing the process. If the process is still in its in-control state, the alarm
is classified as a false alarm. An example of a control chart with limits 0 and 5
is shown in Figure 8.1, where the upper limit is violated at time t = 224. Note
that the lower limit 0 can never be violated; that is, it is actually a one-sided
(upper-sided) control chart. We shall discuss this control chart and the related
application in much more detail in Example 8.2.2.3.

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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Figure 8.1 c chart of IP counts data with limits 0 and 5; see Example 8.2.2.3.

The use of control charts for prospective online monitoring, as described
before, is commonly referred to as the Phase-II application. But control charts
may also be applied in a retrospective manner to already available in-control
data. This is called the Phase-I application of a control chart. During this itera-
tive procedure, potential outliers are identified and removed from the data, and
parameter estimates and the chart design are revised accordingly. A (successful)
Phase-I analysis ends up with an estimated model characterizing the in-control
properties of (Xt)ℕ; this model is then used for designing the control charts to
be used during Phase-II monitoring. More details about all these terms and
concepts can be found, among others, in the textbook by Montgomery (2009)
and in the survey paper by Woodall & Montgomery (2014).

In this book, we shall exclusively concentrate on attributes data processes,
and we shall start with the monitoring of count processes. Typical examples
from manufacturing industry are the number of non-conformities per pro-
duced item (range ℕ0) or the number of defective items in a sample of size n
(range {0,… , n}). Non-manufacturing examples include counts of new cases
of an infection (per time unit) in public-health surveillance, or counts of
complaints by customers (per time unit) in a service industry. The majority
of studies on the monitoring of such counts assumes the process to be i.i.d.
in its in-control state (Woodall, 1997), but in this book, we shall attach more
importance to the case of autocorrelated counts. In fact, there has been
increasing research activity in this direction in recent years (Weiß, 2015b), and
Alwan & Roberts (1995) have already shown that autocorrelation is indeed a
common phenomenon in SPC-related count processes. Typical reasons are
a high sampling frequency due to automated production environments in
manufacturing industry, or varying service times (extending over more than
one time unit) in service industry, or varying incubation times and infectivities
of diseases in public-health surveillance.
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In Section 8.2, we start with basic Shewhart charts for a count process, where
the plotted statistic at time t is a function only of the most recent observa-
tion Xt (or of the most recent sample for sample-based monitoring). While
the Shewhart charts themselves are rather simple, they offer an opportunity
to introduce general design principles for control charts. These principles are
applied in Section 8.3 when considering advanced control charts, such as the
CUSUM and EWMA methods, where the plotted statistic at time t also uses
past observations of the process and hence accumulates information about the
process for a longer period of time. Later in Chapter 9, we shall move our focus
towards the monitoring of categorical processes, but where methods for count
data still might be useful for a sample-based monitoring approach.

Remark 8.1.1 (Change point methods) An approach related to the con-
trol chart are tests for a change point within a given time series. For the case
of a count time series stemming from an INGARCH model, such change point
tests were developed by Franke et al. (2012), Kang & Lee (2014) and Kang &
Song (2015), while Torkamani et al. (2014) and Davoodi et al. (2015) considered
an underlying INAR process; also see the references in Hudecová et al. (2015)
and Kirch & Kamgaing (2016). Note that the main difference between change
point tests and control charts is that the first are usually applied in an offline
manner, to find the location of the change point in the available (and static)
time series. Online versions of change point tests, where the in-control model
is sequentially tested based on the available data at each time point, have been
presented by Hudecová et al. (2015) and Kirch & Kamgaing (2015).

8.2 Shewhart Charts for Count Processes

The first control charts were proposed by Shewhart (1926, 1931). Because of
this pioneering work, a number of standard control charts are referred to as
Shewhart control charts; an extensive review of Shewhart control charts is given
by Montgomery (2009). The characteristic feature of these charts is that the
plotted statistic Zt is a function only of the most recent observation Xt (or of
the most recent sample for sample-based monitoring). Then Zt is plotted on a
chart against time t with time-invariant lower and upper control limits l < u (as
in Figure 8.1). An alarm is triggered at time t for the first time if

Z1,… ,Zt−1 ∈ [l;u], but Zt ∉ [l;u]; (8.1)

then the process is interrupted to check for an assignable cause. The (random)
run length of the control chart is defined as

L ∶= min{t ∈ ℕ | Zt ∉ [l;u]}; (8.2)
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the corresponding run length distribution turns out to be of utmost importance
when designing the control chart; that is, when choosing the control limits l
and u.

8.2.1 Shewhart Charts for i.i.d. Counts

If monitoring a count process (Xt)ℕ with a Shewhart chart, the counts are com-
monly directly plotted on the chart as they arrive in time; that is, the plotted
statistics are Zt = Xt . If the range of the counts is unlimited, such a chart is
referred to as a c chart (c for “count”). For the case of the finite range {0,… , n},
a chart for Zt = Xt is said to be an np chart, while a p chart plots the relative
quantities Zt = Xt∕n. This terminology is obviously motivated by the binomial
distribution (Example A.2.1) and by the idea of a sample-based monitoring,
with Xt or Xt∕n expressing the absolute number or relative proportion, respec-
tively, of “successes” in the sample being collected at time t. For simplicity, we
shall always consider the case of an unlimited range (and hence c charts) in
this section, but the presented concepts apply to np charts and p charts as well;
see Section 9.1.1. A truly two-sided c chart has control limits 0 < l < u < ∞
with l,u ∈ ℕ. One-sided charts are obtained by either setting l = 0 (upper-sided
c chart) or u = ∞ (lower-sided c chart).

For the rest of this section, let us assume that (Xt)ℕ is serially independent.
If the process is in-control, it is i.i.d. and has the in-control marginal distri-
bution F0. As an out-of-control scenario, we restrict to the case of a sudden
shift; that is, at a certain time 𝜏 ∈ ℕ (called change point), the marginal dis-
tribution becomes F1. This leads to the following (unconditional) change point
model (Knoth, 2006):

For t < 𝜏 , the process is in control,
while it is out of control for t ≥ 𝜏 if F1 ≠ F0.

For a change point 𝜏 = 1, the process is out of control right from the begin-
ning. If the control chart triggers an alarm at time L (rule (8.2)), we stop mon-
itoring and conclude that the process might have run out of control. If indeed
𝜏 ≤ L and F1 ≠ F0, the alarm was correct; otherwise, it was a false alarm. In the
first case, the difference L − 𝜏 + 1 expresses the delay in detecting the change
point. Here, the “+1” is used since even in the case of immediate detection
(L = 𝜏), we have one out-of-control observation (say, one defective item in a
production process).

At this point, it is important to study the run length L of the control
chart – see (8.2) – in more detail. If the process is in control, we wish the run
length to be large (a robust chart), since then the run length expresses the time
until the first false alarm. In contrast, it should be small for an out-of-control
process, since the run length then goes along with the delay in detecting
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the process change. As for a significance test, the approach to designing the
chart is to choose the control limits l,u in such a way that a certain degree of
robustness against false alarms is guaranteed. For this purpose, one looks at
properties of the in-control run length distribution. These could be quantiles,
such as the median, but the main approach (although one that is sometimes
criticized; see Kenett & Pollak (2012) as an example) is to consider the mean
of the run length L; that is, the average run length (ARL).1 If there are several
candidate designs leading to (roughly) the same in-control ARL, abbreviated
as ARL0, then one compares the out-of-control ARL performances of these
charts to select the final chart design.

So the question is how to compute the ARL given a specific chart design l,u.
If the process is in-control (that is, i.i.d. with marginal distribution F0), then a
signal is triggered at time t with probability

P0(Zt ∉ [l;u]) = P0(Zt ≤ l − 1) + P0(Zt > u) = 1 − F0(u) + F0(l − 1).
Because of the independence of the plotted statistics, the distribution of L is a
shifted geometric distribution (Example A.1.5), so it follows immediately that

ARL0 = 1
1 − F0(u) + F0(l − 1)

. (8.3)

Note that this formula also includes the one-sided cases by setting F0(−1) = 0
and F0(∞) = 1.

If the distribution becomes out of control at time 𝜏 , then the delay in detect-
ing this change is L − 𝜏 + 1 (see above). Again, because of the independence of
the plotted statistics (the non-aging property), this delay can still be described
by a shifted geometric distribution, but using F1 instead of F0. Therefore, the
out-of-control ARL for the considered i.i.d.-scenario is defined by setting 𝜏 = 1
(since the true position of the change point does not affect the delay anyway);
that is,

ARL1 = 1
1 − F1(u) + F1(l − 1)

. (8.4)

Note that ARLs should be interpreted with caution in practice, since the shifted
geometric distribution is strongly skewed and has a large dispersion (the stan-
dard deviation nearly equals the mean; see Example A.1.5). This is illustrated
by Figure 8.2, which shows the run length distribution corresponding to ARL =
250. Although an alarm is triggered in the mean after 250 plotted statistics, the
median, for instance, equals only 173; that is, in 50% of all cases, the actual run
length is not larger than 173. The quartiles range from 72 to 346, so again in
50% of all cases, the actual run length is outside even this region. For a further
critical discussion, see Kenett & Pollak (2012).

1 Note that speaking of “the” ARL is only justified in the current section where the plotted
statistics Zt are serially independent. In Section 8.2.2, we shall recognize that there are several
ways of defining an ARL if serial dependence is present.



�

� �

�

168 An Introduction to Discrete-Valued Time Series

0 200 400 600 800 1000 1200

0.
00

0
0.

00
2

0.
00

4

R
un

 L
en

gt
h 

D
is

tr
. (

A
R

L
=

25
0)

ARL

q0.95q0.75

q0.50
q0.25

q0.05

L

Figure 8.2 Distribution of run length L for ARL = 250, and some corresponding quantiles.

Example 8.2.1.1 (ARL performance of cchart) For low counts, it is often
impossible to find a truly two-sided chart design satisfying a pre-specified
requirement concerning the in-control ARL. Therefore, for illustration, let
us consider the case of i.i.d. Poisson counts with the rather large in-control
mean 𝜇0 = 6. Furthermore, let us assume that the in-control ARL has to satisfy
ARL0 ≥ 250. Then a possible c chart design is l = 1 and u = 14, leading to
ARL0 ≈ 257.8 (note that for discrete-valued charts, it is usually not possible
to meet a pre-specified ARL level exactly). A plot of the resulting ARL per-
formance against varying values of the mean 𝜇 is shown in Figure 8.3 (black
dots).

If the plotted function ARL(𝜇) would be maximal exactly for 𝜇 = 𝜇0, then
the chart design would be said to be ARL-unbiased. In the present example, it
is at least approximately ARL-unbiased: the plotted ARL function is roughly
symmetric around 𝜇 = 𝜇0 such that the chart detects negative shifts in the
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Figure 8.3 ARL performance of c chart against 𝜇; see Example 8.2.1.1.
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Figure 8.4 Two-sided c chart of simulated i.i.d. counts; Example 8.2.1.1 with change point
𝜏 = 31.

mean just as well as positive shifts. As an example, ARL(8) ≈ 56.8; that is, if the
mean is shifted from 6 to 8, we will require about 57 observations on average
to detect such a change. The application of the two-sided c chart is illustrated
in Figure 8.4, where the first 30 i.i.d. counts were simulated according to the
in-control model Poi(6), and the remaining 70 i.i.d. counts (after the change
point 𝜏 = 31) according to the out-of-control model Poi(8). The first alarm is
triggered at time t = 64; that is, with the delay 34.

For a positive shift such as considered above, an upper-sided c chart would
certainly be more sensitive. With the chart design l = 0 and u = 13, we have
ARL0 ≈ 275.6 and ARL(8) ≈ 29.3; see also the gray curve in Figure 8.3. Applied
to the same simulated i.i.d. data as before, we obtain the chart shown in
Figure 8.5, where the first alarm is now triggered at time t = 54 (delay 24).
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Figure 8.5 Upper-sided c chart of simulated i.i.d. counts; Example 8.2.1.1 with change point
𝜏 = 31.
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A possible way to achieve an ARL-unbiased c chart design that is close to any
prespecified ARL0-level was proposed by Paulino et al. (2016), and relies on a
randomization of the emission of an alarm.

Usually, a control chart is designed as if the true in-control model is known
precisely. In reality, however, the in-control model has to be estimated from
given data (believed to stem from the presumed in-control model). Due to the
uncertainty of parameter estimation, the true performance of the chart will usu-
ally deviate from the “believed” one, and this difference might be rather large.
In view of (8.3) and the typically large values for ARL0 (as in Example 8.2.1.1),
the control limits correspond to rather extreme quantiles of the (estimated)
in-control distribution. So already moderate misspecifications of the model
parameters may lead to strong effects on the control limits and ARLs. Hence,
for the data examples below, we should be aware that we always consider some
kind of conditional ARL performance, conditioned on the fitted model.

A comprehensive literature review of the effect of estimated parameters on
control chart performance is provided by Jensen et al. (2006). Probably the first
such work in the attributes case is by Braun (1999), who considers the c and
the p charts, while Testik (2007) investigates the effect of estimation on the
CUSUM chart for i.i.d. Poisson counts; this chart is discussed in Section 8.3.1.

Example 8.2.1.2 (Effect of estimated parameters) To get an idea of the
effect of parameter estimation in the scenario considered in Example 8.2.1.1,
we follow Testik (2007) and analyze the conditional ARL performance of
the upper-sided c chart. Let X1,… ,Xn be the available in-control data,
being i.i.d. according to Poi(𝜇0). To estimate 𝜇0, we use the mean Xn, where
n Xn ∼ Poi(n 𝜇0) due to the additivity of the Poisson distribution (see
Example A.1.1). Let Xn take the value 6, as in Example 8.2.1.1, such that we
decide on limit u = 13 in view of obtaining ARL0 ≥ 250. If, in addition, the
true 𝜇0 is 6, we would in fact have ARL0 ≈ 275.6. However, assuming that
the true 𝜇0 is such that the observed value 6 equals the 𝛼-quantile of Xn’s
distribution, then we have the ARL0 values shown in Table 8.1 instead. If 6
equals the lower quartile of Xn, for example, then the true 𝜇0 is larger than 6,
so we will observe false alarms more often (a situation that becomes worse
with decreasing sample size n). Such a conditional performance analysis not
only illustrates the possible deviations of the true ARL0 from the intended
one, it can also be used to revise the chart design. Picking up the idea of a
“guaranteed conditional performance”, as developed by Albers & Kallenberg
(2004) and Gandy & Kvaløy (2013) for variables charts, one may assume that
the observed value corresponds to, say, the 10%-quantile such that 𝜇0 ≈ 6.678
if n = 25. Then one uses this kind of “worst-case” value to derive the control
limit, which equals 14 in the given example. For such a chart, we might feel
90% confident that the true ARL0 is ≥ 250.
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Table 8.1 Conditional ARL performance of upper-sided c chart for quantile
levels 𝛼 and sample sizes n; see Example 8.2.1.2.

𝛼 = 0.25 𝛼 = 0.50 𝛼 = 0.75

n 𝜇0 ARL0 𝜇0 ARL0 𝜇0 ARL0

25 6.364 167.6 6.027 265.3 5.702 430.1
50 6.250 194.8 6.013 270.4 5.782 379.9
100 6.173 216.2 6.007 273.0 5.843 346.8
250 6.108 236.7 6.003 274.5 5.899 319.2

Table 8.2 Marginal ARLs of upper-sided c chart against sample size n.

n 25 50 100 250 500 1 000 5 000 10 000

ARL0; marg 548.4 474.2 448.8 417.9 391.3 358.1 286.0 276.7

The effect of parameter estimation can also be illustrated by looking at the
marginal ARL. For a given in-control value, say 𝜇0 = 6, and for a given design
rule, say taking u as the (1 − 1∕250)-quantile of the fitted Poisson distribution,
one computes the “expected ARL” as

ARL0; marg ∶=
∞∑

s=1
ARL0

(
Xn = s∕n

)
⋅ P

(
Xn = s∕n

)
,

where ARL0(Xn = s∕n) is computed by using the true 𝜇0 but varying designs,
and where P(Xn = s∕n) = p(s) with p(s) being the pmf of Poi(n 𝜇0). We obtain
the results shown in Table 8.2 that is, ARL0; marg converges only slowly to
ARL0 ≈ 275.6 with increasing sample size n. In particular, although the
marginal ARLs are larger than the intended ARL0 level of 250, there is a
non-negligible probability of ending up with ARL0 < 250. If n = 25, for
example, then this probability equals about 11.7%.

While (appropriately chosen) Shewhart charts are generally quite sensitive
to very large shifts in the process (and they are also generally recommended
for application in Phase I (Montgomery, 2009)), Example 8.2.1.1 has already
demonstrated that these charts are not particularly well-suited to detecting
small-to-moderate shifts. For this reason, in Section 8.3 we shall consider
advanced control schemes that are more sensitive to small shifts, because
these charts are designed to have an inherent memory.

8.2.2 Shewhart Charts for Markov-Dependent Counts

In this section, we skip the i.i.d.-assumption and allow the count process
(Xt)ℕ to be a Markov chain, say, an INAR(1) process as in Section 2.1, a
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binomial AR(1) process as in Section 3.3, or an INARCH(1) process as in
Example 4.1.6. But still, our aim is to plot the observed counts directly on the
chart with limits l < u; that is, we choose again Zt = Xt .

Because of the serial dependence of the plotted statistics, now the run length
(8.2) no longer follows a simple geometric distribution. In addition, if we now
look at the detection delay L − 𝜏 + 1, the corresponding distribution generally
depends on the position of the change point 𝜏 . Therefore, more refined ARL
concepts have to be considered; a detailed survey of different ARL concepts is
provided by Knoth (2006). In this book, the following ARL concepts are used:

• the zero-state ARL

ARL ∶= E1[L], (8.5)

• the conditional expected delay

ARL(𝜏) ∶= E𝜏[L − 𝜏 + 1 | L ≥ 𝜏], (8.6)

• the (conditional) steady-state ARL

ARL(∞) ∶= lim
𝜏→∞

ARL(𝜏), (8.7)

where E𝜏[⋅] denotes the expectation related to the change point 𝜏 .
As before, we refer to the computed ARL value as the in-control ARL

(out-of-control ARL) if F1 = F0 (F1 ≠ F0), and the in-control ARL is signified by
adding the index “0”.

Obviously, the zero-state ARL is nothing other than ARL(1). For the case of
serial independence, as considered in Section 8.2.1, we have ARL(𝜏) = ARL(∞) =
ARL, but otherwise these ARLs may differ. The essential questions are:

• How can we compute these ARLs?
• Which one should be used in a specific application?

Let us start with the second question. When designing a chart, one first looks
at the in-control behavior. In this context, it is reasonable to use the in-control
zero-state ARL, ARL(1), as a measure of robustness against false alarms. Then,
in a second step, one analyzes the out-of-control behavior. If there are reasons
to expect, say, that the change will probably happen quite early, then it would
be reasonable to evaluate the out-of-control performance of an ARL(𝜏) with
sufficiently small 𝜏 . In many applications, however, one will not have such infor-
mation. However, we shall see below that ARL(𝜏) often converges rather quickly
to ARL(∞). This implies that the steady-state ARL, ARL(∞), might serve as a rea-
sonable approximation for the true mean delay of detection after the unknown
change point. Therefore, in this book, we shall evaluate the out-of-control per-
formance in terms of ARL(∞).

The first question is how to compute the different types of ARL. Certainly,
it is always possible to approximate the ARLs through simulations; to simu-
late ARL(∞), one will simulate ARL(M) with a large M as a substitute. But if
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considering a c chart applied to an underlying Markov chain, a numerically
exact solution is also possible by using the Markov chain (MC) approach pro-
posed by Brook & Evans (1972). Since this approach can also be used for the
advanced control charts to be introduced below, we provide a rather general
description in the sequel following Weiß (2011b).

In view of decision rule (8.1), we can assume a slightly simplified range for
the plotted statistics Zt : their range  is partitioned into the set  of “no-alarm
states” (because no alarm is triggered by the chart if Zt takes a value in ) and
the set {a} consisting of a single “alarm state” ‘a’. This is justified since any kind
of violation of the control limits will lead to the same action: stop the process
and search for an assignable cause. Therefore, ‘a’ is an absorbing state; that is,
it is no longer possible to leave this state. The set  is equal to {l,… ,u} for the
case of a two-sided c chart.

The MC approach now assumes a conditional change point model (Weiß,
2011b), as given in Definition 8.2.2.1; see also the survey about Markov chains
in Appendix B.2.

Definition 8.2.2.1 (MC change point model) Let (Zt)ℕ be a finite Markov
chain with state space  =  ∪ {a}. We assume that

• (Zt)ℕ is homogeneous before and after the change point 𝜏 ∈ ℕ, and we
denote the time-invariant transition probabilities

P(Zt = i | Zt−1 = j) by
{

pi|j for t < 𝜏,

p̃i|j for t ≥ 𝜏;

• the states in  are inessential (Example B.2.1.1), while the absorbing state ‘a’
is essential; that is, for each j ∈ , there exists a lag h ≥ 1 such that the
h-step-ahead transition probability pa|j(h) > 0 (analogously with p̃);

• (Zt)t=1,…,𝜏−1 is stationary.

If p̃i|j = pi|j for all i, j ∈ {0,… , n}, then the whole process (Zt)ℕ is stationary
according to the in-control model. Furthermore, since ‘a’ is an absorbing
state by definition, we have pi|a = 𝛿i,a = p̃i|a for all i ∈  , where 𝛿i,a denotes
the Kronecker delta. The requirement that  consists of inessential states
guarantees, among other things, that the probability of reaching ‘a’ in finite
time equals 1.

Let us now describe the procedures for computing the different types of ARL;
derivations and more details can be found in Brook & Evans (1972) and Weiß
(2011b). For this purpose, define Q to be the transpose of the transition matrix
for the states in ; that is, Q⊤ ∶= (pi|j)i,j∈. Analogously, we set Q̃⊤ ∶= (p̃i|j)i,j∈.
The requirement that  consist of inessential states guarantees that the fun-
damental matrices (I − Q)−1 and (I − Q̃)−1 exist, where I denotes the identity
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matrix. Since ‘a’ is an absorbing state, the transition matrices of (Zt)ℕ before
and after the change point, respectively, are given by

P =

(
Q⊤ 𝟎

𝟏⊤(I − Q⊤) 1

)
and P̃ =

(
Q̃⊤ 𝟎

𝟏⊤(I − Q̃⊤) 1

)
. (8.8)

To compute the out-of-control zero-state ARL (for the in-control ARL, we just
have to replace Q̃ by Q), we first compute the unique solution of the equation

(I − Q̃)𝝁 = 𝟏. (8.9)

Here, the entries 𝜇j express the mean time to reach ‘a’ if Z1 = j. After having
specified the initial probabilities P(Z1 = j) for j ∈  (see Remark 8.2.2.2), we
collect these probabilities in the vector �̃�(1) (note that the change already hap-
pened at time 1). Then

ARL = ARL(1) = 1 + 𝝁⊤ �̃�(1). (8.10)

If 𝜏 ≥ 2, then there exist 𝜏 − 1 in-control observations. So the entries 𝜇j of
the solution to (8.9) express the mean delay to reach ‘a’ if Z𝜏−1 = j. If the vector
𝝅(1) consists of the probabilities P(Z1 = j) and if 𝝅(𝜏 − 1) = (Q⊤)𝜏−2𝝅(1) refers
to the P(Z𝜏−1 = j) (Markov property, in control), then the conditional expected
delay equals

ARL(𝜏) = 𝝁⊤ 𝝅(𝜏 − 1)
𝟏⊤𝝅(𝜏 − 1)

for 𝜏 ≥ 2. (8.11)

Finally, to compute the steady-state ARL, we need to take the limit
lim𝜏→∞ 𝝅(𝜏 − 1) = lim𝜏→∞(Q⊤)𝜏−2𝝅(1) according to (8.7). To be able to
apply the Perron–Frobenius theorem – see Remark B.2.2.1 in Appendix B.2 for
a summary – we have to assume that the non-negative matrix Q⊤ is primitive.
For the corresponding Perron–Frobenius eigenvalue 𝜆PF ≤ 1, there exists a
strictly positive right eigenvector w; w∕(𝟏⊤w) is the normed version of w. Then

ARL(∞) = 𝝁⊤ ⋅
w

𝟏⊤w
, (8.12)

where the rate of convergence of ARL(𝜏) → ARL(∞) for 𝜏 → ∞ is determined by
the second largest eigenvalue, which satisfies |𝜆2| < 1.

Remark 8.2.2.2 (Initial probabilities) Before looking at a comprehensive
example, just a few words concerning the probabilities �̃�(1) that are required
for the zero-state ARL (8.10). The change point model in Definition 8.2.2.1
does not specify the distribution of Z1 if already Z1 is out of control. A
simple approach would be to choose the stationary marginal distribution
corresponding to the out-of-control transition probabilities p̃i|j. But then, the
process would be strictly stationary during its out-of-control state, which
would differ from the behavior for 𝜏 ≥ 2. Another solution is to assume an
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invisible observation Z0 stemming from the stationary in-control model; that
is, the initial probability P(Z1 = i) is computed as

∑∞
j=0 pj ⋅ p̃i|j. We shall prefer

this second solution in the sequel.

Example 8.2.2.3 (c chart for IP counts data) Monitoring the activity of a
web server can help detect intrusions into the server, or evaluate the attrac-
tiveness of a website. In the following, we consider the IP counts example pre-
sented by Weiß (2007), where each count represents the number of different IP
addresses registered within periods of 2-min length. So the data give insights
into the number of different users accessing the web server per time interval.
We shall proceed in two steps: the available historical data is used for a Phase-I
analysis to identify an appropriate in-control model. The control charts based
on this model are then applied during Phase II to monitor “new” (simulated)
data to detect a possible out-of-control situation.

For illustration, we assume the time series collected on 29 November 2005,
between 10 a.m. and 6 p.m. as the available in-control data (length T = 241).
They have mean x ≈ 1.392. As already argued in Weiß (2007), the data exhibit
an AR(1)-like autocorrelation structure with �̂�(1) ≈ 0.219 and a nearly equidis-
persed marginal distribution (dispersion index Î ≈ 1.054, which is not signifi-
cant; see (2.14) in Section 2.3). Therefore, it is reasonable to try to fit the Poisson
INAR(1) model from Section 2.1.2 to the data. An INAR(1) model is also plausi-
ble in view of interpretation (2.4), since a user who is active at time t might also
have been active at time t − 1. The full ML estimates for the Poisson INAR(1)
model (see Section 2.2.2) are �̂�𝜖; ML ≈ 0.997 (std. err. 0.099) and �̂�ML ≈ 0.243
(std. err. 0.062).

This preliminary model is next used to find a c chart design, the zero-state
in-control ARL (8.5) of which is required to be > T . Due to the low counts, only
an upper-sided design is possible; that is, l = 0. Trying increasing values for
the upper limit, u = … , 4, 5, 6,…, we get ARL0 ≈ … , 94.9, 433.2, 2321.6,…,
so we decide on u = 5 as the chart design. The resulting c chart was shown
in Figure 8.1, and it triggers an alarm at time t = 224 (observation x224 = 8).
Prompted by this alarm, Weiß (2007) did a further analysis of the full server log
data and found out that all eight IP addresses at time t = 224 seem to be due to
just one user, but who was routed into the internet through an area of changing
IP addresses (instead of one unique IP address). Therefore, it is reasonable to
correct this “outlier” by setting x224 ∶= 1.

The above steps of the Phase-I analysis are repeated with the corrected data
(x ≈ 1.286, �̂�(1) ≈ 0.292, Î ≈ 0.933), which leads to slightly different ML esti-
mates – �̂�𝜖; ML ≈ 0.905 (std.err. 0.093) and �̂�ML ≈ 0.298 (std.err. 0.061) – but the
same chart design, now with ARL0 ≈ 489.3. Since no further points violate the
upper limit u = 5, Phase-I analysis finishes with the aforementioned in-control
model. Also further checks for model adequacy, see Section 2.4, confirm that
the corrected data are well described by the fitted Poisson INAR(1) model.
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Figure 8.6 c chart of Example 8.2.2.3: ARL(𝜏) against 𝜏 if (a) 𝜇
𝜖
= 𝜇

𝜖,0, (b) 𝜇
𝜖
= 1.5.

The final in-control model is used for designing the control charts to be
used during Phase II (without further considering the effect of estimation
error according to the discussion before Example 8.2.1.2). For the moment,
we leave it at the c chart with u = 5 and ARL0 ≈ 489.3. Before applying this
chart for the prospective monitoring of new data, we first analyze the different
types of conditional expected delay (8.6). The graphs in Figure 8.6 show the
ARL(𝜏) plotted against increasing 𝜏 , with the dashed line indicating the value
of the steady-state ARL (8.7). Both in the in-control situation (ML-fitted
model) and a particular out-of-control situation (innovations’ mean 𝜇𝜖 = 1.5),
ARL(𝜏) converges very quickly to ARL(∞), such that ARL(∞) becomes an
excellent approximation for the true mean delay of detection; see the above
discussion. This behavior is reasonable, since the second largest eigenvalue
(with multiplicity 1) is rather small, taking a value of about 0.288, while the
Perron–Frobenius eigenvalue 𝜆PF ≈ 0.998. For the out-of-control zero-state
ARL (8.10), the “invisible in-control X0”-approach was used (Remark 8.2.2.2);
if X1 is assumed to follow the stationary out-of-control model, then ARL(1)

would change from ≈ 51.2 to ≈ 50.6 for 𝜇𝜖 = 1.5.
Generally, we see that the c chart is not particularly effective in detect-

ing out-of-control situations; even in the case 𝜇𝜖 = 1.5 (a positive shift by
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Figure 8.7 c chart of simulated IP counts; Example 8.2.2.3 and change point 𝜏 = 21.

more than 50% compared to 𝜇𝜖,0 ≈ 0.905), it takes around 51 observations
in the mean until an alarm is triggered. For illustration, we pick up this
out-of-control scenario in the following way: 100 further observations from a
Poisson INAR(1) process were simulated, initialized by the last observation
x241 = 0 and following the in-control model for the first 20 observations, and
then changing to 𝜇𝜖 = 1.5 for the remaining 80 observations. So the true
change point for xnew

1 ,… , xnew
100 , given by

0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 1, 1, 5, 1, 0, 1, 2,
5, 5, 0, 1, 4, 2, 4, 4, 0, 4, 3, 2, 1, 1, 1, 2, 3, 3, 3, 2, 3, 3, 1, 1, 1, 1, 2, 3, 4, 1, 2,
3, 0, 2, 1, 1, 1, 1, 1, 3, 6, 5, 5, 3, 4, 0, 4, 1, 1, 1, 2, 2, 3, 4, 3, 3, 7, 2, 3, 2, 3, 2,
1, 2, 2, 2, 1, 0, 0,

equals 𝜏 = 21. The corresponding c chart is shown in Figure 8.7. The first alarm
is signaled at time t = 72; that is, with a delay of 52.

8.3 Advanced Control Charts for Count Processes

The basic c chart presented in Section 8.2 allows for continuous monitoring
of a serially dependent count process. But the statistic plotted on the c chart
at time t, which is simply the count observed at time t, does not include any
information about the past observations of the process, or at least not explic-
itly, beyond the mere effect of autocorrelation. Therefore, the c chart (as any
other Shewhart-type chart) is not particularly sensitive to small changes in the
process. For this reason, several types of advanced control charts have been
proposed, in which the plotted statistic at time t also uses past observations of
the process and hence accumulates information about it for a longer period of
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time. In the sequel, we will discuss the most popular types of advanced con-
trol chart: CUSUM charts in Sections 8.3.1 and 8.3.2, and EWMA charts in
Section 8.3.3. Further charts and references can be found in Woodall (1997)
and Weiß (2015b).

8.3.1 CUSUM Charts for i.i.d. Counts

The traditional cumulative sum (CUSUM) control chart, being applied directly
to the observations Xt of the process, is perhaps the most straightforward
advanced candidate for monitoring processes of counts, because it preserves
the discrete nature of the process by only using addition (but no multiplica-
tions). Initialized by a starting value c+0 ≥ 0, the upper-sided CUSUM is defined
by

C+
0 = c+0 , C+

t = max{0, Xt − k+ + C+
t−1} for t = 1, 2,… , (8.13)

that is, by accumulating the deviations from the reference value k+ > 0. Because
of this accumulation, the plotted statistic at time t is not solely based on Xt but
also incorporates the process in the past: Xt−1,Xt−2,… If the CUSUM statistic
becomes negative, the max{0, ⋅} construction resets the CUSUM to zero.

The starting value is commonly chosen as c+0 = 0; a value c+0 > 0 is referred
to as a fast initial response (FIR) feature, and it may help to detect an initial
out-of-control state more quickly; see also the discussion below formulae
(8.5)–(8.7). If k+ and c+0 are taken as integer values, then also (C+

t )ℕ0
is

integer-valued. As another example, if k+, c+0 ∈ {0, 1∕2, 1, 3∕2,…} then so
is C+

t , but in any case, we have a discrete range. In the sequel, we shall
concentrate on integer-valued k+, c+0 . An alarm is triggered if C+

t violates the
upper control limit h+ > 0 (typically, h+ ≥ k+).

While the upper-sided CUSUM is designed to detect increases in the process
mean, the lower-sided CUSUM, defined by

C−
0 = c−0 , C−

t = max{0, k− − Xt + C−
t−1} for t = 1, 2,… , (8.14)

aims at uncovering decreases in the mean. If (C+
t ,C−

t ) are monitored simultane-
ously, then this chart combination is referred to as a two-sided CUSUM chart.
A book with a lot of background information about CUSUM charts is the one
by Hawkins & Olwell (1998).

In this section, we assume the monitored count process (Xt)ℕ to be i.i.d.
in its in-control state, a situation that was also considered in the article by
Brook & Evans (1972). Because of the accumulation according to (8.13),
however, the statistics (C+

t )ℕ0
are no longer i.i.d., but constitute a Markov chain

(analogous arguments apply to the lower-sided CUSUM (8.14)) with transition
probabilities

P(C+
t = a | C+

t−1 = b) =
{

P(Xt = k+ − b + a) if a > 0,
P(Xt ≤ k+ − b) if a = 0,
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and the initial statistic satisfies P(C+
1 = a) = P(C+

1 = a | C+
0 = c+0 ). There-

fore, the MC approach as described in Section 8.2.2 is applicable, with
 = {0,… , h+}. In fact, Brook & Evans (1972) introduced their MC approach
for exactly this type of control chart and considered the application to i.i.d.
Poisson counts.

Example 8.3.1.1 (ARL performance of CUSUM chart) Let us pick up
the situation of Example 8.2.1.1, where we assumed i.i.d. Poisson counts with
in-control mean 𝜇0 = 6. Among others, we applied an upper-sided c chart
with limits l = 0 and u = 13 to this process, leading to ARL0 ≈ 275.6.

For an upper-sided CUSUM chart with c+0 = 0, we choose k+ = 7 close to
but larger than 𝜇0. Trying different values for h+, we finally choose h+ = 11 for
the upper limit such that the zero-state in-control ARL is close to the above
one: ARL0 ≈ 252.6. While all types of conditional expected delay (8.6) coincide
for the i.i.d. Shewhart charts, they lead to different values for the CUSUM
chart. This is illustrated by Figure 8.8, where ARL(𝜏) is plotted against 𝜏 (dashed
line: ARL(∞) from (8.7)): once for the in-control scenario, then again for the
out-of-control scenario 𝜇 = 8. Furthermore, a slightly modified CUSUM
design, with an additional FIR feature (c+0 = 3), is also considered.
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Figure 8.8 CUSUM charts of Example 8.3.1.1: ARL(𝜏) against 𝜏 if (a) 𝜇 = 𝜇0, (b) 𝜇 = 8.
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It becomes clear that ARL(𝜏) again converges quickly to ARL(∞), similar to
Example 8.2.2.3, with the rate of convergence being determined by the second
largest eigenvalue ≈ 0.695 (multiplicity 1). The FIR feature leads to decreased
ARL(𝜏) for small 𝜏 (note the non-monotonic behavior in (a)), but the effect van-
ishes with increasing 𝜏 . Hence, a FIR feature just influences the detection of very
early process changes. Although it was not possible to calibrate the c chart and
CUSUM charts perfectly, it becomes clear that the CUSUM chart is more sen-
sitive to 𝜇 = 8, with steady-state ARL ≈ 10.3 instead of ≈ 29.3. A more detailed
comparison is provided in Example 8.3.3.1. For illustration, the CUSUM chart
(without FIR feature) is applied to the simulated i.i.d. data from Example 8.2.1.1
(change point 𝜏 = 31, 𝜇 shifts from 6 to 8), see Figure 8.9. The first alarm is
triggered at time t = 43; that is, with the delay 13.

Finally, while the zero-state ARL is generally rather artificial when evaluating
the out-of-control performance, it has a nice interpretation for the CUSUM
chart without a FIR feature: it expresses the mean delay of detecting the change
point if the CUSUM statistics are in the least favorable state (namely 0) at the
time of the change point (“worst-case scenario”).

We conclude this section by pointing out the relationship between the
CUSUM scheme (8.13) and the sequential probability ratio test (SPRT); see
Sections 6.1–6.2 in Hawkins & Olwell (1998) for more details. The likelihood
function (see Remark B.2.1.2) for i.i.d. counts is given by

L(𝜽) ∶= P(XT = xT ,… ,X1 = x1 | 𝜽) = T∏
t=1

pxt
(𝜽),

so we obtain the likelihood ratio (LR) as

LR(𝜽0,𝜽1) ∶=
L(𝜽1)
L(𝜽0)

=
T∏

t=1

pxt
(𝜽1)

pxt
(𝜽0)

.
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Figure 8.9 CUSUM chart of simulated i.i.d. counts in Example 8.3.1.1; change point 𝜏 = 31.
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The SPRT now monitors the logarithmic likelihood ratio (log-LR)

𝓁R(𝜽0,𝜽1) ∶= ln LR(𝜽0,𝜽1) =
T∑

t=1
(ln pxt

(𝜽1) − ln pxt
(𝜽0))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶ 𝓁Rt

(8.15)

for increasing T . This procedure can be rewritten recursively by accumulating
the contributions 𝓁Rt to the log-LR at times t ≥ 1, thus leading to a type of
one-sided CUSUM scheme:

C̃0 = 0, C̃t = C̃t−1 + 𝓁Rt .

Note the relation to the random walk in Example B.1.6. Comparing this type
of CUSUM recursion with the one given in (8.13), we see that the max{0, ⋅}
construction is missing, so this CUSUM is not reset to zero if the CUSUM
statistic becomes negative. As pointed out by Lorden (1971), the CUSUM (8.13)
is equivalent to monitoring a slight modification of (8.15):

max1≤j≤t

t∑
s=j

𝓁Rs for t = 1, 2,… (8.16)

If this statistic was not positive at time t − 1 but 𝓁Rt > 0, then the statistic at
time t just equals 𝓁Rt , which corresponds to the above resetting feature.

Example 8.3.1.2 (Log-LR CUSUM for Poisson counts) Let us look at the
example of i.i.d. Poisson counts with parameter values 𝜇0 or 𝜇1, where 𝜇1 > 𝜇0.
Then we obtain

L(𝜇) = e−T𝜇
∏T

t=1 𝜇
xt

/(∏T
t=1 xt!

)
,

LR(𝜇0, 𝜇1) = e−T (𝜇1−𝜇0)
∏T

t=1

(
𝜇1

𝜇0

)xt
,

𝓁Rt = −(𝜇1 − 𝜇0) + xt (ln𝜇1 − ln𝜇0).

Accumulating the re-scaled contributions 𝓁Rt ∕(ln𝜇1 − ln𝜇0), we arrive at the
upper-sided CUSUM

C+
0 = 0, C+

t = max

⎧⎪⎪⎨⎪⎪⎩
0, Xt −

𝜇1 − 𝜇0

ln𝜇1 − ln𝜇0
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=∶ k+

+ C+
t−1

⎫⎪⎪⎬⎪⎪⎭
for t = 1, 2,…

Therefore, if we have a reasonable out-of-control scenario that is to be detected
as early as possible, the optimal choice for k+ is 𝜇1−𝜇0

ln𝜇1−ln𝜇0
. As an example, if

we compute this value for 𝜇1 = 8 and 𝜇0 = 6, as in Example 8.3.1.1, then we



�

� �

�

182 An Introduction to Discrete-Valued Time Series

obtain about 6.952. So our choice k+ = 7 above was indeed reasonable from this
perspective.

Remark 8.3.1.3 (Log-LR CUSUM) Let us look back again to the log-LR
CUSUM scheme (8.16), which, if omitting the logarithm, equals

max
1≤j≤t

t∏
s=j

pxs
(𝜽1)

pxs
(𝜽0)

= max
1≤j≤t

pxj
(𝜽1) · · · pxt

(𝜽1)

pxj
(𝜽0) · · · pxt

(𝜽0)
.

As argued by Kenett & Pollak (1996), we can rewrite this as

max
1≤j≤t

px1
(𝜽0) · · · pxj−1

(𝜽0) ⋅ pxj
(𝜽1) · · · pxt

(𝜽1)

px1
(𝜽0) · · · pxt

(𝜽0)
,

so j corresponds to a possible position of the change point. Because of the max-
imization in j, the statistic indeed selects the most probable position of the
change point in view of the available data (maximum likelihood principle).

This illustrates another nice feature of the CUSUM approach (8.13), see
also Section 1.9 in Hawkins & Olwell (1998): if the CUSUM chart (C+

t )t=1,2,…
triggers an alarm (for the first time) at t = n, and if the CUSUM statistic
was equal to zero for the last time at t = m < n, then m is the estimated
position of the change point, and Xm+1,… ,Xn might be used to estimate
the out-of-control value 𝜽1 of the process parameters. In the data example
discussed in Example 8.3.1.1 and shown in Figure 8.9, the last zero before
the alarm (n = 43) is at time m = 35, so the position of the change point
is estimated at 35 (while the true position is 𝜏 = 31). The estimate of the
out-of-control mean equals

k+ +
c+n − c+m
n − m

= 8.5 = 1
n − m

n∑
t=m+1

xt.

To summarize, the CUSUM chart not only allows us to detect that there was a
change in the process, it also allows us to estimate the position of the change
point and the extent of the change.

8.3.2 CUSUM Charts for Markov-dependent Counts

Now, let us turn back to the case of a Markov-dependent count process (Xt)ℕ,
as in Section 8.2.2. If we apply the upper-sided CUSUM scheme (8.13) to such
a process, then the statistics (C+

t )ℕ0
no longer constitute a Markov chain, so the

MC approach of Brook & Evans (1972) is not directly applicable. But, as shown
in Weiß & Testik (2009) and Weiß (2011b), ARL computations are possible
by considering the bivariate process (X1,C+

1 ), (X2,C+
2 ),…, which is a bivariate
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Markov chain with transition probabilities
px,c|y,d ∶= P(Xt = x,C+

t = c | Xt−1 = y,C+
t−1 = d)

= 𝛿c,max{0, x−k++d} ⋅ px|y,
𝜋x,c(1) ∶= P(X1 = x,C+

1 = c | C+
0 = c+0 )

= 𝛿c,max{0, x−k++c+0 }
⋅ px.

(8.17)

In view of the CUSUM decision rule, it is clear that the set  of “no-alarm
states” is contained in ℕ0 × {0,… , h+}. However, since values of Xt larger than
k+ + h+ will always push C+

t beyond h+, the set  is indeed finite. Excluding
impossible transitions (say, from an alarm state back to a no-alarm state), Weiß
& Testik (2009) showed that

 ∶= {(x, c) ∈ ℕ2
0 | c ≤ h+, c + k+ − h+

≤ x ≤ c + k+}, (8.18)

which is of size s ∶= 1
2
(h+ − k+ + 1)(h+ + k+ + 2) + (h+ + 1)k+. So the matri-

ces Q, Q̃ required for the MC approach (8.8) are of dimension s2, which will
often be a rather large number. It should be noted, however, that many entries
of Q, Q̃ will be equal to 0 according to (8.17); that is, Q, Q̃ are sparse matri-
ces. Therefore, the MC approach for ARL computation can be implemented
efficiently using sparse matrix techniques; see Section 3 in Weiß (2011b) for
possible software solutions.

Example 8.3.2.1 (CUSUM chart for IP counts data) Let us continue
Example 8.2.2.3, where we designed a c chart with u = 5 and ARL0 ≈ 489.3
for the fitted Poisson INAR(1) model. The corresponding marginal mean is
about 1.289, so for the upper CUSUM chart, it is reasonable to try k+ = 2, 3.
In view of obtaining a zero-state in-control ARL close to the above value
of 489.3, we ultimately arrive at the following designs: (h+, k+, c+0 ) = (8, 2, 7)
(with FIR feature) and (3, 3, 0) (without FIR feature), leading to ARL0 ≈ 489.0
and ARL0 ≈ 475.6, respectively. Before further analyzing these designs, a few
technical details. For design 1 – that is, (h+, k+) = (8, 2) – we have matrix
dimension 60 × 60 (see also the formula for s below (8.18)), but among the 3600
entries, only 371 are non-zero. For design 2 – that is, (h+, k+) = (3, 3) – we have
162 = 256 entries, 88 of which are non-zero. The Perron–Frobenius eigenval-
ues are both around 0.998, but, more interesting for us, the second largest
eigenvalues are about 0.732 and 0.294, respectively, each with multiplicity 1.
So we expect the convergence ARL(𝜏) → ARL(∞) to be much more slow for
design 1 than for design 2.

Looking at the graphs in Figure 8.10, this difference in convergence speed
becomes obvious. Furthermore, the first values of ARL(𝜏) differ markedly from
ARL(∞) for design 1, because of the FIR feature c+0 = 7. The effect of this FIR
feature essentially vanishes if 𝜏 > 10; that is, if the change point does not happen
during the first ten observations after the start of monitoring. Then, on average,
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Figure 8.10 CUSUM charts of Example 8.3.2.1: ARL(𝜏) against 𝜏 if (a) 𝜇
𝜖
= 𝜇

𝜖,0, (b) 𝜇
𝜖
= 1.5.

design 1 will be much more robust against false alarms than design 2. But if we
have a change in 𝜇𝜖 from 𝜇𝜖,0 ≈ 0.905 to a value of 1.5, then design 1 is indeed
more sensitive on average (see also below).

Now we apply both CUSUM charts to the simulated data from
Example 8.2.2.3; see Figure 8.11. While the c chart triggers its first alarm
with a delay of 52, design 1 signals at time t = 39 (delay 19), and design 2 at
t = 33 (delay 13). So both are much faster than the c chart in this example, and
design 2 is faster than design 1, although on average, it will be the other way
round.

To conclude this example, let us compare the steady-state out-of-control
performance between the three considered charts against increasing values
of 𝜇𝜖 . Figure 8.12 shows that the CUSUM design 1, although being most robust
against false alarms in the in-control case, quickly leads to the smallest ARL(∞)

values. Only for very large shifts do the ARL(∞) performances equate again.

The idea of applying the MC approach to the bivariate process of observed
counts and CUSUM statistics also essentially applies to the lower-sided
CUSUM scheme (8.14), but the set  then becomes infinite; that is, ARLs
can only be computed approximately (see Yontay et al. (2013) for details).
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Figure 8.11 CUSUM charts of simulated IP counts for Example 8.3.2.1 with change point
𝜏 = 21: (a) (h+, k+, c+0 ) = (8, 2, 7), (b) (h+, k+, c+0 ) = (3, 3, 0).
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Figure 8.12 c chart and CUSUM charts for Example 8.3.2.1: ARL(∞) against 𝜇
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If using a two-sided scheme, then the MC approach has to be applied to the
trivariate Markov chain (Xt,C+

t ,C−
t )ℕ. Although here, the set  is finite again,

computations become very slow because of the immense matrix dimensions;
more details and feasible approximations are presented by Yontay et al. (2013).

Remark 8.3.2.2 (Log-LR CUSUM charts) Besides applying the standard
CUSUM schemes (8.13) and (8.14), one may also look at the log-likelihood ratio
(log-LR) related to the Markov model for (Xt)ℕ, as in (8.15) and Example 8.3.1.2.
From the Markov property, it follows that the contribution to the log-LR of the
tth observation equals

𝓁R1 = ln

(
P𝜇1

(X1)
P𝜇0

(X1)

)
, 𝓁Rt = ln

(
P𝜇1

(Xt|Xt−1)
P𝜇0

(Xt|Xt−1)

)
for t ≥ 2.

If the log-LR approach is applied to an INAR(1) process, then the required
transition probabilities are given by (2.5), by (3.21) for a binomial AR(1)
model, by (4.6) for a (Poisson) INARCH(1) model, or by (4.11) for a binomial
INARCH(1) model. As long as the transition probabilities for (Xt)ℕ are of a
feasible form, this approach will lead to a useful LR-CUSUM scheme. This was
exemplified by Weiß & Testik (2012) for the case of the INARCH(1) model
from Example 4.1.6, where (4.6) leads to

𝓁Rt = ln

(
P𝛽1 ,𝛼1

(Xt|Xt−1)
P𝛽0 ,𝛼0

(Xt|Xt−1)

)
= −(𝛽1 − 𝛽0) − (𝛼1 − 𝛼0) Xt−1 + Xt ln

(
𝛽1 + 𝛼1 Xt−1

𝛽0 + 𝛼0 Xt−1

)
for t ≥ 2.

Although we exemplified the log-LR approach for Markov count processes
here, it can also be used for completely different types of count process. As an
example, Höhle & Paul (2008) derived such a log-LR CUSUM chart for counts
stemming from the seasonal log-linear model (5.6), which proved to be useful
for the surveillance of epidemic counts. A related study is the one by Sparks
et al. (2010).

8.3.3 EWMA Charts for Count Processes

Another advanced approach for process monitoring, which is also very popular
in applications, is the exponentially weighted moving-average (EWMA) control
chart, which dates back to Roberts (1959). The standard EWMA recursion is
defined by

Z0 = z0, Zt = 𝜆 ⋅ Xt + (1 − 𝜆) ⋅ Zt−1 for t = 1, 2,… (8.19)
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with 𝜆 ∈ (0; 1]; that is, it is a weighted mean of all available observations, where
the weights decrease exponentially with increasing time lag j:

Zt = 𝜆

t−1∑
j=0

(1 − 𝜆)j Xt−j + (1 − 𝜆)t z0.

An application of (8.19) to the case of Poisson counts was presented by Borror
et al. (1998). The EWMA recursion (8.19), however, has an important draw-
back compared to the CUSUM approach of Sections 8.3.1 and 8.3.2 if applied
to count processes: it does not preserve the discrete range, except the bound-
ary case 𝜆 = 1, which just corresponds to a c chart. On the contrary, the range
of possible values of Zt changes in time, which rules out, among other things,
the possibility of an exact ARL computation by the MC approach. As a sim-
ple numerical example, assume that z0 = 1 and 𝜆 = 1

2
; then Z1 takes a value in

{ 1
2
, 1, 3

2
,…} and Z2 in { 1

4
,

1
2
,

3
4
,…}, and so on.

Therefore, Gan (1990a) suggests plotting rounded values of the statistic
(8.19):

Qt = round(𝜆 ⋅ Xt + (1 − 𝜆) ⋅ Qt−1) for t = 1, 2,… (8.20)

with 𝜆 ∈ (0; 1], which are initialized by Q0 ∶= q0 ∈ ℕ0. Note that the statis-
tics Qt can take only integer values from ℕ0, and 𝜆 = 1 again leads to a c chart.
q0 might be chosen as the rounded value of the in-control mean. An alarm is
triggered if Qt violates one of the control limits 0 ≤ l < u.

In the i.i.d. case, as considered by Gan (1990a), the statistics (Qt)ℕ constitute
a Markov chain with transition probabilities

P(Qt = a | Qt−1 = b) = P
(
𝜆 Xt + (1 − 𝜆) b ∈

[
a − 1

2
; a + 1

2

))
= P

(
Xt ∈

[
a − (1 − 𝜆) b − 1∕2

𝜆
;

a − (1 − 𝜆) b + 1∕2
𝜆

))
,

and the initial probabilities are obtained by replacing b by q0. So the MC
approach of Brook & Evans (1972) is applicable, analogous to the CUSUM
case discussed in Section 8.3.1, but now with  = {l,… ,u}. Note that
the lower limit can only be violated if round (𝜆 ⋅ 0 + (1 − 𝜆) ⋅ l) < l holds;
that is, if l > 1∕(2𝜆). Other choices of l lead to a purely upper-sided
EWMA chart.

Example 8.3.3.1 (ARL performance of EWMA chart) Let us pick up
the situation of Examples 8.2.1.1 and 8.3.1.1 again; see also Table 5 in Gan
(1990a). Setting q0 = 𝜇0 = 6, and trying different values for (u, 𝜆), we find
two upper-sided designs, with ARL0 being close to the previous values:
(u, 𝜆) = (11, 0.7) and (u, 𝜆) = (9, 0.4), leading to ARL0 at about 264.3 and 256.2,
respectively. Such an upper-sided design is always obtained by setting l = 0,
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Table 8.3 ARL(𝜏) against increasing 𝜏 for two EWMA charts.

(l, u, 𝜆) 𝜇 ARL(1) ARL(2) ARL(3) … ARL(∞)

(0, 11, 0.7) 6 264.32 264.27 264.18 … 264.18
8 20.02 20.03 19.99 … 20.00

(1, 9, 0.4) 6 256.21 255.57 255.37 … 255.32
8 13.73 13.64 13.62 … 13.62

but as aforementioned, any other value l ≤ 1∕(2𝜆) would lead to an iden-
tical chart. In view of keeping  (and hence the dimension of the involved
matrices) minimal, we choose l = 0 ≤ 1∕(2 ⋅ 0.7) ≈ 0.71 for the first design,
but l = 1 ≤ 1∕(2 ⋅ 0.4) = 1.25 for the second one. Plots of ARL(𝜏) against 𝜏

are omitted this time, since they do not provide new insight compared to
previous graphs. In both cases, ARL(𝜏) converges quickly to ARL(∞), since the
second-largest eigenvalues are not particularly large, at about 0.304 and 0.584,
respectively (see Table 8.3).

These few lines already illustrate that the out-of-control performance
usually becomes better for decreasing 𝜆. Since 𝜆 controls the memory,
with 𝜆 = 1 corresponding to the memory-less c chart, this behavior is
reasonable.

We finish this example with a comparison of the steady-state out-of-control
performances (against increasing 𝜇) between the two EWMA charts consid-
ered here, and the c and CUSUM charts of Example 8.3.1.1. Figure 8.13 shows
that both EWMA designs outperform the c chart (better with lower 𝜆), but
they do not reach the sensitivity of the CUSUM chart. The latter is particu-
larly well-suited in detecting small-to-moderate shifts, while for large shifts, all
charts perform reasonably well.
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Figure 8.13 c, CUSUM and EWMA charts of Example 8.3.3.1: ARL(∞) against 𝜇.



�

� �

�

Control Charts for Count Processes 189

If the underlying count process (Xt)ℕ is itself a Markov chain, then we proceed
by analogy to Section 8.3.2 and consider the bivariate process (Xt ,Qt)ℕ (Weiß,
2009e). (Xt,Qt)ℕ constitutes a bivariate Markov chain with range ℕ2

0 and with
transition probabilities

px,a|y,b ∶= P(Xt = x,Qt = a | Xt−1 = y,Qt−1 = b)
= 𝟙[a−1∕2;a+1∕2)(𝜆 x + (1 − 𝜆) b) ⋅ px|y,

𝜋x,a(1) ∶= P(X1 = x,Q1 = a | Q0 = q0)
= 𝟙[a−1∕2;a+1∕2)(𝜆 x + (1 − 𝜆) q0) ⋅ px,

(8.21)

where 𝟙A(z) ∶= 𝟙(z ∈ A) denotes the indicator function. So ARLs can be com-
puted again by adapting the MC approach; see Weiß (2009e) for details. Here,
the set  of “no-alarm states” is derived as

 ∶=
{
(x, q) ∈ ℕ2

0 | l ≤ q ≤ u ,⌈
1
𝜆

(
q − (1 − 𝜆)u − 1

2

)⌉
≤ x ≤

⌈
1
𝜆

(
q − (1 − 𝜆)l + 1

2

)⌉
− 1

}
,

(8.22)

and the resulting matrices Q, Q̃ are again sparse matrices.

Example 8.3.3.2 (EWMA chart for IP counts data) Let us continue
Examples 8.2.2.3 and 8.3.2.1. We find two upper-sided EWMA designs with a
comparable in-control performance (always q0 ∶= round(𝜇0) = 1):

• (l,u, 𝜆) = (0, 4, 0.65) with ARL0 ≈ 441.1 (a matrix with 142 = 196 entries, 85
of which are non-zero and second-largest eigenvalue about 0.290),

• (l,u, 𝜆) = (1, 3, 0.35) with ARL0 ≈ 567.9 (a matrix with 162 = 256 entries,
104 of which are non-zero and second-largest eigenvalue about 0.627).

In addition, the last design is truly upper-sided, despite having l > 0; see the
discussion before Example 8.3.3.1.

Although the second design is much more robust against false alarms, the
out-of-control steady-state ARLs for 𝜇 = 1.5 are nearly the same, at 41.7 and
40.8, respectively. A more detailed analysis of the steady-state ARL as a function
of 𝜇 (plots are omitted this time) shows that both EWMA designs are gener-
ally more sensitive than the c chart, but do not reach the sensitivity of the two
CUSUM charts from Example 8.3.2.1.

Applied to the simulated data from Example 8.2.2.3, we obtain the EWMA
charts shown in Figure 8.14. Surprisingly, the second chart is rather late in
detecting the out-of-control situation: it triggers its first alarm at t = 73; that
is, with delay 53. Therefore, in the given example, the second EWMA design
performs worst of all the considered charts (c chart: delay 52; CUSUM 1:
delay 19; CUSUM 2 and EWMA 1: delay 13). This can be explained by the
combination of small 𝜆 and additional rounding in (8.20), which leads to
a strong smoothing effect, as visible in Figure 8.14b. Even if Qt−1 already
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Figure 8.14 EWMA charts of simulated IP counts for Example 8.3.3.2 with change point
𝜏 = 21: (a) (l, u, 𝜆) = (0, 4, 0.65), (b) (l, u, 𝜆) = (1, 3, 0.35).

reached the upper limit u, Xt is required to be larger than u + 1∕(2𝜆) to lift Qt
beyond u.

A possible disadvantage of the rounded EWMA approach (8.20) became clear
from the second design in Example 8.3.3.2: for small values of 𝜆, which are gen-
erally recommended if small mean shifts are to be detected, one may observe
some kind of “oversmoothing”; that is, Qt becomes piecewise constant in time t
and rather insensitive to process changes. Therefore, Weiß (2011c) proposed a
modification of (8.20), where a refined rounding operation is used: for s ∈ ℕ,
the operation s-round maps x onto the nearest fraction with denominator s.
For s = 1, we obtain the standard rounding operation, while 2-round rounds
onto values in {0, 1∕2, 1, 3∕2,…}, for example. The resulting s-EWMA chart
follows the recursion

Q(s)
t = s-round

(
𝜆 ⋅ Xt + (1 − 𝜆) ⋅ Q(s)

t−1

)
for t = 1, 2,… (8.23)
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with 𝜆 ∈ (0; 1]. If (Xt)ℕ is a Markov chain, then (Xt,Q
(s)
t )ℕ again is a discrete

Markov chain, now with range ℕ0 ×ℚ+
0,s, where ℚ+

0,s ∶= { r
s
| r ∈ ℕ0} is the set

of all non-negative rationals with denominator s. So again, it is possible to adapt
the MC approach of Brook & Evans (1972) for ARL computation; see Weiß
(2011c) for details.
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9

Control Charts for Categorical Processes

Having discussed control charts for count processes in the Sections 8.2 and
8.3, we shall now turn to another type of attributes data process (Xt)ℕ, namely
categorical processes, as introduced in Part II. Although now the range (state
space)  = {s0, s1,… , sd} of Xt consists of a finite number d + 1 of (unordered)
categories with d ∈ ℕ, count values will still play an important role since the
most obvious way of evaluating categorical data is by counting the occurrences
of categories; see also Chapter 6.

For quality-related applications, Xt often describes the result of an inspection
of an item, which either leads to the classification Xt = si for an i = 1,… , d iff
the tth item was non-conforming of type si, or Xt = s0 for a conforming item.
A typical example is the one described by Mukhopadhyay (2008), in which a
non-conforming ceiling fan cover is classified according to the most predom-
inant type of paint defect, say “poor covering” or “bubbles”. Another field of
application is the monitoring of network traffic data with different types of
audit events; see Ye et al. (2002) for details. For monitoring such categorical
processes, we shall consider two general strategies: if the process evolves too
fast to be monitored continuously, then segments are taken from the process
at selected times. For each of the resulting samples, a statistic is computed
and plotted on a control chart. Here, it is important to carefully consider the
serial dependence within the sample; see Section 9.1 for further details. In other
cases, it is possible to continuously monitor the process, but then the serial
dependence has to be taken into account between the plotted statistics. Con-
trol charts for this scenario are presented in Section 9.2. In both cases, we shall
first concentrate on the special case of a binary process (that is, d = 1) and then
extend our discussion to the general categorical case.

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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9.1 Sample-based Monitoring of Categorical
Processes

In this section, we assume that the categorical process (Xt)ℕ cannot be moni-
tored continuously. Instead, samples are taken as non-overlapping segments1

from the process at times t1, t2,…, each being of a certain length n > 1. Note
that we restrict ourselves to a constant segment length n for simplicity, but at
least the Shewhart-type charts could be directly adapted to varying length nk
by using varying control limits (Montgomery, 2009, Section 7.3.2). The time
distance tk − tk−1 > n is assumed to be sufficiently large such that we do not
need to worry about the serial dependence between the samples; just the serial
dependence within the samples. After having collected the segment, a certain
type of sample statistic is computed and then plotted on an appropriately
designed control chart.

9.1.1 Sample-based Monitoring: Binary Case

In view of its practical importance, let us first focus on the special case of a
binary process (Xt)ℕ, with the range coded as {0, 1} as in Example 6.3.2. Having
available the binary segment Xtk

,… ,Xtk+n−1, one commonly determines either
the sample sum Nk

(n) = Xtk
+…+ Xtk+n−1 (say, counts of non-conforming

items) or the corresponding sample fraction of ‘1’s. Since the sample fraction
differs from the count just by a factor 1∕n, we shall always consider the
resulting count process (Nk

(n))ℕ in the sequel. The original binary process
(Xt)ℕ is now monitored by monitoring this derived count process (Nk

(n))ℕ. At
this point, the fundamental premise of this section should be remembered:
although (Xt)ℕ might exhibit serial dependence, due to taking sufficiently
distant segments, we shall assume (Nk

(n))ℕ to be serially independent, and
hence i.i.d. in its in-control state.

For monitoring (Nk
(n))ℕ (being i.i.d. in its in-control state), any of the concepts

discussed in Chapter 8 can be used, it just has to be adapted to the finite range
{0,… , n} of Nk

(n). This difference sometimes manifests itself in the name of the
resulting control charts. If the counts are plotted directly on a Shewhart-type
chart, for instance, it is no longer referred to as a c chart, but as an np chart; see
also the discussion in Section 8.2.1, as well as Montgomery (2009). If the sample
fractions are plotted, it is called a p chart. Despite this different terminology, the
np chart still has two control limits l,u satisfying 0 ≤ l < u ≤ n, which includes
the one-sided charts as boundary cases (upper-sided if 0 = l < u < n). Also
ARLs are computed as before; see (8.3) and (8.4).

Remark 9.1.1.1 (ARL vs. ATS) The ARL values related to the np chart
applied to (Nk

(n))ℕ have to be treated with some caution. To illustrate this, let

1 Also see the “rational subgroup” concepts discussed in Section 5.3.4 in Montgomery (2009).
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us assume that the underlying process (Xt)ℕ refers to the quality of manufac-
tured items, and that we have fixed sampling intervals tk − tk−1 = K > n; say,
tk ∶= k ⋅ K − n + 1. If the chart triggers its first alarm after plotting the rth
sample statistic Nr

(n) (that is, the run length equals r), then the number of man-
ufactured items until this alarm is much larger, given by r ⋅ K . Therefore, in such
a situation, it is sometimes preferred to look at the average time to signal (ATS),
where “time” refers to the original process (Xt)ℕ, not to the number of plotted
statistics. In the given example, we have ATS = K ⋅ ARL. Note that the ATS is
sometimes referred to as the average number of events (ANE) or the average
number of observations to signal (ANOS) instead.

Concerning the distribution of the sample counts, the serial dependence
structure of the underlying binary process (Xt)ℕ is of importance. If (Xt)ℕ
is i.i.d. with P(Xt = 1) = 𝜋 ∈ (0; 1) (say, the probability of a non-conforming
item), then each sample sum Nk

(n) = Xtk
+…+ Xtk+n−1 is binomially dis-

tributed according to Bin(n, 𝜋) (Example A.2.1). So the statistics (Nk
(n))ℕ

constitute themselves as an i.i.d. process of binomial counts. But if (Xt)ℕ
exhibits serial dependence, in contrast, the distribution of Nk

(n) will deviate
from a binomial one.

In Deligonul & Mergen (1987), Bhat & Lal (1990) and Weiß (2009f), the
case of (Xt)ℕ being a binary Markov chain with success probability 𝜋 ∈ (0; 1)
and autocorrelation parameter 𝜌 ∈

(
max

{
−𝜋

1−𝜋
,

1−𝜋
−𝜋

}
; 1
)

was considered
(Example 7.1.3); that is, with the transition matrix given by (7.6). In this case,
Nk

(n) = Xtk
+…+ Xtk+n−1 follows the so-called Markov binomial distribution

MB(n, 𝜋, 𝜌) (which coincides with Bin(n, 𝜋) iff 𝜌 = 0). While the mean of
Nk

(n) is not affected by the serial dependence, the variance in particular
changes (extra-binomial variation if 𝜌 > 0, see the discussion in the context of
Equation 2.3):

E[N (n)
k ] = n𝜋, V [N (n)

k ] = n𝜋(1 − 𝜋) 1 + 𝜌

1 − 𝜌

(
1 − 2𝜌(1 − 𝜌n)

n(1 − 𝜌2)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≈1 for large n

. (9.1)

The pmf is given by (Kedem, 1980, Corollary 1.1)

P(N (n)
k = 0) = (1 − 𝜋)pn−1

0|0 , P(N (n)
k = n) = 𝜋pn−1

1|1 ,

and by P(N (n)
k = j) = 𝜋pj−1

1|1 p2
0|1 pn−j−2

0|0
2∑

a=0

(2
a

) (p0|0
p0|1

)a j−1∑
r=0

(
n − j − 1
r + 1 − a

) ( j − 1
r

) (p1|0 p0|1
p1|1 p0|0

)r

(9.2)

for 0 < j < n (zero inflation if 𝜌 > 0; see the discussion in Appendix A.2).
If the time distance tk − tk−1 between successive segments from (Xt)ℕ is
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sufficiently large, the resulting process of counts (Nk
(n))ℕ can still be assumed

to be approximately i.i.d. (note that the correlation between Xt and Xs decays
exponentially with 𝜌|t−s|), but with a marginal distribution different from a
binomial one. This difference in the distribution of Nk

(n) certainly has to be
considered when designing a corresponding control chart (Weiß, 2009f).

In addition, advanced control schemes, such as the EWMA or CUSUM
charts discussed in Section 8.3, can be used for monitoring (Nk

(n))ℕ. Assuming
the counts Nk

(n) to be binomially distributed in their in-control state (that
is, (Xt)ℕ is assumed to be i.i.d.), Gan (1993) applied the CUSUM scheme
described in Section 8.3.1 for process monitoring, while Gan (1990b) used
the modified EWMA chart from Section 8.3.3 (with rounding operation as in
(8.20)) for this purpose. The application of such an EWMA chart to the case of
(Xt)ℕ being a binary Markov chain – that is, with Nk

(n) following the Markov
binomial distribution – was considered by Weiß (2009f). The computation of
ARLs is done in the same way as described in Sections 8.3.1 and 8.3.3, by just
using the pmf of the (Markov) binomial distribution. A completely different
approach for a sample-based monitoring of an underlying binary Markov
chain was recently proposed by Adnaik et al. (2015), who did not compute
the sample sums Nk

(n) as the charting statistics, but instead used some kind
of likelihood ratio statistic for each of the successive segments. Finally, Höhle
(2010) proposed a log-LR CUSUM chart for monitoring the Nk

(n) under
the assumption that these counts follow a marginal (beta-)binomial logit
regression model; see Section 7.4.

Example 9.1.1.2 (Medical diagnoses) In Weiß & Atzmüller (2010),
several binary time series concerning the diagnostic behavior of different
examiners were discussed (abdominal ultrasound examinations; time passes
according to the arrival of patients). Each of these time series refers to a
particular diagnosis and a particular examiner, where the value ‘1’ states that
the considered diagnosis cannot be excluded for the current patient; that is,
suitable countermeasures are required. As explained in Weiß & Atzmüller
(2010), the time series are expected to stem from a serially independent
process, since the patients usually arrive independently of each other at the
examiner, but the marginal distribution may change over time due to a change
in the diagnostic behavior of the examiner (due to, say, learning). The aim is
to monitor the diagnostic behavior of the considered examiners in view of
detecting such changes.

Obviously, the above processes evolve sufficiently slowly in time that con-
tinuous process monitoring is feasible; we shall consider such approaches in
Example 9.2.1.2. Here, just as an exercise, we shall take segments from one of
these processes to illustrate the application of some of the control charts dis-
cussed above. We consider the time series concerning the diagnosis “M165”
(fatty liver) of examiner “Mf542a5” (Weiß & Atzmüller, 2010, Example 3.1), and
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we focus on the data collected between times 251 and 1178, since these were
justified to be reasonable Phase-I data.

So, altogether, a binary time series of length T = 928 (= 29 ⋅ 32) is available,
which is assumed to stem from an i.i.d. model. We decide on a sampling interval
K = 29 (Remark 9.1.1.1) and sample size n = 10, so altogether 32 counts nk

(10)

are obtained, which should follow a unique binomial distribution, Bin(10, 𝜋).
In fact, an inspection of a time series plot as well as of an autocorrelation plot
give no reason to doubt an i.i.d.-assumption for n1

(10),… , n32
(10); the resulting

moment estimate for 𝜋 equals about 0.241.
For this fitted binomial model, we now develop designs for the upper np chart

and the upper CUSUM chart, to detect a possible future increase in the number
of “fatty liver” diagnoses. For the np chart, ARLs are computed according to
(8.3) and (8.4), and the design u = 5 (and l = 0) leads to ATS0 = K ⋅ ARL0 ≈
1777 (Remark 9.1.1.1). Applying this chart in Phase I to the sample counts, no
alarm is triggered, which confirms the in-control assumption.

For the CUSUM chart, ARLs are computed by the MC approach, as described
in Section 8.3.1, and comparable zero-state in-control ATS values are obtained
for the designs (h+, k+) = (3, 3) and (h+, k+) = (1, 4), with c+0 = 0 (no FIR)
in both cases: ATS0 ≈ 1507 and ATS0 ≈ 1511, respectively. The steady-state
out-of-control performance of the charts is analyzed in Figure 9.1. While the
np chart is difficult to compare with the CUSUM charts, since it is visibly
more robust in its in-control state, it is easy to decide between the CUSUMs:
the design (h+, k+) = (3, 3) leads to clearly better ATS(∞) performance.

Note that the worse CUSUM, (h+, k+) = (1, 4), results in a very similar
decision rule to the np chart: values for Nk

(n) > 5 always lead to an alarm, and
additionally, any pattern of the form “5, 4, 4,… , 4, 5” (with arbitrary number
of ‘4’). So this particular CUSUM chart just extends the considered np chart
by some kind of runs rule. This is illustrated by the simulated Phase-II sample
(𝜋0 ≈ 0.241 shifts to 𝜋 = 0.35 at 𝜏 = 26) in Figure 9.2. While the CUSUM
design (h+, k+) = (3, 3) clearly performs best in this particular example (not
shown; first alarm at sample k = 29), it is interesting to compare the two
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0
50

0
10

00
15

00

A
T

S

Upper CUSUM charts:
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Figure 9.1 np chart and CUSUM charts of Example 9.1.1.2: ATS(∞) against 𝜋.
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Figure 9.2 Simulated sample counts for Example 9.1.1.2: (a) upper-sided np chart with
u = 5 and (b) CUSUM chart (h+, k+, c+0 ) = (1, 4, 0).

remaining charts: both trigger alarms at samples k = 38, 52, 78 caused by sam-
ple counts of 6, but the CUSUM in (b) has an additional alarm at k = 66. The
latter is caused by the sample counts n65

(10) = n66
(10) = 5, which corresponds to

the above pattern with zero ‘4’s.

9.1.2 Sample-based Monitoring: Categorical Case

Let us return to the truly categorical case; that is, where the range of (Xt)ℕ
consists of more than two states,  = {s0,… , sd} with d > 1. As in Section
6.2, we denote the time-invariant marginal probabilities by 𝝅 = (𝜋s0

,… , 𝜋sd
)⊤.

If the number of different states, d + 1, is small, it would be feasible to mon-
itor the process with d simultaneous binary charts; say, by using the p-tree
method described in Duran & Albin (2009). However, here we shall concen-
trate on charting procedures in which the information about the process is
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comprised in a univariate statistic: After having taken a segment from the pro-
cess, we first compute the resulting frequency distribution as a summary, which
then serves as the base for deriving the statistic to be plotted on the control
chart. To keep it consistent with the binary case from Section 9.1.1, we concen-
trate on absolute frequencies: N k

(n) = (Nk;0
(n),… ,Nk;d

(n))⊤ with Nk; j
(n) being

the absolute frequency of the state sj ∈  in the sample Xtk
,… ,Xtk+n−1, such

that
∑d

j=0 Nk; j
(n) = n. With Y t denoting the binarization of Xt , we may express

N k
(n) = Y tk

(n) + … + Y tk+n−1
(n).

If the underlying categorical process (Xt)ℕ is even serially independent
(so altogether i.i.d.), then the distribution of each N k

(n) is a multinomial
one; see Example A.3.3. This case was considered by Marcucci (1985) and
Mukhopadhyay (2008), among others, who proposed plotting Pearson’s
𝜒2-statistic on a control chart,

S(n)
k =

d∑
j=0

(Nk; j − n𝜋0; sj
)2

n𝜋0; sj

, (9.3)

where 𝝅0 ∶= (𝜋0; s0
,… , 𝜋0; sd

)⊤ refers to the in-control values of the categorical
probabilities. So in the in-control case, the process (Sk

(n))ℕ is i.i.d. with
a marginal distribution that might be approximated by a 𝜒2

d -distribution
(see Horn (1977) concerning the goodness of this approximation). As an
alternative, Weiß (2012) proposed using a control statistic that measures
the relative change of categorical dispersion. As the underlying categorical
dispersion measure, the Gini index (6.1) might be used. If (Xt)ℕ is i.i.d.,
following the in-control model, then

G(n)
k =

1 − n−2 ∑d
j=0 N2

k; j

1 −
∑

j∈𝜋
2
0; j

(9.4)

is approximately normally distributed, with a mean of 1 − 1∕n and variance
4
n

(∑
j∈ 𝜋3

0; j −
(∑

j∈ 𝜋2
0; j

)2)/(1 −
∑

j∈ 𝜋2
0; j

)2; see Section 6.2. These approxi-
mate distributions for Sk

(n) or Gk
(n) may be used during chart design. But since

the quality of these approximations is often rather bad (note that n is often
quite small and that the control limit is usually chosen as an extreme quantile),
the final design and evaluation of the ARL performance requires simulations in
practice.

Remark 9.1.2.1 (ARL simulation) The standard approach for ARL sim-
ulation is to generate the process for a certain number of replications (usu-
ally between 10,000 and 1 million), and to apply the considered chart to each
of these process replications. The ith process is stopped when the first alarm
occurs, and the time until this alarm (the actual run length li) is stored. The
mean l of all these run lengths is the approximation to the true ARL.
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The above charts Sk
(n) or Gk

(n), however, are Shewhart charts for i.i.d. statis-
tics. So we just need to know the marginal distribution of Sk

(n) or Gk
(n), then

ARLs are computed according to (8.3) and (8.4). Therefore, here, we can also
simulate just one very long time series and then compute the control limit as an
appropriate quantile from the simulated values. The ARL, in turn, is computed
from the relative frequency of observations violating the control limits.

Example 9.1.2.2 (Paint defects) We pick up the application scenario
described by Mukhopadhyay (2008), where manufactured ceiling fan covers
were checked for possible paint defects. If the fan cover has no paint defect,
then it is conforming and categorized as ‘ok’. Otherwise, if non-conforming, it
is classified according to the most predominant defect, with the d = 6 defect
categories:

• poor covering (‘pc’)
• overflow (‘of’)
• patty defect (‘pt’)
• bubbles (‘bb’)
• paint defect (‘pd’)
• buffing defect (‘bd’).

In Mukhopadhyay (2008), an underlying i.i.d. process is assumed, such that the
N k

(n) are multinomially distributed. The reported data example shows varying
sample sizes (varying around ≈ 150), and the overall observed marginal fre-
quencies are

≈ (0.769, 0.081, 0.059, 0.021, 0.023, 0.022, 0.025) =∶ 𝝅0.

For illustration, we assume this distribution as the in-control distribution, and
we take segments of constant length n = 150. Since we do not specify a certain
sampling interval, we just look at the ARLs in this example.

In quality-related applications such as this, the probability 𝜋0;ok of a conform-
ing unit is typically large, while the defect probabilities are much smaller. So in
the sense of Section 6.2, the in-control distribution 𝝅0 is expected to exhibit
low dispersion. The aim is to detect a deterioration in the quality, which goes
along with a decrease of 𝜋0;ok and hence (often) with an increase in disper-
sion. Therefore, we use an upper-sided version of the Gk

(150) chart, besides the
Sk

(150) chart, which is upper-sided anyway. For chart design, we first try to use
the asymptotic distributions of Sk

(150) and Gk
(150), respectively, and invert (8.3)

to find the control limit for a specified value of ARL0. To check the quality of
this asymptotic approximation, we then determine the actual in-control ARL
by simulations (10,000 replications; see Remark 9.1.2.1). The results are shown
in Table 9.1.
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Table 9.1 ARL0 performance of Sk
(150) and Gk

(150) chart with
approximate chart design.

Chart Sk
(150) chart Gk

(150) chart

Design-ARL0 50 100 200 50 100 200
SimulatedARL0 39.9 69.5 117.1 56.1 129.4 268.5

Obviously, none of the approximations is satisfactory, since we get only
roughly the intended in-control behavior. So a further simulation-based
fine-tuning of the control limit is necessary for both charts.

For illustration purposes, let us further investigate the designs u = 18.55 for
the Sk

(150) chart, and u = 1.28 for the Gk
(150) chart, both leading to ARL0 ≈ 115.

Two out-of-control scenarios are considered:

• the probability of poor covering is increased by a factor 1 + 𝛿; that is, 𝜋1;pc =
(1 + 𝛿)𝜋0;pc, while all other probabilities are uniformly decreased

• the probability of there being no paint defect is decreased by a factor
1 − 𝛿; that is, 𝜋1;ok = (1 − 𝛿)𝜋0;ok, while all other probabilities are uniformly
increased.

The resulting simulated ARL performance is shown in Figure 9.3; the
non-smoothness is caused by simulation error. In both cases, the Gini chart
is much more sensitive to small shifts 𝛿, while the Sk

(150) chart performs
equally well (scenario 2) or even better (scenario 1) for larger shifts 𝛿. This
behavior can be explained to some extent by looking at the “true” values
of the monitored statistics; that is, at

∑
j∈

(n𝜋1; j−n𝜋0; j)2

n𝜋0; j
= n

(∑
j∈

𝜋2
1; j

𝜋0; j
− 1

)
and

1−
∑

j∈ 𝜋2
1; j

1−
∑

j∈ 𝜋2
0; j

, respectively, as functions of 𝛿. Both statistics increase with
increasing deviation, but the Pearson in a convex way and the Gini in a concave
one.

Finally, Figure 9.4 shows the Sk
(150) chart and Gk

(150) charts obtained for a sim-
ulated sample of length 100, where the first 20 samples stem from the in-control
model, and the remaining 80 samples stem from the out-of-control Scenario 1
with 𝛿 = 0.3 (that is, 𝜋1;pc ≈ 0.105). Both charts trigger several alarms after the
change point, with the first alarm for the Gk

(150) chart at sample 34. Note that
the “true” Gini value shifts from 1 to about 1.067 after the change point; that is,
the true (Gini) dispersion is increased by about 6.7%.

A sample-based approach is also possible if (Xt)ℕ is serially dependent. But
then, certainly, the distributions of N k

(n) and hence of Sk
(n) and Gk

(n) will deviate
from those given above for the i.i.d. case. If, for instance, (Xt)ℕ is an NDARMA
process (Section 7.2), then the effect on the distribution can be quantified in
terms of the constant c from (7.12). Considering the complete vector N k

(n), the
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Figure 9.3 Simulated ARL performances for (a) Scenario 1 and (b) Scenario 2; see
Example 9.1.2.2.

covariance matrixΣ from Example A.3.3 is asymptotically inflated by the factor
c (Weiß, 2013b). For the Gini statistic Gk

(n), variance and mean change (approx-
imately) according to (7.13) and (7.14), respectively, while Weiß (2013b) showed
that Sk

(n)∕c is approximately 𝜒2
d -distributed.

Example 9.1.2.3 (Markov multinomial distribution) If (Xt)ℕ is the
DAR(1) process of Example 7.2.2, then c = (1 + 𝜙1)∕(1 − 𝜙1) (in-control
value). Furthermore, analogous to the Markov binomial distribution from
(9.2) above, the distribution of N k

(n) is called the Markov multinomial dis-
tribution by Wang & Yang (1995), who also provide a closed-form formula
for the joint pgf of N k

(n). Note that the jth component Nk; j
(n) follows the

MB(n, 𝜋j, 𝜙1) distribution, since for this particular type of Markov chain, also
each component of the binarization (Y t)ℕ is itself a binary Markov chain
(see Remark 7.2.3).

Höhle (2010) proposed a log-LR CUSUM chart if the N k
(n) stem from a

marginal multinomial logit regression model; see Section 7.4.
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Figure 9.4 (a) Sk
(150) chart and (b) Gk

(150) chart applied to simulated sample; see
Example 9.1.2.2.

9.2 Continuously Monitoring Categorical Processes

If the process evolves sufficiently slowly, then it is possible to implement a con-
tinuous monitoring approach of the categorical process (Xt)ℕ. So as a new cate-
gorical observation Xt arrives, the next control statistic is computed and plotted
on the control chart.

9.2.1 Continuous Monitoring: Binary Case

As in Section 9.1.1, let us first focus on the special case of a binary process
(Xt)ℕ. Perhaps the best-known approach for (quasi) continuously monitoring
a binary process is by plotting run lengths Q1,Q2,… on an appropriately
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designed chart:

Q1 ∶= number of observations until first occurrence of ‘1’
Qn ∶= number of observations after (n − 1)th occurrence of ‘1’

until nth occurrence of ‘1’, for n ≥ 2.
(9.5)

As an example,

(xt) =
(

0, 0, 1,
⏟⏟⏟

q1=3

0, 0, 0, 0, 1,
⏟⏞⏞⏞⏟⏞⏞⏞⏟

q2=5

1,
⏟⏟⏟

q3=1

0, 0, 0, 1,
⏟⏞⏟⏞⏟

q4=4

0, 0, 1,
⏟⏟⏟

q5=3

…
)
.

The monitoring of such runs is a reasonable approach, especially for
high-quality processes where 𝜋 = P(Xt = 1) is very small. Small 𝜋 implies that
long runs are observed, but if 𝜋 increases (deterioration of quality), the runs
become shorter (and vice versa). So the detection of a decrease in the run
lengths is often particularly relevant. Having fixed a truly two-sided design
1 < l < u, we stop monitoring with the nth run if either Qn < l for the first
time, or if already u zeros have been observed since the last run (because then,
Qn will necessarily become larger than u, but we do not need to wait until the
run is finished).

Concerning performance evaluation, Remark 9.1.1.1 should be remem-
bered. The ARL – that is, the average number of plotted runs until the first
alarm – would be quite misleading, since a single run might comprise a rather
large number of original observations. Therefore, the ATS is clearly preferable
as a measure of chart performance.

If (Xt)ℕ is i.i.d. (Bourke, 1991; Xie et al., 2000; Weiß, 2013c), then (Qn)ℕ is also
i.i.d. according to the shifted geometric distribution (Example A.1.5). The ATS
can be computed according to (Weiß, 2013c)

ARL = (1 − (1 − 𝜋)l−1 + (1 − 𝜋)u)−1,

ATS = ARL ⋅
1
𝜋
(1 − (1 − 𝜋)u).

(9.6)

Example 9.2.1.1 (ATS performance of runs chart) Let us apply formula
(9.6) to evaluate the performance of some runs chart designs. Trying to find
(nearly) ATS-unbiased designs (see Example 8.2.1.1 and also Xie et al. (2000))
with an ATS0 around 600–700 for the in-control values 𝜋0 = 0.01, 0.02, 0.03
(high-quality processes), we ultimately obtain the designs l = 9,u = 259 (𝜋0 =
0.01, ATS0 ≈ 612), l = 3,u = 178 (𝜋0 = 0.02, ATS0 ≈ 725), and l = 2,u = 131
(𝜋0 = 0.03, ATS0 ≈ 675). The plot of the respective ATS(𝜋) functions against 𝜋
in Figure 9.5 confirms the designs to be quasi unbiased. It should be noted, how-
ever, that these designs do not lead to unbiased ARL performances. However,
the practical meaning of ARLs for a runs chart (with values ranging between 0
and 25 in the present examples) is questionable anyway.
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Figure 9.5 ATS performance of runs chart against 𝜋; see Example 9.2.1.1.

For illustration, a binary sequence and the respective runs were simu-
lated, where the simulation stopped after having completed the 100th run
(which happened after 3454 binary observations). The data leading to the
first 20 runs stem from the in-control model; that is, they are i.i.d. with
𝜋 = 𝜋0 ∶= 0.02. Afterwards, the defect probability was shifted to 𝜋 = 0.04
(deterioration of quality). The sequence of runs is plotted on a control chart
with design l = 3,u = 178, the in-control performance of which is described
by ATS0 ≈ 725 and ARL0 ≈ 14.9, and the out-of-control performance by
ATS ≈ 315 and ARL ≈ 12.6 (note that runs are shorter on average for 𝜋 = 0.04
than for 𝜋 = 0.02, so the ATS is more strongly affected by such a change). The
resulting runs chart is plotted in Figure 9.6, using a log scale to improve the
readability.

The first alarm is triggered for the 6th run; that is, it is a false alarm (up to
this event, altogether 467 binary observations had been generated). The alarm
is caused by violating the upper limit (q6 = 206 > u); that is, it would indicate an
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Figure 9.6 Runs chart applied to simulated data; see Example 9.2.1.1.
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improvement of the quality. With ARL0 ≈ 14.9, it is not surprising to observe
such a false alarm within the first 20 runs (this in-control period altogether
comprises 1281 binary observations).

The next alarm is a true alarm, which is caused by the 35th run q35 = 1 < l
(that is, with the 1621th binary observations), and indicates a deterioration
of quality. So the delay in detecting the out-of-control situation is 15 runs
(ARL ≈ 12.6) or 340 binary observations (ATS ≈ 315), respectively.

The monitoring of runs is straightforwardly extended to the Markov case; see
Blatterman & Champ (1992) and Lai et al. (2000). The runs Q1,Q2,… from a
binary Markov chain (Xt)ℕ according to Example 7.1.3 are still serially indepen-
dent, but their distribution is no longer shifted geometric. While Q1 has to be
treated separately, for Qn with n ≥ 2, we obviously have

P(Qn = 1) = p1|1 (7.6)
= 𝜋(1 − 𝜌) + 𝜌, and for q ≥ 2 ∶

P(Qn = q) = p1|0 pq−2
0|0 p0|1 (7.6)

= 𝜋(1 − 𝜋)(1 − 𝜌)2 (1 − 𝜋(1 − 𝜌))q−2.

If ‘1’s are observed more frequently, the runs become quite short on average.
In such a case, the CUSUM procedure proposed by Bourke (1991) to monitor
the run length in (Xt)ℕ is more appropriate. This geometric CUSUM control
chart is essentially equivalent to the Bernoulli CUSUM control chart, which was
proposed by Reynolds & Stoumbos (1999) for an i.i.d. binary process (Xt)ℕ, and
which was extended to the case of a binary Markov chain, as in Example 7.1.3,
by Mousavi & Reynolds (2009). These charts are constructed in an analogous
way to (8.15): the CUSUM chart is defined by accumulating the contributions
to the log-likelihood ratio (log-LR) at times t ≥ 1. The contribution by the tth
observation equals

𝓁Rt = ln

(
P𝜋1

(Xt)
P𝜋0

(Xt)

)
= ln

(
𝜋

Xt
1 (1 − 𝜋1)1−Xt

𝜋
Xt
0 (1 − 𝜋0)1−Xt

)

= Xt ln
𝜋1(1 − 𝜋0)
𝜋0(1 − 𝜋1)

+ ln
1 − 𝜋1

1 − 𝜋0
,

(i.i.d. case)

where 𝜋1 refers to the relevant out-of-control parameter value of 𝜋, while 𝜋0
represents the in-control value. In the Markov case (Example 7.1.3; see also
Remark 8.3.2.2), 𝓁R1 is computed as before, while

𝓁Rt = ln

(
P𝜋1

(Xt|Xt−1)
P𝜋0

(Xt|Xt−1)

)

= ln

(
(1 − 𝜌) 𝜋Xt

1 (1 − 𝜋1)1−Xt + 𝜌𝛿Xt ,Xt−1

(1 − 𝜌) 𝜋Xt
0 (1 − 𝜋0)1−Xt + 𝜌𝛿Xt ,Xt−1

)
for t ≥ 2.
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An upper-sided CUSUM chart (we restrict to this case, since usually increases
in 𝜋 are to be detected) can now be constructed analogously to (8.13) by
defining

C̃+
0 = 0, C̃+

t = max{0,𝓁Rt + C̃+
t−1} for t = 1, 2,… (9.7)

In the i.i.d. case, the CUSUM (9.7) might be rewritten in the form

C+
t = max

{
0,Xt − ln

1 − 𝜋0

1 − 𝜋1

/
ln

𝜋1(1 − 𝜋0)
𝜋0(1 − 𝜋1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶k+

+ C+
t−1

}
. (9.8)

Note that the plotted statistics of these CUSUM charts go along with the obser-
vations, so ARL = ATS. To allow for an exact ARL computation with the MC
approach (Section 8.2.2), k+ can be required to take the form 1∕m with an
m ∈ ℕ (Reynolds & Stoumbos, 1999); a similar strategy is proposed by Mousavi
& Reynolds (2009) for the case of (Xt)ℕ being a binary Markov chain. In this case
(with h+ being a multiple of 1∕m), the resulting transition matrices Q, Q̃ for
the MC approach are sparse matrices (see Section 8.3.2), since only a few com-
binations (a, b) ∈ {0, 1∕m,… , h+}2 are possible at all for P(C+

t = a | C+
t−1 = b).

We have

P(C+
t = a | C+

t−1 = b) =
⎧⎪⎨⎪⎩

1 − 𝜋 if a = 0, b ≤
1
m

or a > 0, b = a + 1
m
,

𝜋 if a > 0, b = a + 1
m

− 1.

Note that a lower-sided CUSUM chart can be constructed in an analogous way
to (9.8). For a log-LR CUSUM with respect to an underlying logit regression
model (Section 7.4), see Höhle (2010).

Example 9.2.1.2 (CUSUM chart for diagnosis data) Let us return to the
binary time series x1,… , x928 from Example 9.1.1.2, for the diagnosis of “fatty
liver” by examiner “Mf542a5” (Weiß & Atzmüller, 2010). Now investigating the
full time series, the SACF plot still indicates serial independence, and the overall
mean leads to the estimate �̂� ≈ 0.241 for the probability of diagnosing a fatty
liver. With a corresponding mean run length of only about 4.14, a runs chart
is not appropriate. So we shall concentrate on the CUSUM chart (9.8) for the
fitted i.i.d. model.

To get an idea of reasonable values for k+, we compute ln 1−𝜋0

1−𝜋1

/
ln 𝜋1(1−𝜋0)

𝜋0(1−𝜋1)
for

𝜋0 ∶= �̂� and 𝜋1 = 0.3, 0.4, 0.5, which leads to about 0.270, 0.317, 0.364, respec-
tively. So we choose k+ = 1∕4 (which should be better for small shifts) and
k+ = 1∕3 (which should be better for somewhat larger shifts). Trying to obtain
in-control zero-state ARLs close to the ATS0 values from Example 9.1.1.2 (note
that for the considered CUSUM, we have ARL = ATS), we ultimately end up
with the designs h+ = 53∕4, k+ = 1∕4 (ARL0 ≈ 1642) and h+ = 15∕3, k+ = 1∕3
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Figure 9.7 CUSUM charts of Example 9.2.1.2: ARL(∞) against 𝜋.

(ARL0 ≈ 1661). The corresponding transition matrices for the MC approach
have only 105 and 30 non-zero entries, respectively. The steady-state ARL
performance of these designs is illustrated by Figure 9.7, with the first design
indeed being more sensitive to small shifts.

As an illustration, we now apply these two CUSUMs in Phase II. For this
purpose, we use the remaining 449 observations from Example 3.1 in Weiß
& Atzmüller (2010), which were collected after an eight-month break. Both
CUSUM designs do not lead to an alarm (design (h+, k+) = (53∕4, 1∕4) is shown
in Figure 9.8), so the examiner seems to remain in the in-control state that had
previously been identified.

We conclude by pointing out another approach for continuously monitor-
ing a binary process: the EWMA chart discussed in Section 8.3.3, which was
applied to binary processes by Yeh et al. (2008) and Weiß & Atzmüller (2010),
among others.
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Figure 9.8 CUSUM chart (h+, k+) = (53∕4, 1∕4) for fatty liver data; see Example 9.2.1.2.
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9.2.2 Continuous Monitoring: Categorical Case

Generally, while it is quite natural to check for runs in a binary process, it is
more difficult to define a run for the truly categorical case in a reasonable way.
One possible solution was discussed in Weiß (2012), where one waits for a seg-
ment (s,… , s) of length k, where s is taken from a specified subset ∗ ⊂  . But
as pointed out in Weiß (2012), waiting times for completely different types of
patterns might also be relevant, depending on the actual application scenario.
Because of this ambiguity, we shall not further consider the monitoring of runs
in a categorical process here.

Instead, we follow the path of Section 9.2.1 and consider CUSUM charts
derived from the log-likelihood ratio approach. So let 𝝅0 denote again the
in-control value of the marginal distribution 𝝅, and let 𝝅1 be the relevant
out-of-control value. A CUSUM scheme for the case of an underlying i.i.d.
process was proposed by Ryan et al. (2011). In this case, the contribution to the
log-LR at time t ≥ 1, 𝓁Rt ∶= ln(P𝝅1

(Xt)∕P𝝅0
(Xt)), can be expressed as either

𝓁Rt = ln

(
𝜋1;Xt

𝜋0;Xt

)
or 𝓁Rt =

d∑
j=0

Yt, j ln

(
𝜋1; sj

𝜋0; sj

)
, (9.9)

where the latter version uses the binarization Y t of Xt . The log-LR
approach also applies to serially dependent categorical processes. As an
example, in analogy to the work by Mousavi & Reynolds (2009) concerning
a binary Markov chain (see Section 9.2.1), we consider a categorical Markov
chain. Then, 𝓁R1 is computed as before, where

𝓁Rt = ln

(
P𝝅1

(Xt|Xt−1)
P𝝅0

(Xt|Xt−1)

)
for t ≥ 2.

If we are concerned with the particular case of a DAR(1) process as in
Examples 7.2.2 and 9.1.2.3, it then follows that

𝓁Rt = ln

(
(1 − 𝜙1) 𝜋1;Xt

+ 𝛿Xt ,Xt−1
𝜙1

(1 − 𝜙1) 𝜋0;Xt
+ 𝛿Xt ,Xt−1

𝜙1

)
for t ≥ 2. (9.10)

The log-LR-based CUSUM statistic at time t is defined as before, by the
recursion

C̃+
t = max{0, 𝓁Rt + C̃+

t−1}, where C̃+
0 ∶= 0. (9.11)

An alarm is triggered once C̃t violates the upper control limit h+ > 0 for the
first time. For a log-LR CUSUM with respect to an underlying logit regression
model (Section 7.4), see Höhle (2010).

Example 9.2.2.1 (CUSUM chart for paint defects) Let us continue
Example 9.1.2.2, where we monitored the quality of manufactured ceiling fan
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covers as described by Mukhopadhyay (2008). The possible states sj are either
‘ok’ (j = 0) or one of the d = 6 defect categories: ‘pc’, ‘of’, ‘pt’, ‘bb’, ‘pd’, ‘bd’
(j = 1,… , 6). The in-control distribution of the resulting i.i.d. process (Xt)ℕ
equals

𝝅0 = (0.769, 0.081, 0.059, 0.021, 0.023, 0.022, 0.025).

Two out-of-control scenarios were considered in Example 9.1.2.2. Scenario 1
assumes the probability of poor covering (j = 1) to be increased by the factor
1 + 𝛿; that is, 𝜋1;pc = (1 + 𝛿) 𝜋0;pc, while all other probabilities are decreased
according to 𝜋1; sj

= 1−𝜋1; pc

1−𝜋0; pc
𝜋0; sj

. Hence, (9.9) becomes

𝓁Rt = Yt,1 ln(𝜋1;pc∕𝜋0;pc) +
∑
j≠1

Yt,j ln(𝜋1; sj
∕𝜋0; sj

)

= Yt,1 ln(1 + 𝛿) + ln
(1 − (1 + 𝛿) 𝜋0;pc

1 − 𝜋0;pc

)
(1 − Yt,1)

= Yt,1 ln
( (1 + 𝛿)(1 − 𝜋0;pc)

1 − (1 + 𝛿) 𝜋0;pc

)
− ln

( 1 − 𝜋0;pc

1 − (1 + 𝛿) 𝜋0;pc

)
,

and a slightly modified version of (9.11) (see (9.8)) is given by

C+
t = max{

0, Yt,1 − ln
( 1 − 𝜋0;pc

1 − (1 + 𝛿) 𝜋0;pc

)/
ln
( (1 + 𝛿)(1 − 𝜋0;pc)

1 − (1 + 𝛿) 𝜋0;pc

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶k+

+ C+
t−1

}
.

So Scenario 1 just leads to a type of Bernoulli CUSUM chart (Scenario 2
from Example 9.1.2.2 could be treated in an analogous way by using
𝜋1;ok = (1 − 𝛿)𝜋0;ok and 𝜋1; sj

= 1−𝜋1; ok

1−𝜋0; ok
𝜋0; sj

otherwise). If we want to compute
the ARLs exactly by the MC approach (Section 8.2.2), we can again choose
k+ in the form 1∕m with an m ∈ ℕ (Reynolds & Stoumbos, 1999), otherwise,
simulations are required (Remark 9.1.2.1). For more complex out-of-control
scenarios 𝝅1, the categorical CUSUM chart (9.11) differs from a simple
Bernoulli CUSUM, but following the approach described in Appendix A of
Ryan et al. (2011), an adaption of the MC approach is still possible.

For illustration, we continue with Scenario 1. As in Example 9.2.1.2, we com-
pute the value for k+ for some reasonable shift sizes – say 𝛿 = 0.3, 0.5 – which
imply choosing k+ = 1∕11 or k+ = 1∕10. Aiming at an in-control zero-state
ARL around 1000, we find the designs h+ = 69∕11, k+ = 1∕11 (ARL0 ≈ 1055)
and h+ = 52∕10, k+ = 1∕10 (ARL0 ≈ 1051). Both charts show nearly the same
steady-state ARL performance with respect to changes according to Scenario 1
(see Figure 9.9), with slightly lower ARLs for the first design. For instance, if
𝛿 = 0.3, we have ARL(∞) ≈ 238 vs. ARL(∞) ≈ 254. Applied to a simulated sample
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Figure 9.9 CUSUM charts of Example 9.2.2.1: ARL(∞) against 𝜋pc.
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Figure 9.10 CUSUM chart (h+, k+) = (52∕10, 1∕10) for simulated sample; see
Example 9.2.2.1.

path, where the first 100 observations follow𝝅0 and the remaining 400 follow𝝅1
with 𝛿 = 0.3, both charts look very similar, with chart 2 (shown in Figure 9.10)
being slightly faster in detecting the process change (the first alarm is triggered
at time t = 190 vs. t = 205).

While the designed CUSUM chart does well for a change in the anticipated
direction, we may get bad performance in a misspecified shift scenario; see the
discussion in Ryan et al. (2011). Imagine, for instance, a modification of Sce-
nario 1, where the positive shift does not occur for poor covering (‘pc’) but
for bubbles (‘bb’). In this case, the value of 𝜋1;pc would be decreased compared
to 𝜋0;pc; that is, the designed CUSUM would even become more robust. So if
flexibility concerning the out-of-control scenario is required, one has to apply
different (Bernoulli) CUSUM charts simultaneously.

An EWMA control chart for the monitoring of a categorical process is
proposed by Ye et al. (2002).
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Part IV

Appendices

To make this book more self-contained, Appendix A summarizes some basic
facts about common types of count distributions, although these facts are also
available in many textbooks; some references are provided in Appendix A.
Appendix B has been added to this book for the same reason, and is about
stochastic processes, including both general properties and brief summaries
for specific types, like ARMA and GARCH processes. Appendix B also gives
recommendations for textbooks containing more detailed treatments of these
topics.

Appendix C, in contrast, is about the models, methods and examples dis-
cussed in the main part of this book. It provides an overview of the datasets and
the software implementations used for creating this book, the latter written
in the language R (R Core Team, 2016). Some general remarks are also given,
to help readers interested in translating the code into other programming
languages.

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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A

Examples of Count Distributions

This appendix provides a brief survey of common models for count data and
their stochastic properties. In particular, we discuss dispersion properties and
types of generating functions, the latter being useful tools when analyzing
count models. The presented models are divided into univariate and multi-
variate models, and into models for an infinite range like ℕ0 or a finite range
like {0,… , n}.

A.1 Count Models for an Infinite Range

The most famous model for a count random variable having the range ℕ0 (full
set of non-negative integers) is the Poisson distribution.

Example A.1.1 (Poisson distribution) The Poisson distribution Poi(𝜆)
with parameter 𝜆 > 0 is defined by the pmf

P(X = k) = e−𝜆 𝜆k

k!
for k ∈ ℕ0.

From its generating functions (also see Table 2.2),

pgf(z) = exp (𝜆(z − 1)) and cgf(z) = 𝜆(ez − 1),

the characteristic equi-cumulant property follows,

𝜅1 = 𝜅2 = … = 𝜆.

In particular, mean and variance are equal to each other (equal to 𝜆), a property
referred to as equidispersion. It is also useful to know that the factorial moments
are given by 𝜇(r) = 𝜆r for r ∈ ℕ. Another important property is the additivity of
the Poisson distribution: if X1 ∼ Poi(𝜇1), X2 ∼ Poi(𝜇2) and both are indepen-
dent, then X1 + X2 ∼ Poi(𝜇1 + 𝜇2). These and further properties are provided
in Johnson et al. (2005, Chapter 4).

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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The equidispersion property of the Poisson distribution can be stated equiv-
alently in terms of the index of dispersion I = 𝜎2∕𝜇 according to (2.1), by saying
that the Poisson distribution always satisfies I = 1 (a related approach focussing
on the probability for observing a zero, based on the zero index (2.2), is con-
sidered below). Values for I deviating from 1, in turn, express a violation of the
Poisson model.

Example A.1.2 (Compound Poisson distribution) We adapt the nota-
tion and definitions from Chapter XII in Feller (1968). Let Y1,Y2,… be indepen-
dent and identically distributed (i.i.d.) random variables with the range being
contained in ℕ; let 𝜈 denote the upper limit of the range (we allow the case
𝜈 = ∞). Denote the pgf of the Yi (compounding distribution) by H(z); in the case
of a finite range with upper limit 𝜈 < ∞ and h𝜈 > 0, H becomes the polynomial
H(z) = h1z +…+ h𝜈z𝜈 .

Let N ∼ Poi(𝜆) be Poisson distributed, independently of Y1,Y2,…Then X ∶=
Y1 +…+ YN is said to be compound Poisson distributed; that is, X ∼ CP𝜈(𝜆,H).
The generating functions of X are given by

pgf(z) = exp (𝜆(H(z) − 1)) and cgf(z) = 𝜆(H(ez) − 1),

while the pmf can be computed recursively as (Kemp, 1967, “Panjer recursion”)

P(X = 0) = e−𝜆, P(X = k) = 𝜆

k
⋅

min{k,𝜈}∑
j=1

j hj P(X = k − j) for k ≥ 1.

If the rth moment 𝜇Y ,r of the Yi exists, then the rth cumulant of X is given by

𝜅X,r = 𝜆 ⋅ 𝜇Y ,r.

This implies that the variance-mean ratio I of X equals 𝜇Y ,2∕𝜇Y ,1; that is, the
CP𝜈-distribution is equidispersed iff 𝜈 = 1 (note that the CP1-distribution
coincides with the Poi-distribution). Otherwise, we have I > 1; that is, any
CP𝜈-distribution with 𝜈 > 1 is overdispersed.

The compound Poisson distributions are uniquely characterized by the prop-
erty of being infinitely divisible (Feller, 1968); that is, their pgf satisfies that
pgf(z)1∕n is itself a pgf for all n ∈ ℕ. The CP distribution is also additive; see
Lemma 2.1.3.2 for more details.

Note that in the literature, there are several other names for the com-
pound Poisson distribution: for example, it is sometimes referred to as the
Poisson-stopped sum distribution because the summation X = Y1 +…+ YN is
stopped by the Poisson random variable N .

The family of CP𝜈-distributions includes a number of important special cases.
Besides CP1 = Poi, the distributions of Examples A.1.3–A.1.6 also belong to the
CP-family.
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Example A.1.3 (Poisson distribution of order 𝜈) If 𝜈 < ∞ (finite
compounding structure), the resulting CP distribution is also referred to as
a Hermite distribution of order 𝜈 (Puig & Valero, 2007). If, in addition, the
compounding distribution is the uniform distribution on {1,… , 𝜈} – that is,
if hx = 1∕𝜈 for all x = 1,… , 𝜈 – then this distribution is also known as the
Poisson distribution of order 𝜈 (Johnson et al., 2005). It is abbreviated hereafter
as Poi𝜈(𝜆), where Poi1 = Poi. The first four moments are

𝜇 = 𝜆(𝜈 + 1)
2

, 𝜎2 = 𝜆(𝜈 + 1)(2𝜈 + 1)
6

, 𝜇3 = 𝜆𝜈(𝜈 + 1)2

4
,

𝜇4 =
𝜆(𝜈 + 1)(2𝜈 + 1)(3𝜈2 + 3𝜈 − 1)

30
+ 3𝜎4.

In particular, I = (2𝜈 + 1)∕3.

The negative binomial distribution belongs to the CP∞-family.

Example A.1.4 (Negative binomial distribution) The negative binomial
distribution NB(n, 𝜋) with n ∈ (0;∞) and 𝜋 ∈ (0; 1) has the pmf

P(X = k) =
(

n + k − 1
k

)
⋅ (1 − 𝜋)k ⋅ 𝜋n for k ∈ ℕ0,

where the binomial coefficient is defined as(
n + k − 1

k

)
= Γ(n + k)

Γ(n) k!
=

(n + k − 1)(k)
k!

,

with Γ(⋅) denoting the gamma function. The pgf equals

pgf(z) =
(

𝜋

1 − (1 − 𝜋) z

)n

.

The case n = 1 is referred to as the geometric distribution Geom(𝜋); see also
Example A.1.5. The NB-distribution is compound Poisson with

𝜆 ∶= −n ln 𝜋 and H(z) = ln(1 − (1 − 𝜋) z)
ln𝜋

=
∞∑

k=1

(1 − 𝜋)k

−k ln𝜋
zk .

So the compounding distribution is just the logarithmic series distribution
LSD(𝜋). The first four moments of NB(n, 𝜋) are

𝜇 = n 1 − 𝜋

𝜋
, 𝜎2 = n 1 − 𝜋

𝜋2 , 𝜇3 = n(1 − 𝜋)(2 − 𝜋)
𝜋3 ,

𝜇4 =
3n2(1 − 𝜋)2 + n(1 − 𝜋)(𝜋2 − 6𝜋 + 6)

𝜋4 .

In particular, I = 1∕𝜋. For n → ∞ but 𝜇 fixed, it approaches the Poi(𝜇)
distribution. Finally, the NB distribution is also additive, in the sense that
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for X1 ∼ NB(n1, 𝜋), X2 ∼ NB(n2, 𝜋) and both being independent, their sum
satisfies X1 + X2 ∼ NB(n1 + n2, 𝜋). These and further properties are provided
in Johnson et al. (2005, Chapter 5).

Example A.1.5 (Geometric distribution) As mentioned in Example A.1.4,
the special case NB(1, 𝜋) of a negative binomial distribution with n = 1 is
commonly referred to as a geometric distribution, abbreviated as Geom(𝜋).
It can be interpreted as the number of failures until observing the first
success in a sequence of i.i.d. replications of a Bernoulli experiment (see also
Example A.2.1), that is, an experiment with only two outcomes (“failure”
or “success”) and with success probability 𝜋. Properties of the geometric
distribution follow immediately from Example A.1.4.

In some applications, not the number of failures but the number of trials
(waiting time) until the first success is relevant, which corresponds to shift-
ing X to Y ∶= X + 1. We refer to Y as following a shifted geometric distribution.
Among others, we have

P(Y = k) = (1 − 𝜋)k−1 ⋅ 𝜋 for k ∈ ℕ, 𝜇 = 1
𝜋
, 𝜎2 = 1 − 𝜋

𝜋2 .

Example A.1.6 (Generalized Poisson distribution) Another popular
member of the CP∞-family is Consul’s generalized Poisson distribution,
GP(𝜆, 𝜃), with 𝜆 > 0 and 0 ≤ 𝜃 < 1. Its pmf equals

P(X = x) = 𝜆

x!
(𝜆 + 𝜃x)x−1 exp (−(𝜆 + 𝜃x)) for x ∈ ℕ0,

so 𝜃 = 0 leads to the Poi(𝜆)-distribution. Mean and variance equal

E[X] = 𝜆

1 − 𝜃
, V [X] = 𝜆

(1 − 𝜃)3 , that is, I = 1
(1 − 𝜃)2 .

The GP distribution is also additive, in the sense that for X1 ∼ GP(𝜆1, 𝜃),
X2 ∼ GP(𝜆2, 𝜃), both being independent, their sum satisfies X1 + X2 ∼
GP(𝜆1 + 𝜆2, 𝜃). These and further properties are provided in Johnson et al.
(2005, Section 7.2.6).

All distributions in Examples A.1.2–A.1.6 are overdispersed. The opposite
phenomenon, I < 1 – that is, a variance smaller than the mean – is referred
to as underdispersion. The GP(𝜆, 𝜃)-distribution of Example A.1.6 might be
extended to also cover underdispersion, by allowing 𝜃 to be negative. But then
it is necessary to truncate the range of the GP-distribution, where the degree
of truncation depends on the actual values of the model parameters. The trun-
cation of the range also causes the problem that the probabilities according to
the above pmf no longer sum to 1, and otherwise exact properties become only
approximate (Johnson et al., 2005, p. 336). An analogous criticism – that is, that
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essential properties of the distribution are known only approximately – also
applies to the families of Efron’s double Poisson (DP) distributions (Johnson
et al., 2005, Section 11.1.8) and of Conway–Maxwell (COM) Poisson distribu-
tions (Shmueli et al., 2005).

Therefore, in Weiß (2013a), two other distribution families are recommended
for underdispersed counts: the Good distribution and the power-law weighted
Poisson (PL) distribution.

Example A.1.7 (Good distribution) Using the polylogarithm

Li𝜈(z) =
∞∑

x=1
zx ⋅ x−𝜈 for |z| < 1,

the Good distribution is defined by the pmf

P(X = x) =
qx+1 ⋅ (x + 1)−𝜈

Li𝜈(q)
with 0 < q < 1 and 𝜈 ∈ ℝ.

Its pgf equals

pgf(z) = 1
z

Li𝜈(qz)
Li𝜈(q)

,

and moments are obtained from the relation (Kulasekera & Tonkyn, 1992):

E[(X + 1)k] =
Li𝜈−k(q)
Li𝜈(q)

.

In particular, mean and variance are given by

E[X] =
Li𝜈−1(q)
Li𝜈(q)

− 1, V [X] =
Li𝜈−2(q)
Li𝜈(q)

−
Li2

𝜈−1(q)
Li2

𝜈(q)
,

and we have underdispersion (I < 1) for values of 𝜈 smaller than about
− ln 2∕ ln(4∕3) ≈ −2.41.

Example A.1.8 (PL distribution) The power-law weighted Poisson distri-
bution (PL distribution) as introduced by del Castillo & Pérez-Casany (1998) is
based on the weight function 𝑤(x) = (x + a)𝜈 with a > 0 and 𝜈 ∈ ℝ, which is
applied to Y ∼ Poi(𝜆) via

C𝜈(𝜆, a) = e𝜆 ⋅ E𝜆[𝑤(Y )] =
∞∑

y=0

𝜆y(y + a)𝜈

y!
.

If even 𝜈 ∈ ℕ, then

C𝜈(𝜆, a) = e𝜆 ⋅
𝜈∑

k=0

(
𝜈

k

)
a𝜈−k E𝜆[Y k],
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that is, C𝜈(𝜆, a) simply equals e𝜆 times a polynomial in 𝜆. As an example,
C1(𝜆, a) = e𝜆(𝜆 + a) and C2(𝜆, a) = e𝜆((𝜆 + a)2 + 𝜆).

The pmf of the PL distribution is given by

P(X = x) = 𝜆x ⋅ (x + a)𝜈

C𝜈(𝜆, a) ⋅ x!
.

So the pgf equals

pgf(z) =
∞∑

x=0

(𝜆z)x ⋅ (x + a)𝜈

C𝜈(𝜆, a) ⋅ x!
=

C𝜈(𝜆z, a)
C𝜈(𝜆, a)

,

and the factorial moments are given by

𝜇(k) = 𝜆k ⋅
C𝜈(𝜆, a + k)

C𝜈(𝜆, a)
.

del Castillo & Pérez-Casany (1998) proved that X shows underdispersion iff
𝜈 > 0. Weiß (2013a) recommends using the distributions PL𝜈(𝜆, a) with given
𝜈 ∈ ℕ for underdispersed counts, where closed-form expressions for the pmf,
pgf, mean and variance are easily obtained from the above formulae.

Another characteristic property of the Poisson distribution (Example A.1.1)
is the probability of observing a zero: the zero index Izero = 1 + ln(p0)∕𝜇
according to (2.2) equals 0 for the Poisson distribution, but may differ other-
wise. For a compound Poisson distribution CP𝜈(𝜆,H), for instance, we obtain
(Example A.1.2)

Izero = 1 + ln e−𝜆
𝜆 H′(1)

= 1 − 1
H′(1)

, (A.1)

which equals 0 iff 𝜈 = 1, and which satisfies Izero ∈ (0; 1) otherwise (zero infla-
tion; note that H′(1) ≥ 1 is the mean of the compounding distribution). A more
flexible approach towards zero modification is summarized in the following
example.

Example A.1.9 (Zero-modified distributions) If p̃0, p̃1,… abbreviate the
probability masses of the parent distribution, then the distribution defined by
the pmf

P(X = x) = 𝛿x,0 ⋅ 𝜔 + (1 − 𝜔) p̃x with
−p̃0

1 − p̃0
≤ 𝜔 ≤ 1

is referred to as a zero-modified distribution (Johnson et al., 2005, Section 8.2.3).
Here, 𝛿k,l is the Kronecker delta, which equals 1 iff k = l and 0 otherwise.
Obviously, 𝜔 > 0 corresponds to zero inflation, and 𝜔 < 0 to zero deflation
(both with respect to the parent distribution). It immediately follows that

pgf(z) = 𝜔 + (1 − 𝜔) ⋅ p̃gf(z), mgf(z) = 𝜔 + (1 − 𝜔) ⋅ m̃gf(z),
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where p̃gf(z) and m̃gf(z) denote the parent’s generating functions. Hence,

𝜇n = (1 − 𝜔) �̃�n, especially I = Ĩ + 𝜔 �̃�.

So zero inflation accompanies overdispersion and vice versa.

If the parent distribution in Example A.1.9 is the Poisson distribution Poi(𝜆),
then the distribution obtained for 𝜔 > 0 is said to be the zero-inflated Poisson
distribution, ZIP(𝜆, 𝜔).

We conclude this section with a brief look at a distribution for a slightly dif-
ferent type of infinite and integer-valued range: the full range of integers ℤ.

Example A.1.10 (Skellam distribution) Let X1 ∼ Poi(𝜇1) and X2 ∼
Poi(𝜇2) be two independent and Poisson-distributed random variables
(Example A.1.1). Define Y = X1 − X2 as the difference between them. Then
the distribution of Y is referred to as the Skellam distribution, with parameters
𝜇1, 𝜇2 > 0, and the range of Y is ℤ. If

In(z) ∶=
∞∑

k=0

( z
2
)k ⋅ ( z

2
)k+n

k! ⋅ (k + n)!
for n ∈ ℕ0, I−n(z) ∶= In(z),

denotes the modified Bessel function of the first kind, then the pmf of Y is given
by

P(Y = y) = e−𝜇1−𝜇2 (𝜇1∕𝜇2)y∕2 Iy(2
√
𝜇1𝜇2) for y ∈ ℤ.

All odd cumulants of Y (including the mean of Y ) are equal to 𝜇1 − 𝜇2 (hence,
the distribution is skewed if 𝜇1 ≠ 𝜇2), and all even cumulants (including the
variance of Y ) are equal to 𝜇1 + 𝜇2. These and further properties are provided
in Johnson et al. (2005, Section 4.12.3).

A.2 Count Models for a Finite Range

The distributions surveyed up until now all have unlimited ranges. In some
applications, however, it is known in advance that an upper bound n ∈ ℕ
exists; this can never be exceeded. Then the distributions discussed in the
sequel become relevant. Thse have a finite range of the form {0,… , n}.

Example A.2.1 (Binomial distribution) A random variable X with range
{0,… , n} for an n ∈ ℕ is binomially distributed according to Bin(n, 𝜋) with
𝜋 ∈ (0; 1) if its distribution is given by

P(X = k) =
(n

k

)
⋅ 𝜋k ⋅ (1 − 𝜋)n−k for 0 ≤ k ≤ n.
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The case n = 1 is referred to as the Bernoulli distribution (see also
Example A.1.5). The mean and variance of the Bin(n, 𝜋)-distribution are
given by E[X] = n𝜋 and V [X] = n𝜋(1 − 𝜋); that is, we have I = 1 − 𝜋 < 1. The
pgf equals

pgf(z) = (1 − 𝜋 + 𝜋z)n,

so factorial moments are computed as

𝜇(r) = n(r) 𝜋
r = n · · · (n − r + 1) ⋅ 𝜋r for 1 ≤ r ≤ n.

The binomial distribution Bin(n, 𝜋) can be regarded as the distribution of the
sum of n independent Bernoulli trials with success probability 𝜋; that is, of
the number of successes among n replications of the Bernoulli experiment.
This implies the additivity of the binomial distribution: if X1 ∼ Bin(n, 𝜋),
X2 ∼ Bin(m, 𝜋) and both are independent, then X1 + X2 ∼ Bin(n + m, 𝜋). Note
that a similar property holds for the Poisson distribution (Example A.1.1). In
fact, both distributions are related to each other by the Poisson limit theorem:
for n → ∞ but keeping 𝜇 = n𝜋 fixed, the binomial distribution Bin(n, 𝜋)
approaches Poi(𝜇). These and further properties are provided in Johnson et al.
(2005, Chapter 3).

We have seen that in a Poisson sense, the binomial distribution is under-
dispersed. However, since we are concerned with a different type of random
phenomenon anyway – one with a finite range – it is more appropriate to eval-
uate the dispersion behavior in terms of the binomial index of dispersion IBin =
𝜎2∕(𝜇 (1 − 𝜇∕n)) according to (2.3), with the binomial distribution satisfying
IBin = 1.

A distribution with IBin > 1 shows “overdispersion with respect to a binomial
model”, a phenomenon that we refer to as extra-binomial variation.

Example A.2.2 (Beta-binomial distribution) A popular approach for
generalizing the binomial distribution Bin(n, 𝜋) is to assume that 𝜋 is random
itself, distributed according to a beta distribution, say BETA( 1−𝜙

𝜙
𝜈,

1−𝜙
𝜙

(1 − 𝜈)) with 𝜈, 𝜙 ∈ (0; 1), having mean 𝜈 and variance 𝜙 𝜈(1 − 𝜈). So condi-
tioned on the value of 𝜋, we just have the Bin(n, 𝜋) distribution for the sample
sum X. The unconditional distribution of X is referred to as the beta-binomial
distribution BB(n; 𝜈, 𝜙). Its pmf equals

P(X = k) =
(n

k

)
⋅

B
(

k + 1−𝜙
𝜙

𝜈, n − k + 1−𝜙
𝜙

(1 − 𝜈)
)

B
(

1−𝜙
𝜙

𝜈,
1−𝜙
𝜙

(1 − 𝜈)
) ,

where B(⋅) denotes the beta function. Mean and variance are given by

E[X] = n 𝜈, V [X] = n 𝜈 (1 − 𝜈) ⋅ (1 + 𝜙 (n − 1)).
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So IBin = 1 + 𝜙 (n − 1) ∈ (1; n) determines the degree of extra-binomial vari-
ation, which increases for increasing 𝜙. These and further properties are pro-
vided in Johnson et al. (2005, Section 6.2.2).

Another distribution with extra-binomial variation is the Markov binomial
distribution, which is briefly discussed in the context of Equations 9.1 and 9.2.

The probability of observing a zero equals (1 − 𝜋)n in the binomial case.
Increasing this probability according to the approach in Example A.1.9, with
𝜔 > 0, leads to the zero-inflated binomial distribution, ZIB(n, 𝜋, 𝜔). However,
the BB(n;𝜋, 𝜙) distribution according to Example A.2.2 is also easily seen to be
zero-inflated with respect to a binomial distribution, since the zero probability
is obtained as

P(X = 0) = 1 − 𝜋

1
⋅

1 − 𝜋 + 𝜙

1−𝜙

1 + 𝜙

1−𝜙

· · ·
1 − 𝜋 + (n − 1) 𝜙

1−𝜙

1 + (n − 1) 𝜙

1−𝜙

> (1 − 𝜋)n.

A.3 Multivariate Count Models

Although this book is primarily concerned with univariate count data, a few
models for multivariate count data are sketched here. Much more information
can be found in the book by Johnson et al. (1997). For the particular case of
bivariate distributions, the book by Kocherlakota & Kocherlakota (1992) is also
recommended.

Example A.3.1 (Multivariate Poisson distribution) The simplest way of
defining a multivariate version of the Poisson distribution of Example A.1.1 is
by assuming d + 1 independent random variables 𝜖0,… , 𝜖d with 𝜖i ∼ Poi(𝜆i) for
i = 0,… , d. Then

X ∶= (𝜖1 + 𝜖0,… , 𝜖d + 𝜖0)⊤ (A.2)

is said to be multivariately Poisson distributed according to MPoi
(𝜆0; 𝜆1,… , 𝜆d). Due to the additivity of the Poisson distribution, each
component is itself univariately Poisson distributed, namely Xi ∼ Poi(𝜆i + 𝜆0),
but the common summand 𝜖0 causes the components to be cross-correlated:

Co𝑣[Xi,Xj] = 𝜆0, Corr[Xi,Xj] = 𝜆0 ⋅ ((𝜆i + 𝜆0) (𝜆j + 𝜆0))−1∕2.

Because of the mutual independence of 𝜖0,… , 𝜖d, we have E[z1
X1 · · · zd

Xd ] =
E[z1

𝜖1 ] · · ·E[zd
𝜖d ] ⋅ E[(z1 · · · zd)𝜖0], so the joint pgf is given by

pgf(z1,… , zd) = exp

( d∑
i=1

𝜆izi + 𝜆0 ⋅ z1 · · · zd − 𝜆•

)
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with𝜆• ∶=
∑d

i=0 𝜆i. Sometimes, one more generally defines a random variable X
with range ℕd

0 to be multivariately Poisson distributed if its pgf is of the form

pgf(z1,… , zd) = exp
(∑d

i=1 ai ⋅ zi +
∑

1≤i<j≤d aij ⋅ zizj

+…+ a1…d ⋅ z1 · · · zd − a•

)
,

where a• =
∑d

i=1 ai +
∑

1≤i<j≤d aij +…+ a1…d. In the special case d = 2 – that
is, in the case of the bivariate Poisson distribution – the two approaches are
equivalent. The corresponding pmf is given by

P(X = x) = e−𝜆0−𝜆1−𝜆2
𝜆

x1
1

x1!
𝜆

x2
2

x2!

min{x1,x2}∑
i=0

(x1
i

) (x2
i

)
i!
(

𝜆0

𝜆1𝜆2

)i

.

For the general d-variate case as well as for recursive schemes for pmf computa-
tion, see Tsiamyrtzis & Karlis (2004). These and further properties are provided
in Johnson et al. (1997, Chapter 37)

The approach of Example A.3.1 for constructing a d-variate distribution
could be applied to other univariate additive count models as well.

Example A.3.2 (Multivariate negative binomial distribution) There are
a number of ways of defining a multivariate extension to the negative binomial
distribution from Example A.1.4. Using an analogous parametrization to the
one in Example A.1.4, the pmf of the MNB(n, 𝜋1,… , 𝜋d)distribution with𝜋0 ∶=
1 − 𝜋1 −…− 𝜋d and 𝜋0, 𝜋1,… , 𝜋d ∈ (0; 1) is defined by

P(X = x) =
Γ
(

n +
∑d

i=1 xi

)
Γ(n)

∏d
i=1 xi!

𝜋n
0

d∏
i=1

𝜋
xi
i ,

and its pgf follows as

pgf(z1,… , zd) =

(
𝜋0

1 −
∑d

i=1 𝜋i zi

)n

.

The ith component Xi is univariately NB-distributed according to NB(n, 𝜋0∕
(𝜋0 + 𝜋i)). The cross-correlation between Xi and Xj is given by

Corr[Xi,Xj] =

√
𝜋i 𝜋j

(𝜋0 + 𝜋i) (𝜋0 + 𝜋j)
.

For these and further properties, see Chapter 36 in Johnson et al. (1997).

Extending the binomial distribution (Example A.2.1), with its finite range, is
more demanding. The most famous multivariate binomial distribution is the
multinomial distribution.
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Example A.3.3 (Multinomial distribution) Instead of summing n inde-
pendent Bernoulli trials, the multinomial distribution MULT(n; 𝜋0,… , 𝜋d),
with n ∈ ℕ and probabilities 𝜋0,… , 𝜋d > 0 such that 𝜋0 +…+ 𝜋d = 1, is
defined by summing n independent copies of a binary random vector Y , where
exactly one of the components takes the value 1 and all others are equal to 0. So
the possible range of Y consists of the unit vectors e0,… , ed ∈ {0, 1}d+1, where
ej = (ej,0,… , ej,d)⊤ is defined by ej,i = 𝛿j,i (Kronecker delta; ej has a one in its jth
component) for j = 0,… , d. The probabilities P(Y = ej) = 𝜋j are assumed.

As a result, N ∼ MULT(n; 𝜋0,… , 𝜋d) has the range {n ∈ {0,… , n}d+1 |n0 +
…+ nd = n}, and its pmf is given by

P(N = n) =
(

n
n0,… , nd

)
⋅ 𝜋n0

0 · · ·𝜋nd
d .

The covariance matrix equals

n ⋅ Σ, where Σ = (𝜎ij) is given by 𝜎ij =

{
𝜋i(1 − 𝜋i) if i = j,
−𝜋i𝜋j if i ≠ j.

Each component Nj of N is binomially distributed according to Bin(n, 𝜋j). These
and further properties are provided in Johnson et al. (1997, Chapter 35).

Note that it sometimes simplifies the notation if one omits one of the
d + 1 components; if we write (N1,… ,Nd)⊤ ∼ MULT∗(n; 𝜋1,… , 𝜋d), where
N1 +…+ Nd ≤ n and 𝜋1 +…+ 𝜋d < 1, then we assume the extended
vector (n − N1 −…− Nd, N1,… ,Nd)⊤ to be distributed according to
MULT(n; 1 − 𝜋1 −…− 𝜋d, 𝜋1,… , 𝜋d).

The use of the multinomial distribution as a multivariate extension of the
binomial distribution is limited by the fact that each binomial component Nj
has the same population size n, and that the sum of the components has to
be equal to this value n. The importance of the multinomial distribution is in
the fact that the binary random vectors Y can be understood as a binarization
of a categorical random variable X with range {s0,… , sd} by defining Y = ej
if X = sj. Then N represents the realized absolute frequencies of n indepen-
dent replications of X, and N∕n gives the corresponding relative frequencies
(proportions).

Remark A.3.4 (Compositional data) If the number n of replications
becomes infinitely large, n → ∞, then the vector of random proportions
becomes a continuous random vector with the (d + 1)-part unit simplex as its
range,

𝕊d+1 ∶= {u ∈ (0; 1)d+1 | u0 +…+ ud = 1}.

The corresponding data, which express the “proportions of some whole”
(Aitchison, 1986, p. 1), are referred to as compositional data (CoDa); books on
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this topic are the ones by Aitchison (1986) and Pawlowsky-Glahn & Buccianti
(2011). We shall not further discuss CoDa in this book since we are concentrat-
ing on the discrete-valued case, but the relation between the multinomial setup
and CoDa could be useful, for example for approximating the multinomial
distribution for large n by an appropriate CoDa model, or for generalizing
the multinomial distribution by analogy to the beta-binomial approach from
Example A.2.2: the vector (𝜋0,… , 𝜋d) of multinomial probabilities also belongs
to the simplex 𝕊d+1 and might be assumed to be random itself. If, for instance,
the most basic CoDa distribution, the Dirichlet distribution, is used for this
purpose (see Chapter 49 in Kotz et al. (2000) and Chapter 2 in Ng et al. (2011)
for a comprehensive survey), then one obtains the Dirichlet-multinomial dis-
tribution as a counterpart to the beta-binomial distribution; see Section 35.13
in Johnson et al. (1997) for further details.

Another type of generalized multinomial distribution is the Markov multi-
nomial distribution, which is briefly discussed in Example 9.1.2.3.

Example A.3.5 (Bivariate binomial distributions) A more flexible gen-
eralization, but restricted to the bivariate case, is the bivariate binomial dis-
tribution of type II (Kocherlakota & Kocherlakota, 1992). It starts by defining
the bivariate Bernoulli distribution with parameters 0 < 𝛼1, 𝛼2 < 1 and 0 < 𝛼 <

min{𝛼1, 𝛼2} through the bivariate random vectors Y with range {0, 1}2, the joint
probabilities pij ∶= P(Y = (i, j)⊤) of which have to satisfy

p11 = 𝛼, p11 + p10 = 𝛼1, p11 + p01 = 𝛼2.

Instead of 𝛼, one may consider

𝜙𝛼 ∶= Corr[Y1,Y2] =
𝛼 − 𝛼1𝛼2√

𝛼1𝛼2(1 − 𝛼1)(1 − 𝛼2)

as a third parameter besides 𝛼1, 𝛼2, which has to satisfy the restriction

max

{
−
√

𝛼1𝛼2

(1 − 𝛼1)(1 − 𝛼2)
, −

√
(1 − 𝛼1)(1 − 𝛼2)

𝛼1𝛼2

}

< 𝜙𝛼 < min

{√
𝛼1(1 − 𝛼2)
(1 − 𝛼1)𝛼2

,

√
(1 − 𝛼1)𝛼2

𝛼1(1 − 𝛼2)

}
.

If Y 1,… ,Y k are k ≥ 1 i.i.d. bivariately Bernoulli-distributed random variables,
then the sample sum W ∶= Y 1 + · · · + Y k is said to follow a bivariate binomial
distribution of Type I, abbreviated as BVBI(k; 𝛼1, 𝛼2, 𝜙𝛼). As a result, the com-
ponents Wi are univariately binomially distributed according to Bin(k, 𝛼i), but
still have the unique sample size k for each component. To overcome this limita-
tion and to allow for varying sample sizes n1, n2 > 0 with 0 ≤ k ≤ min{n1, n2},
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one defines two further random variables U,V such that W ,U,V are inde-
pendent, and where U ∼ Bin(n1 − k, 𝛼1) and V ∼ Bin(n2 − k, 𝛼2). Then X ∶=
(W1 + U,W2 + V )⊤ is said to follow a bivariate binomial distribution of Type
II, abbreviated to BVBII(n1, n2, k; 𝛼1, 𝛼2, 𝜙𝛼). Its pmf is given by

P(X = x) =
min{x1,n1−k}∑

j1=0

(
n1 − k

j1

)
𝛼

j1
1 (1 − 𝛼1)n1−k−j1

⋅
min{x2,n2−k}∑

j2=0

(
n2 − k

j2

)
𝛼

j2
2 (1 − 𝛼2)n2−k−j2

⋅
min{x1−j1,x2−j2}∑

i=max{0,x1−j1+x2−j2−k}

(
k

i, x1 − j1 − i, x2 − j2 − i, k + i + j1 + j2 − x1 − x2

)
𝛼i

(𝛼1 − 𝛼)x1−j1−i (𝛼2 − 𝛼)x2−j2−i (1 + 𝛼 − 𝛼1 − 𝛼2)k+i+j1+j2−x1−x2 .

Because of the additivity of the binomial distribution, the ith component sat-
isfies Xi ∼ Bin(ni, 𝛼i) for i = 1, 2, and the cross-correlation between X1 and X2
is given by Corr[X1,X2] = 𝜙𝛼 k∕

√
n1n2, which might take positive or negative

values.

More details on these and other multivariate discrete distributions are
provided by Johnson et al. (1997) and Kocherlakota & Kocherlakota (1992).
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B

Basics about Stochastic Processes and Time Series

This appendix aims to provide a brief survey of some relevant terms and con-
cepts from a basic course about stochastic processes and (continuous-valued)
time series analysis. Many more details can be found in introductory textbooks
such as those by Box et al. (2015), Brockwell & Davis (2016), Cryer & Chan
(2008), Falk et al. (2012), Shumway & Stoffer (2011) and Wei (2006). For
Section B.4.2, Lütkepohl (2005) is also recommended as a comprehensive
textbook about multivariate time series. For the Markov chains discussed in
Section B.2, the book by Seneta (1983) offers a lot of further detail.

B.1 Stochastic Processes: Basic Terms and Concepts

A (discrete-time) stochastic process (or simply process) is a sequence (Xt) of
random variables Xt ∶ Ω →  defined on a probability space (Ω,𝔄,P) and
with range  (the state space of the process), where  is a discrete and linearly
ordered set. For simplicity, we usually choose  = ℤ ∶= {… ,−1, 0, 1,…} or
 = ℕ0 ∶= {0, 1,…}. We distinguish between continuous-valued processes
and discrete-valued processes, depending on whether the range  is a con-
tinuous or discrete set, respectively. If the range  of the random variables is
equal to the set ℝ of real numbers (or to a connected subset thereof ), we refer
to (Xt) as a real-valued process, while a count process even requires  ⊆ ℕ0.

If the event 𝜔 ∈ Ω is realized, this leads to a sequence (Xt(𝜔)) , a realization
(sample path) of the process. A time series (xt)0

, where 0 ⊆  has to be a finite
set in practice, is then understood as an observable part of such a realization,

(xt)0
⊆ (Xt(𝜔)) for a fixed 𝜔 ∈ Ω.

If we now speak about a model for the time series, we indeed refer to a model
for the underlying process. In the sense of Kolmogorov’s extension theorem,
a stochastic process is uniquely characterized through its finite-dimensional
distributions; that is, the joint distributions of any finite selection of random

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries



�

� �

�

230 An Introduction to Discrete-Valued Time Series

variables Xt1
,… ,Xtn

with t1 < … < tn ∈  . Besides these complete distribu-
tions, certain moment properties are especially relevant for practice.

Definition B.1.1 (Moments) If the process (Xt)ℤ consists of square-
integrable real-valued random variables, then

• mean 𝜇(t) ∶= E[Xt],
• variance 𝜎2(t) ∶= V [Xt],
• autocovariance (at lag k) 𝛾t(k) ∶= Co𝑣[Xt ,Xt−k],
• autocorrelation (at lag k) 𝜌t(k) ∶= Corr [Xt,Xt−k] =

Co𝑣 [Xt ,Xt−k ]
𝜎(t) 𝜎(t−k)

are (generally) functions of the time t, with time lag k ∈ ℤ.

We abbreviate the autocorrelation function as ACF. Note that 𝜎2(t) = 𝛾t(0).

Example B.1.2 (White noise) The most basic type of process is so-called
white noise. (𝜖t)ℤ is said to be (strong) white noise if the 𝜖t are independent
and identically distributed (i.i.d.) random variables. In the following, we shall
usually consider real-valued and square-integrable white noise; because of the
i.i.d.-assumption, the above first and second-order moments (Definition B.1.1)
are constant in time; see also the stationarity concepts in Definition B.1.3
below.

In some textbooks, (𝜖t)ℤ is only required to consist of square-integrable
and uncorrelated random variables, with time-invariant first- and second-order
moments; such kind of process is referred to as weak white noise
hereafter.

Requiring for the time-invariance of certain stochastic properties of the con-
sidered process leads to concept of stationarity.

Definition B.1.3 (Stationarity) A process (Xt)ℤ is said to be (strictly)
stationary if the joint distributions of any finite selection of random variables
Xt1

,… ,Xtn
with t1 < … < tn ∈ ℤ are time-invariant; that is, if the joint dis-

tribution functions of (Xt1
,… ,Xtn

) and (Xt1+k ,… ,Xtn+k) are identical for any
k ∈ ℤ.

A real-valued process (Xt)ℤ is said to be weakly stationary if it is
square-integrable, and if mean and autocovariance are time-invariant;
that is, if 𝜇(t) = 𝜇 and 𝛾t(k) = 𝛾(k) for all t ∈ ℤ and for any lag k ∈ ℤ, which
includes the variance for k = 0.

So the white noise from Example B.1.2 is stationary, and if it is also real-valued
and square-integrable, then it is also weakly stationary. A weak white noise is
weakly stationary by definition.
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Since, for a weakly stationary process, mean and autocovariances are con-
stant in time, they can be estimated from a given time series of the process by
computing the respective empirical counterparts.

Definition B.1.4 (Sample moments) Let x1,… , xT be a time series from
a weakly stationary real-valued process (Xt)ℤ. Then we define the

• sample mean x = 1
T

∑T
t=1 xt ,

• sample variance s2 = 1
T

∑T
t=1 (xt − x)2,

and for lags k = 0,… ,T − 1, we define the

• sample autocovariance �̂�(k) = 1
T

∑T
t=k+1(xt − x)(xt−k − x),

• sample autocorrelation �̂�(k) = �̂�(k)
�̂�(0)

=
∑T

t=k+1(xt − x)(xt−k − x)∑T
t=1 (xt − x)2

.

A plot of the sample autocorrelation function (SACF) �̂�(k) against the time lag k
is referred to as a correlogram.

Note that �̂�(0) = s2. The definitions are extended to negative lags by setting
�̂�(−k) ∶= �̂�(k) and �̂�(−k) ∶= �̂�(k).

As an example, let us consider the sample mean X as an estimator of 𝜇. If
the underlying process is i.i.d. (white noise), then weak moment conditions
suffice to guarantee that

√
T (X − 𝜇) is asymptotically normally distributed;

see, for example, the Lindeberg–Lévy central limit theorem (CLT). To obtain
a similar assertion for serially dependent (but still stationary) processes, the
dependence structure of the process has to be analyzed in more detail. The
traditional approach is to express the extent of serial dependence in terms
of mixing properties, but more recently, weak dependence conditions have
also been proposed as an alternative. The following definition summarizes
two important mixing conditions for which appropriate CLTs are available; a
survey about further mixing properties and their applications is provided by
Bradley (2005). The relationship between weak dependence and mixing in the
case of discrete-valued processes is discussed by Doukhan et al. (2012).

Definition B.1.5 (𝜙-mixing, 𝛂-mixing) Let (Xt)ℤ be a stationary process
on the probability space (Ω,𝔄,P). It is said to be 𝜙-mixing if there exists a
non-negative sequence (𝜙n)ℕ of weights with 𝜙n → 0 for n → ∞ such that for
each t ∈ ℤ, k ∈ ℕ and all events E1 ∈ 𝔄(Xt ,Xt−1,…), E2 ∈ 𝔄(Xt+k ,Xt+k+1,…),
the following inequality holds:|P(E1 ∩ E2) − P(E1) P(E2)| ≤ 𝜙k P(E1).
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It is called 𝛼-mixing instead (also strongly mixing), with sequence of weights
(𝛼n)ℕ, if the weaker requirement|P(E1 ∩ E2) − P(E1) P(E2)| ≤ 𝛼k

holds.
Both types of mixing process can be understood as a process in which the dis-

tant future is approximately independent of the past and present. A useful CLT
for 𝜙-mixing processes is given, among others, on p. 200 in Billingsley (1999),
and a CLT for 𝛼-mixing processes is presented in Theorem 1.7 of Ibragimov
(1962). Both theorems make additional requirements on the speed of conver-
gence of the weights towards 0; these requirements are satisfied if the weights
can be shown to decrease geometrically quickly.

Examples of non-stationary processes include processes exhibiting trend or
seasonality. A particularly simple example of a non-stationary process is the
random walk.

Example B.1.6 (Random walk) If (𝜖t)ℕ is real-valued white noise, then the
process (Xt)ℕ defined by

X1 = 𝜖1, Xt = Xt−1 + 𝜖t for t ≥ 2,

is referred to as a random walk. Explicitly, it holds that

Xt =
t∑

s=1
𝜖s.

Hence, if the white noise is even square-integrable with mean 𝜇𝜖 and vari-
ance 𝜎2

𝜖 , we obtain that

𝜇(t) = 𝜇𝜖 t, 𝜎2(t) = 𝜎2
𝜖 t,

𝛾t(k) = 𝜎2
𝜖 (t − k), 𝜌t(k) =

√
1 − k

t
for k ≥ 0.

If 𝜇𝜖 ≠ 0, then the mean is not constant in time; in such a case, one also speaks
of a random walk with drift.

By construction, the random walk at future time t + 1 remembers its
present value Xt and then adds a random disturbance 𝜖t+1; further past values
Xt−1,Xt−2,… are without influence on Xt+1 if the value of Xt is given. A process
with such a “memory of length 1” is called a Markov chain.

Definition B.1.7 (Markov process) A process (Xt)ℤ with state space  is
said to be a pth-order Markov process with p ∈ ℕ if for all t ∈ ℤ and for each
measurable set A ⊆  ,

P(Xt ∈ A | Xt−1 = xt−1,…) = P(Xt ∈ A | Xt−1 = xt−1,… ,Xt−p = xt−p)

holds for all xi ∈  . In the case p = 1, (Xt)ℤ is commonly called a Markov chain.
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In this book, only the case of a discrete state space is of relevance. Then, the
Markov property of Definition B.1.7 simplifies to

P(Xt = xt | Xt−1 = xt−1,…)
= P(Xt = xt | Xt−1 = xt−1,… ,Xt−p = xt−p),

(B.1)

which has to hold for all xt ∈  . In fact, for theoretical analysis, it suffices
to concentrate on the first-order case, since any pth-order Markov process
with state space  can be transformed into a first-order Markov process
with state space p by considering the vector-valued process (X t)ℤ with
X t ∶= (Xt,… ,Xt−p+1)⊤. The next section summarizes important properties of
such discrete-valued Markov chains.

B.2 Discrete-Valued Markov Chains

In this section, the process (Xt)ℕ0
is assumed to be a (first-order) Markov chain

with state space . is either finite or countably infinite; if is not even ordinal,
then it is assumed that its values are at least arranged in a certain lexicographi-
cal order to simplify notations: = {s0, s1,…}. Here, we summarize some basic
facts about such discrete-valued Markov chains, but much more information is
provided in, for example, the book by Seneta (1983) or in Chapter XV of Feller
(1968).

B.2.1 Basic Terms and Concepts

From now on, we shall always assume that the Markov chain (Xt)ℕ0
is even

(time-)homogeneous; that is, for any i, j ∈  , the transition probabilities do not
vary with time:

P(Xt = i | Xt−1 = j) = pi|j for all t ∈ ℕ. (B.2)

The corresponding transition matrix P = (pi|j)i,j=s0,s1,… might be of infinite
dimension, depending on the cardinality of  . Similarly, all marginal prob-
abilities at a given time are summarized as a (possibly time-dependent)
vector:

pt ∶= (P(Xt = s0), P(Xt = s1),…)⊤.

Knowing the marginal distribution at time 0 (initial distribution), the transition
matrix allows us to compute all further probabilities recursively via

pt = P pt−1 = … = Pt p0. (B.3)

In particular, the h-step-ahead transition probabilities pi|j(h) ∶= P(Xt =
i | Xt−h = j) are the entries of the matrix Ph.
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Example B.2.1.1 (Classification of states) With the help of the
h-step-ahead transition probabilities pi|j(h), the Markov chain’s states 

can be classified. If, for given i, j ∈  , there exists a time lag h such that
pi|j(h) > 0, we say that j leads to i. If both j leads to i and i leads to j, then i and j
are said to be communicating states.

If for the state i ∈  , we find a state j such that i leads to j, but j does not lead
to i, then i is an inessential state. If an essential state i, in turn, leads to a state j,
then it necessarily communicates with j.

In view of (B.3), it is obvious that the homogeneous Markov chain (Xt)ℕ0

becomes stationary (see Definition B.1.3) if the marginal distributions remain
fixed in time; that is, if pt = … = p0 =∶ p. So in view of (B.3), we need to look at
so-called invariant probability vectors; that is, at probability vectors𝝅 satisfying
the invariance equation

P 𝝅 = 𝝅. (B.4)

Then (Xt)ℕ0
is stationary iff the initial distribution is an invariant vector; that is,

the invariant distributions are the possible stationary marginal distributions of
(Xt)ℕ0

. The essential question is as follows:
Which conditions must be satisfied by the transition matrix P such that an

invariant distribution (uniquely?) exists at all? Possible answers to this ques-
tion are presented in Section B.2.2 below. Before this, let us briefly discuss the
maximum likelihood approach to parameter estimation.

Remark B.2.1.2 (Maximum likelihood and information criteria) A
popular approach for parameter estimation of a model for a stochastic process
(not necessarily a Markov process) is the maximum likelihood (ML) approach.
The intuition behind this approach is to select the parameter values such
that the observed time series x1,… , xT becomes most “plausible”. In the
discrete-valued case, with the model parameters summarized in the vector 𝜽,
the likelihood function is defined as the probability of observing what has
already been observed, as a function of the unknown 𝜽:

L(𝜽) ∶= P(XT = xT ,… ,X1 = x1 | 𝜽).
The ML estimate of 𝜽 is defined to be a value �̂�ML maximizing L(𝜽). In view
of computational issues, it is common practice to determine �̂�ML, not by
maximizing L(𝜽), but by maximizing the logarithmic likelihood function
(log-likelihood) instead; that is, 𝓁(𝜽) ∶= ln(L(𝜽)). We denote the value of the
maximized log-likelihood as 𝓁max.

In general, it is not clear if the ML estimators (uniquely) exist and if they
are consistent. Even if they exist, they can often only be computed numer-
ically by using appropriate optimization routines. The computation of the
(log-)likelihood function itself is also sometimes not easy. An exception are
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homogeneous Markov chains, for which the joint distributions of segments
from (Xt)ℕ0

are easily computed,

P(Xr = xr,… ,Xs = xs) = P(Xr = xr) ⋅
s∏

t=r+1
pxt |xt−1

, r < s.

Similar arguments apply to pth-order Markov processes, for which we obtain

L(𝜽) = P(X1 = x1,… ,Xp = xp) ⋅
∏T

t=p+1 p(xt | xt−1,… , xt−p),
𝓁(𝜽) = ln P(X1 = x1,… ,Xp = xp) +

∑T
t=p+1 ln p(xt | xt−1,… , xt−p),

(B.5)

where p(x | x−1,… , x−p) denotes the time-homogeneous pth-order conditional
probabilities for all x, x−1,… , x−p ∈  . If the Markov process is stationary, the
initial probability P(X1 = x1,… ,Xp = xp) can be obtained as a function of the
conditional probabilities (B.4). To avoid this step, one often simply maximizes
the conditional (log-)likelihood,

L(𝜽 | xp,… , x1) =
∏T

t=p+1 p(xt | xt−1,… , xt−p),

𝓁(𝜽 | xp,… , x1) =
∑T

t=p+1 ln p(xt | xt−1,… , xt−p),
(B.6)

and refers to the resulting estimates as conditional ML estimates �̂�CML.
Results concerning the existence, consistency and asymptotic normality of the
(C)ML estimators for discrete-valued Markov chains are available in Part I
of the book by Billingsley (1961). Under appropriate conditions (Billingsley,
1961),

√
T − p (�̂�CML − 𝜽) is asymptotically normally distributed according

to N(0, I−1(𝜽)), where 0 denotes the zero vector, and where I(𝜽) denotes the
expected Fisher information per observation. The latter is defined as follows.
The negative Hessian of 𝓁(𝜽) is said to be the observed Fisher information J(𝜽),
which can be written as J(𝜽) =

∑T
t=p+1 Jt(𝜽) with Jt(𝜽) being the Hessian of

− ln p(xt | xt−1,… , xt−p); then I(𝜽) is the expectation of Jt(𝜽). In practice, the
mean observed Fisher information 1

T−p
J(𝜽) can be used to approximate I(𝜽).

Plugging in the obtained estimates �̂�CML in (J(𝜽))−1 allows us, for instance, to
approximate the asymptotic standard errors of the CML estimators.

The ML approach can be applied in combination with so-called informa-
tion criteria for model selection (if several candidate models are available for
the time series). On the one hand, it is desirable to select a model with the
largest 𝓁max possible. On the other hand, small models are more easily inter-
pretable and also overfitting has to be avoided. The idea behind information
criteria is to balance the goodness of fit against the model size by adding an
appropriate penalty term to 𝓁max. Let nmodel abbreviate the number of param-
eters of the given model, then Akaike’s information criterion (AIC) and the
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Bayesian information criterion (BIC) are given by
AIC = −2 𝓁max + 2 nmodel, BIC = −2 𝓁max + nmodel ln T , (B.7)

respectively. That model producing the lowest value of AIC or BIC, respectively,
is selected from among all candidate models. With increasing T , the BIC more
strongly penalizes the model size, so it tends to select smaller models than the
AIC. If applied to estimate the order p of a finite Markov process, Katz (1981)
showed that only the BIC is consistent while the AIC leads to an overestimation.

AIC and BIC can also be computed based on the CML approach. Since the
number of terms in 𝓁(𝜽 | xp,… , x1) from (B.6) varies with varying p, one may
insert the factor T∕(T − p) before 𝓁max in (B.7) to account for this distortion.

B.2.2 Stationary Markov Chains

Criteria for the stationarity of a Markov chain will depend on the cardinality
of  ; the existence of an invariant distribution (and hence of a stationary solu-
tion to the Markov condition) will be much easier to establish if is finite (finite
Markov chain).

So let us now introduce, step-by-step, the potentially relevant conditions for
the existence of a stationary solution (Feller, 1968; Seneta, 1983). The Markov
chain is said to be irreducible if for any i, j ∈  , there exists some lag h ∈ ℕ such
that pi|j(h) > 0. Note that h may differ for varying i, j. But if there exists a unique
h ∈ ℕ such that all pi|j(h) > 0, then the Markov chain is said to be primitive.

For a finite Markov chain, the following conclusions can be drawn:
• An irreducible finite Markov chain possesses a unique stationary distribu-

tion p, being the unique solution of the invariance equation (B.4).
• A primitive finite Markov chain is even ergodic; that is, the distributions pt

always converge to the stationary distribution p for t → ∞, independent of
the initial distribution p0.

Expressed in terms of the h-step-ahead transition probabilities pi|j(h), ergodicity
means pi|j(h) → pi for h → ∞; that is, the h-step-ahead forecasting distribu-
tion Ph converges to the marginal distribution p 1⊤, where 1 denotes the vector
of ones (concerning the rate of convergence, see Remark B.2.2.1 below). This
characterization offers a way of numerically computing the stationary distri-
bution (instead of solving the eigenvalue problem (B.4)), by considering pi|j(M)

with a sufficiently large M as an approximation for pi.
Another approach to ergodicity is to look at the period of the Markov chain.

An irreducible Markov chain has a unique period, and this period equals d
if the greatest common divisor of those h ∈ ℕ, for which pi|i(h) > 0, equals d
(for i ∈  chosen arbitrarily). For d = 1, the Markov chain is said to be aperi-
odic, a property that may be established by the following criterion: if at least
one diagonal element pi|i of P is positive, then the irreducible Markov chain is
aperiodic.
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For a finite Markov chain, the following equivalence holds:

• irreducible and aperiodic ⇔ primitive (and these imply ergodicity).

Finally, in view of the mixing concepts discussed in Definition B.1.5 above, it is
worth mentioning that an ergodic finite Markov chain is𝜙-mixing with geomet-
rically decreasing weights; that is, weights𝜙n = a ⋅ 𝜌n with a > 0 and 0 < 𝜌 < 1.

Remark B.2.2.1 (Perron–Frobenius theorem) As summarized above, a
primitive finite Markov chain is even ergodic; that is, Ph → p 1⊤ for h → ∞.
The rate of convergence can be expressed by adapting the Perron–Frobenius
theorem. This theorem applies to non-negative matrices T in general; that is,
matrices T having non-negative entries tij ≥ 0. The transition matrix P is a
special case in which the column sums are equal to 1 (a so-called stochastic
matrix). The theorem states that for a primitive non-negative matrix T, there
exists the so-called Perron–Frobenius eigenvalue 𝜆PF, which satisfies

• 𝜆PF > |𝜆| for any other eigenvalue 𝜆 ≠ 𝜆PF (“largest eigenvalue”);
• 𝜆PF takes a value between the minimum and the maximum of all row sums

of T, and, in the same way, also a value between the minimum and the max-
imum of all column sums of T;

• 𝜆PF has geometric and algebraic multiplicity 1;
• with 𝜆PF can be associated strictly positive left and right eigenvectors.

In this case, let v and w be corresponding positive left and right eigenvectors
such that v⊤w = 1. Denote the remaining distinct eigenvalues by 𝜆2,… , 𝜆r ,
where 𝜆PF > |𝜆2| ≥ … ≥ |𝜆r| and where 𝜆2 (“second largest eigenvalue”) has
maximal multiplicity among all eigenvalues with the same modulus as 𝜆2;
denote this multiplicity of 𝜆2 by m2. Then the behavior of Th for growing h is
as follows:

Th = 𝜆h
PF ⋅ wv⊤ + O(hm2−1 ⋅ |𝜆2|h).

This general result is now applied to the case of a primitive transition matrix P
with (unique) invariant distribution p. Since then all column sums are equal
to 1, it follows that the Perron–Frobenius eigenvalue equals 𝜆PF = 1. Further-
more, because of (B.4) – that is, P p = p, and 1⊤ P = 1⊤ (column sums equal
to 1) – any right eigenvector for 𝜆PF = 1 is a multiple of p, and any left eigen-
vector a multiple of 1. So it follows that

Ph = p1⊤ + O(hm2−1 ⋅ |𝜆2|h);
that is, the rate of convergence of Ph → p1⊤ is determined by the absolute value
of the second largest eigenvalue, which satisfies |𝜆2| < 1.

Let us conclude this section about discrete-valued Markov chains by look-
ing at the countably infinite case. Here, irreducibility alone does not guarantee
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the existence of an invariant distribution. Therefore, it is necessary to look at
another characteristic of the states of a Markov chain: the recurrence proper-
ties. Let rj|j(n) denote the conditional probability that the Markov chain (Xt)ℕ0

,
given that it started in X0 = j, returns to the state j for the first time at time
t = n; that is,

rj|j(n) ∶= P(Xn = j, Xn−1,… ,X1 ≠ j | X0 = j).

Summing about all n, we get the probability rj|j ∶= ∑∞
n=1 rj|j(n) that the Markov

chain will once return to the state j. If this probability rj|j equals 1, then
rj|j(1), rj|j(2),… constitute a valid probability distribution, the recurrence time
distribution. The corresponding mean, 𝜇j =

∑∞
n=1 n rj|j(n), is referred to as the

mean recurrence time. Now, the following classification is done:

• The state j is transient if rj|j < 1; that is, there is a positive probability of never
returning to j at all.

• Otherwise, that is, if rj|j = 1, it is said to be recurrent:
– it is positive recurrent if its mean recurrence time is finite, 𝜇j < ∞,
– it is null recurrent if its recurrence time is infinite, 𝜇j = ∞.

For an irreducible Markov chain, all states are of the same recurrence type, just
as they also have a unique period; see above. The following conclusions can be
drawn:

• If (Xt)ℕ0
is an irreducible, aperiodic and positive recurrent1 Markov chain,

then it possesses a unique stationary distribution, and it is also ergodic.
• If (Xt)ℕ0

is an irreducible and aperiodic Markov chain having an invariant
distribution p, then this distribution is unique, and (Xt)ℕ0

is also positive
recurrent and hence ergodic, where pj = 1∕𝜇j for all j ∈  .

Finally, such a countably infinite Markov chain, being irreducible, aperiodic and
stationary, is also 𝛼-mixing (Definition B.1.5); but in contrast to the finite case
above, there is no further general assertion concerning the speed of conver-
gence of the mixing weights (Bradley, 2005, Section 3).

B.3 ARMA Models: Definition and Properties

The remaining sections of Appendix B are about common models for
continuous-valued time series (Box et al., 2015; Brockwell & Davis, 1991, 2016;
Cryer & Chan, 2008; Falk et al., 2012; Shumway & Stoffer, 2011; Wei, 2006). For

1 Note that a finite Markov chain cannot have a null recurrent state, and it is also impossible that
all states are transient. Hence an irreducible finite Markov chain is automatically positive
recurrent.
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such continuous-valued processes, the class of linear processes is of particular
importance.

Background B.3.1 (Linear processes) A real-valued sequence (au)ℤ of
weights, the filter, is said to be absolutely summable if

∞∑
u=−∞

|au| ∶= ∞∑
u=0

|au| + ∞∑
u=1

|a−u| < ∞.

If (Zt)ℤ is a weakly stationary process with mean 𝜇Z and autocovariance
function 𝛾Z(k), with (au)ℤ being an absolutely summable filter, then the filtered
process (Yt)ℤ, defined by

Yt ∶=
∞∑

u=−∞
au Zt−u,

exists and is also weakly stationary, where

𝜇Y ∶= E[Yt] = 𝜇Z

∞∑
u=−∞

au,

𝛾Y (k) ∶= Co𝑣[Yt,Yt−k] =
∞∑

u,𝑣=−∞
au a𝑣 𝛾Z(k − u + 𝑣).

In particular, if the process to be filtered is not only weakly stationary but
square-integrable white noise (𝜖t)ℤ (the innovations), then the linear process

Xt ∶=
∞∑

u=−∞
au 𝜖t−u

is also stationary with

𝜇 = 𝜇𝜖

∞∑
u=−∞

au, 𝛾(k) = 𝜎2
𝜖

∞∑
u=−∞

au au+k . (B.8)

Note that the autocovariance function is now (nearly) solely defined through
the filter (au)ℤ. Therefore, it is essential to study the properties of such filters
(au)ℤ. For this purpose, consider the Laurent series

A(z) ∶=
∞∑

u=−∞
au zu,

which is referred to as the characteristic polynomial of the filter (au)ℤ. Using
the backshift operator B – that is, the operator defined by BXt ∶= Xt−1 – the
application of the linear filter is expressed as

Xt = A(B) 𝜖t .



�

� �

�

240 An Introduction to Discrete-Valued Time Series

The successive application of two filters (au)ℤ and (b𝑣)ℤ is expressed by multi-
plying the corresponding characteristic polynomials A(z) and B(z). We say that
(au)ℤ is invertible (and (b𝑣)ℤ is its inverse filter) if A(z) B(z) = 1. So the weights
of the inverse filter are obtained by expanding A−1(z) = 1∕A(z).

An absolutely summable filter (au)ℤ is said to be causal if au = 0 for all u < 0;
that is, if A(z) =

∑∞
u=0 au zu is a power series. The practical meaning of a causal

filter is that Xt does not depend on future innovations. An important example
of a causal filter is one having only finitely many non-zero weights,

Ap(z) ∶= 1 − a1 z −…− ap zp. (B.9)

Ap(z) has an absolutely summable and causal inverse filter iff the p (possibly
complex) roots of Ap(z) are outside the unit circle; that is, iff they have an
absolute value larger than 1.

Now, we are in a position to introduce the family of ARMA models, which
is done in three steps. First, we consider the pure moving-average models of
order q, where the current observation is defined as a weighted mean of the
current observation and q past innovations. These models date back to works
by G. U. Yule and E. E. Slutsky in the 1920s; see Nie & Wu (2013).

Definition B.3.2 (MA(q) model) Let (𝜖t)ℤ be square-integrable white
noise. Then (Xt)ℤ defined by

Xt = 𝜖t − 𝛽1 𝜖t−1 −…− 𝛽q 𝜖t−q (𝛽q ≠ 0)

= 𝛽(B) ⋅ 𝜖t with 𝛽(z) = 1 − 𝛽1 z −…− 𝛽q zq

is said to be a moving-average process of order q, abbreviated as MA(q) process.

The case q = ∞ (MA(∞) process) just corresponds to the causal linear process
defined in Background B.3.1. The MA(q) process is strictly and weakly station-
ary with

𝜇 = 𝜇𝜖 (1 − 𝛽•), where 𝛽• ∶=
q∑

i=1
𝛽i, (B.10)

𝛾(k) =
⎧⎪⎨⎪⎩

0 for k > q,
𝛾(−k) for k < 0,
𝜎2
𝜖

∑q−k
u=0 𝛽u 𝛽u+k for 0 ≤ k ≤ q, where 𝛽0 ∶= −1;

(B.11)

see (B.8). Note that the autocorrelation function vanishes after lag q; this prop-
erty is used to identify the model order q of an MA model: one visually inspects
the available correlogram for an (abrupt) drop towards zero; the largest lag with
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a (significantly) non-zero autocorrelation is used as an estimate of the model
order.

Finally, it should be noted that result (B.9) for linear processes implies that the
MA(q) process is invertible with a causal inverse iff the roots of 𝛽(z) are outside
the unit circle. Then 𝜖t =

∑∞
u=0 𝜓u Xt−u; that is, the innovation at time t can be

recovered from the observations available at time t, where the coefficients 𝜓u
are obtained by expanding 𝛽−1(z) into a power series.

As the second step towards full ARMA models, we consider the autoregres-
sive models of order p, where the current observation is a weighted mean of p
past observations plus noise. So these processes are generated from their own
pasts (hence “auto” regressive; see also the Markov models in Definition B.1.7).
These models were established by G. U. Yule and G. T. Walker; see Nie & Wu
(2013) for references.

Definition B.3.3 (AR(p) model) Let (𝜖t)ℤ be square-integrable white
noise. Then (Xt)ℤ defined by

Xt = 𝛼1 Xt−1 +…+ 𝛼p Xt−p + 𝜖t (𝛼p ≠ 0)

⇔ 𝛼(B) ⋅ Xt = 𝜖t with 𝛼(z) = 1 − 𝛼1 z −…− 𝛼p zp

is said to be an autoregressive process of order p, abbreviated as AR(p) process.

In view of the above result (B.9), a (weakly) stationary and causal solution
exists for the AR(p) recursion iff the roots of 𝛼(z) are outside the unit circle;
then Xt =

∑∞
u=0 𝜃u 𝜖t−u (a causal linear process), where the coefficients 𝜃u are

obtained by expanding 𝛼−1(z) into a power series.
If (Xt)ℤ is a weakly stationary and causal AR(p) process, then its mean is

computed as

𝜇 = E[Xt] =
𝜇𝜖

1 − 𝛼•
, where 𝛼• ∶=

p∑
i=1

𝛼i, (B.12)

while the autocorrelation function 𝜌(k) is obtained by solving the so-called
Yule–Walker equations:

𝜌(k) =
p∑

i=1
𝛼i 𝜌(|k − i|) for k = 1, 2,… (B.13)

Now, we typically have 𝜌(k) ≠ 0 for all k such that 𝜌(k) cannot be (directly)
applied to identify the model order of the autoregressive process, in contrast to
the corresponding procedure for moving-average processes, as sketched below
formula (B.11). However, transforming the (sample) autocorrelation function
into the (sample) partial autocorrelation function first, an analogous procedure
is possible.
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Theorem B.1 (Partial autocorrelation) Let rk ∶= (𝜌(1),… , 𝜌(k))⊤ as well
as

Rk ∶= (𝜌(|i − j|))i,j=1,…,k =
⎛⎜⎜⎜⎝

1 𝜌(1) … 𝜌(k − 1)
𝜌(1) 1 ⋱ ⋮
⋮ ⋱ ⋱ 𝜌(1)

𝜌(k − 1) … 𝜌(1) 1

⎞⎟⎟⎟⎠ ,
assume that Rk is invertible. Let ak ∈ ℝk be the unique solution of the equation

Rk ak = rk , that is, ak = R−1
k rk . (B.14)

Then 𝜌part(k) ∶= ak,k (last component of ak) is referred to as the partial
autocorrelation at lag k.

If (Xt)ℤ is a weakly stationary and causal AR(p) process, then the partial
autocorrelation function (PACF) satisfies

𝜌part(p) = 𝛼p, 𝜌part(k) = 0 for k > p.

Note that the PACF can be computed recursively according to

ak+1,k+1 =
𝜌(k + 1) −

∑k
i=1 ak,i 𝜌(k + 1 − i)

1 −
∑k

i=1 ak,i 𝜌(i)
,

ak+1,j = ak,j − ak+1,k+1 ak,k−j+1 for j = 1,… , k.

(B.15)

The sample version of the PACF (SPACF) is derived in the same way as in (B.14)
and (B.15), but with 𝜌(⋅) replaced by the corresponding sample autocorrela-
tions, �̂�(⋅).

As the final step, we combine the AR model with the MA model to obtain the
full ARMA model. This combination was suggested by A. M. Walker in 1950,
and the embedding into the theory of linear processes (Background B.3.1) was
initiated by H. Wold in the late 1930s (Nie & Wu, 2013).

Definition B.3.4 (ARMA(p, q) model) Let (𝜖t)ℤ be square-integrable
white noise. Then (Xt)ℤ, defined by (𝛼p, 𝛽q ≠ 0):

Xt = 𝛼1 Xt−1 +…+ 𝛼p Xt−p + 𝜖t − 𝛽1 𝜖t−1 −…− 𝛽q 𝜖t−q

⇔ 𝛼(B) Xt = 𝛽(B) 𝜖t with 𝛼(z) = 1 − 𝛼1z −…− 𝛼pzp

and 𝛽(z) = 1 − 𝛽1z −…− 𝛽qzq

is said to be an autoregressive moving-average process of order (p, q), which is
abbreviated as ARMA(p, q) process. To keep the order (p, q) minimal, we also
require that 𝛼(z) and 𝛽(z) have no common roots.

The pure AR and pure MA models are embedded in Definition B.3.4 as the
cases q = 0 and p = 0, respectively.
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With analogous arguments as above (result (B.9)), a (weakly) stationary and
causal solution exists for the ARMA(p, q) recursion iff the roots of 𝛼(z) are
outside the unit circle; then Xt =

∑∞
u=0 𝜃u 𝜖t−u (a causal linear process), where

the coefficients 𝜃u are obtained by expanding 𝛼−1(z) 𝛽(z) into a power series.
Similarly, invertibility requires the roots of 𝛽(z) to be outside the unit circle.

The coefficients 𝜃u of the representation Xt =
∑∞

u=0 𝜃u 𝜖t−u can also be com-
puted recursively: setting 𝜃k ∶= 0 for k < 0, and 𝛽0 ∶= −1 as well as 𝛽k ∶= 0 for
k > q, it holds that

𝜃k =
p∑

j=1
𝛼j 𝜃k−j − 𝛽k . (B.16)

If (Xt)ℤ is a weakly stationary and causal ARMA(p, q) process, then its mean is
computed as

𝜇 = E[Xt] =
1 − 𝛽•

1 − 𝛼•
𝜇𝜖, (B.17)

while the autocorrelation function 𝜌(k) is obtained after solving the
Yule–Walker equations

𝛾(k) −
p∑

i=1
𝛼i 𝛾(|k − i|) =

⎧⎪⎪⎨⎪⎪⎩
−𝜎2

𝜖

q∑
u=k

𝛽u 𝜃u−k

for 0 ≤ k < max{p, q + 1},

0 for k ≥ max{p, q + 1}.

(B.18)

B.4 Further Selected Models for Continuous-valued
Time Series

The basic ARMA models (which themselves might be applied to stationary pro-
cesses with a short memory) gave rise to innumerable modifications and exten-
sions to deal with, for example, trend or seasonality, long memory, time-varying
volatility or with multivariate observations. A compact survey of time series
models related to ARMA models is provided by Holan et al. (2010). Here, two
of these models appear to be particularly relevant: the famous GARCH models
with their ability to generate conditional heteroskedasticity, and the VARMA
models as a multivariate extension of ARMA models.

B.4.1 GARCH Models

Let us start with the ARCH models, which were developed by R. F. Engle III in
1979. In 2003, he received (one half of ) the Nobel prize in economic sciences
“for methods of analyzing economic time series with time-varying volatility
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(ARCH)”.2 The ARCH models are motivated by a specific drawback of the AR
models. If looking at the conditional mean and variance of an AR(p) process
according to Definition B.3.3, then

E[Xt | Xt−1,…] = 𝛼1 Xt−1 +…+ 𝛼p Xt−p + 𝜇𝜖

varies in time according to the last p observations, while V [Xt | Xt−1,…] = 𝜎2
𝜖

is constant in time. But, especially for financial time series, it is common to
observe clusters of large or low volatility, a phenomenon that cannot be repro-
duced by the AR models.

Definition B.4.1.1 (ARCH(p) model) Let (𝜖t)ℤ be square-integrable white
noise with E[𝜖t] = 0 and V [𝜖t] = 1. Then (Xt)ℤ defined by

Xt = 𝜎t ⋅ 𝜖t, where 𝜎2
t = 𝛽0 + 𝛼1 X2

t−1 +…+ 𝛼p X2
t−p

with 𝛽0, 𝛼p > 0 and 𝛼1,… , 𝛼p−1 ≥ 0, and where 𝜖t is required to be inde-
pendent of (Xs)s<t (causality), is said to be an autoregressive conditional
heteroskedasticity process of order p, abbreviated as ARCH(p) process.

As a result, we obtain the time-varying conditional variances

V [Xt | Xt−1,…] = 𝜎2
t = 𝛽0 + 𝛼1 X2

t−1 +…+ 𝛼p X2
t−p. (B.19)

So now, the AR(p)-like recursion is not applied to the observations but to their
conditional variances. In contrast, the unconditional variance remains constant
in time provided that the requirement

∑p
j=1 𝛼j < 1 is satisfied. In fact, this con-

dition (which is equivalent to requiring the roots of 𝛼(z) ∶= 1 − 𝛼1z −…− 𝛼pzp

to be outside the unit circle, due to the non-negativity of the 𝛼i) again guaran-
tees the existence of a unique causal (weakly) stationary solution of the ARCH
recursion in Definition B.4.1.1.

Looking at the autocorrelation structure, one might initially be surprised,
since 𝛾(k) = 0 for k ≠ 0. So although an ARCH(p) process is obviously not seri-
ally independent by construction, it is serially uncorrelated. However, looking
at the process of squared observations, autocorrelation becomes visible. If the
weakly stationary and causal ARCH(p) process (Xt)ℤ has existing fourth-order
moments, then we can represent the squared process (X2

t )ℤ by an AR(p)-like
recursion,

X2
t = 𝛼1 X2

t−1 +…+ 𝛼p X2
t−p + 𝜈t

with the (𝜈t)ℤ being weak white noise having the mean E[𝜈t] = 𝛽0. Therefore,
the autocorrelation function of the squared process satisfies the Yule–Walker
equations (B.13) above.

2 A lot of background information concerning ARCH models can be found in Engle’s Nobel
lecture at www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2003/.
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A few years after the introduction of the ARCH model, Engle’s student
T. Bollerslev proposed the generalized ARCH model, where the conditional
variances not only depend on past observations but also on past conditional
variances. So for a GARCH process of order (p, q), abbreviated as GARCH(p, q)
process, the recursion

𝜎2
t = 𝛽0 + 𝛼1 X2

t−1 +…+ 𝛼p X2
t−p + 𝛽1 𝜎2

t−1 +…+ 𝛽q 𝜎2
t−q (B.20)

is required to be satisfied. The condition for the existence of a (weakly)
stationary and causal solution now becomes 𝛼1 +…+ 𝛼p + 𝛽1 +…+ 𝛽q < 1.

B.4.2 VARMA Models

As aforementioned, one half of the 2003’s Nobel prize in economic sciences
was awarded to Engle; the other half was received by another statistician: C.
W. J. Granger “for methods of analyzing economic time series with common
trends (cointegration)”, a topic related to multivariate time series. A multivari-
ate (or vector-valued) time series x1,… , xT is obtained if multiple features are
observed simultaneously over time. For modeling the underlying multivariate
(or vector) process (X t)ℤ with its possible cross-correlations, again a large
variety of models is available; see Lütkepohl (2005) for a comprehensive
survey. But in view of the scope of the present book, we shall only consider
the vector autoregressive moving-average models of order (p, q), abbreviated as
VARMA(p, q) models.

Let (X t)ℤ be a process of d-dimensional random variables with range ℝd.
Then the mean vector 𝝁(t) and the autocovariance matrix 𝚪t(k) are defined by

𝝁(t) ∶= E[X t] ∶= (… ,E[Xt,i],…)⊤,

𝚪t(k) ∶= E[(X t − 𝝁(t)) (X t−k − 𝝁(t − k))⊤]

∶=
(
E[(Xt,i − 𝜇i(t)) (Xt−k,j − 𝜇j(t − k))]

)
i,j=1,…,d.

(B.21)

If both expressions exist (square-integrable) and if they are constant in time t,
then we refer to the process (X t)ℤ as being weakly stationary (as above), and we
denote them as 𝝁 and 𝚪(k) (without t) in this case. The autocorrelation matrix
is then defined as

R(k) = (𝜌ij(k))i,j=1,…,d with 𝜌ij(k) =
𝛾ij(k)√
𝛾ii(0)𝛾jj(0)

, (B.22)

where 𝛾ij(k) denotes the (i, j)th element of 𝚪(k). Note that the definition (B.21)
implies that

𝚪(k) = 𝚪(−k)⊤. (B.23)

Analogous to Example B.1.2, the multivariate process (𝝐t)ℤ is said to be a white
noise if the 𝝐t are i.i.d. If (𝝐t)ℤ is also square-integrable with covariance matrix
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𝚺𝝐 , then the corresponding autocovariance matrix equals

𝚪𝝐(k) = 𝚺𝝐 for k = 0, and 𝚪𝝐(k) = O otherwise, (B.24)

with O being the zero matrix.

Definition B.4.2.1 (VARMA(p, q) model) Let (𝝐t)ℤ be square-integrable
d-dimensional white noise. Then (X t)ℤ is said to be a VARMA(p, q) process if

X t = A1 X t−1 +…+ Ap X t−p + 𝝐t − B1 𝝐t−1 −…− Bq 𝝐t−q

with A1,… ,Bq ∈ ℝd×d, or equivalently if

A(B) X t = B(B) 𝝐t

with A(z) = I − A1 z −…− Ap zp and B(z) = I − B1 z −…− Bq zq, where I
denotes the identity matrix.

The criterion for the existence of a unique causal and stationary solution now
becomes

det(A(z)) ≠ 0 for |z| ≤ 1, (B.25)

while the criterion for invertibility is given by

det(B(z)) ≠ 0 for |z| ≤ 1. (B.26)

The autocovariance matrices of a causal stationary VARMA(p, q) process are
determined again by a set of Yule–Walker equations (by considering (B.23)),
given by

𝚪(k) −
p∑

i=1
Ai 𝚪(k − i) =

q∑
j=k

Bj 𝚺𝝐 C⊤

j−k for k = 0, 1,… ,

where Cr = O for r < 0, C0 = I
and Cr =

∑r
i=1 Ai Cr−i + Br for r > 0.

(B.27)

Up to this point, everything looks analogous to the corresponding results
for the univariate ARMA(p, q) models; see Definition B.3.4 and below. Now,
we have to discuss some important differences. First, it has to be mentioned
that the VAR(1) model is of outstanding importance, since any d-dimensional
VARMA(p, q) model can be translated into an d(p + q)-dimensional VAR(1)
model. This is done in an analogous way to the approach for Markov processes
sketched below (B.1), by constructing the coefficient matrix D ∈ ℝd(p+q)×d(p+q)

as follows:

D11 =

⎛⎜⎜⎜⎜⎜⎝

A1 … Ap−1 Ap

I O O
⋱ ⋮

O I O

⎞⎟⎟⎟⎟⎟⎠
∈ ℝdp×dp, (B.28)
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D12 =

⎛⎜⎜⎜⎜⎝
B1 … Bq

O … O
⋮ ⋱ ⋮

O … O

⎞⎟⎟⎟⎟⎠
∈ ℝdp×dq, D21 = O ∈ ℝdq×dp,

D22 =

⎛⎜⎜⎜⎜⎝
O … O O
I O O

⋱ ⋮

O I O

⎞⎟⎟⎟⎟⎠
∈ ℝdq×dq, D =

( D11 D12

D21 D22

)
.

With

Y t ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

X t

⋮

X t−p+1

𝝐t

⋮

𝝐t−q+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, U t ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝝐t

0
⋮p−1

0
𝝐t

0
⋮q−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have

Y t = D Y t−1 + U t. (B.29)

Using this VAR(1)-representation, we may, for example, trace back the auto-
correlation function of the general VARMA(p, q) model to that of the VAR(1)
model. The latter is given by

𝚪(k) = Ak
1 𝚪(0), 𝚪(0) = A1 𝚪(0) A⊤

1 + 𝚺𝝐 , (B.30)

see (B.27) with (p, q) = (1, 0). Furthermore, the causal solution of the VAR(1)
model equals

X t =
∞∑

j=0
Aj

1 𝝐t−j. (B.31)

As the second main difference to the univariate ARMA models, it has to be
mentioned that sometimes there is not a unique representation of a VARMA
process (counterexamples are easily constructed; see for example the one
on p. 259 in Holan et al. (2010)). Therefore, in practice, one often restricts
oneself to the purely autoregressive VAR(p) models in advance to avoid such
non-identifiability issues. Further information is presented in the book by
Lütkepohl (2005).
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C

Computational Aspects

For illustrating the models and methods described in this book, a number of
data examples and numerical examples have been presented. The correspond-
ing computations would not have been possible without software support. The
unique software solution used was the program R (R Core Team, 2016). This
choice was mainly motivated by the fact that R is freely available to everyone
and it also runs on every common operating system. It is widely used anyway.
Other computational software packages could be used, for example Matlab or
Mathematica. To allow the reader to easily do the computations on her/his
own, and to modify and extend the computations, all R codes are provided on
the companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries as
a password-protected zip file (DiscrValTS17). The datasets that are freely
available can be found there too. An overview of the R codes used for this book
is given in Section C.2, while the datasets are listed in Section C.3.

To simplify code translation into other programming languages, the R codes
were written by using only basic commands; that is, commands available in base
R (and analogously in other common languages) without the need for special
packages (with a few exceptions, as described in Section C.1 below). Another
advantage of this approach is that “black boxes” are avoided to some degree,
and the code can be better understood and related to the formulae used in this
book. On the other hand, the presented R solutions will usually not be the most
efficient ones, and the amount of programming code could be reduced by using
appropriate R packages. The main problem with the latter approach, however,
would be that ready solutions exist for only a small proportion of the models
and methods discussed in this book (at least at the time of writing this book),
so a unique presentation would not be possible in this way. To mention a few
packages,

• some of the INGARCH and log-linear regression models from Sections 4
and 5.1 could also be fitted by using the R package “tscount” described in
Liboschik et al. (2016)

An Introduction to Discrete-Valued Time Series, First Edition. Christian H. Weiss.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/weiss/discrete-valuedtimeseries
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• some GLARMA models (Section 5.1) are available through the R package
“glarma” (Dunsmuir & Scott, 2015)

• methods for hidden-Markov models (Section 5.2) are offered by the R pack-
age “HiddenMarkov” (Harte, 2016), among others

• for the monitoring of discrete-valued processes, the R package “surveillance”
(Höhle, 2007; Salmon et al., 2016) could be used.

C.1 Some Comments about the Use of R

Since the total amount of R code used for this book is very large (Section C.2),
it makes no sense to discuss these codes line-by-line. Instead, some general
comments will be given that will help readers better understand the code, and
allow them to write their own code for models and methods not covered in this
book. These comments are quite specific and assume that the reader already
has a solid knowledge of R. If this is not yet the case, the reader may consult
an introductory book on R, such as Gardener (2012). See also the R project’s
website for further book recommendations.1

Computation and Simulation for Count Models

The pmf of the count distributions discussed in Appendix A are readily imple-
mented in R in only a few basic cases, such as the Poisson or (negative) binomial
distribution. In other cases, the formula for the pmf has to be programmed
by hand (if an explicit formula is available), or numeric pmf values might be
obtained by a numeric series expansion of the pgf. Such a numerical series
expansion can be done with standard methods offered in Matlab or Mathemat-
ica, while an extra package is required for R, such as the R package “pracma”
by Borchers (2016). For visualizing a discrete pmf, one may use plot(…,
type="h", …). The cdf corresponding to a given pmf vector is obtained
by applying cumsum.

An analogous distinction applies to the simulation of the corresponding i.i.d.
random variables: if a certain distribution is not readily available, one has to use
a general command for taking random samples with replacement. In R, this is
done by

sample(0:upper, reps, replace=TRUE, prob=pmf)

with upper being either the upper limit of the distribution’s range if this is finite,
or a sufficiently large value otherwise. A vector of the corresponding numerical
values of the pmf is provided as pmf , and reps is the number of i.i.d. replications.

1 https://www.r-project.org/.
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Stationary Marginal Distribution of Markov Chains

The computation of the stationary marginal distribution of a Markov chain is
required for several examples in this book (for example, Example 2.1.3.5), and
it makes use of the invariance equation (B.4). According to this equation, the
unique non-negative eigenvector with component sum 1 corresponding to the
eigenvalue 1 of the transition matrix is required. In R, this can be computed
numerically by using eigen(…, symmetric=FALSE)$vectors[,1];
see also the discussion of the command eigen below. A matrix inversion is
possible using solve; matrix multiplication is done in R by %*%. The visual
representation of the transition matrices in Example 7.1.1 by weighted directed
graphs was done by using the R package “qgraph” by Epskamp et al. (2012).

Simulation of Count Processes

The simulation of count processes uses the above methods for simulating
count distributions. For a stationary Markov process, one needs the sta-
tionary marginal distribution (see also the discussion above) for the initial
observation; the remaining observations are generated according to the
respective conditional distribution (Remark 2.6.4). For some models, such
as the INAR(1) model (Example 2.1.2.1), one can directly utilize the model
recursion and simulate each of its parts separately. In other cases (such
as the Poisson INARCH(1) model, as in Remark 4.1.7), one simulates the
conditional distribution as a whole. An alternative way of initializing the
simulation (more generally of ergodic processes) is to work with a prerun
(Remarks 2.6.4 and 4.1.7, Examples 5.1.2 and 5.1.3).

Numerical Maximum Likelihood Estimation

For the numerical computation of ML estimates, the log-likelihood function
𝓁(𝜽) has to be maximized by using an appropriate optimization routine. In R,
such routines always search for a local minimum, so in fact, the negative
log-likelihood −𝓁(𝜽) has to be minimized in 𝜽. R offers several different
routines for numerical optimization, where the decision to use a particular
routine is often determined by a given parameter constraint. In many cases, the
constraints can be expressed as box constraints (for example, in Section 2.5);
that is, 𝜽 ∈ [l,u] must be satisfied. Then one may use

optim(…, method="L-BFGS-B", lower=low, upper=up, …)

with low being the vector l of the lower box limits, and up the vector u of
upper limits. The argument hessian=TRUE is optional, but obtaining the
Hessian of −𝓁 is attractive in view of approximating the standard errors; see
Remark B.2.1.2. A possible alternative to optim is nlminb.
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If more general inequality constraints of the form A 𝜽 ≥ b are given
(for example, in Example 7.2.4), one can use constrOptim(…, ui=A,
ci=b,…). Since box constraints are particular inequality constraints, con-
strOptim could also be used in the case described above, but usually, it
requires more computing time than optim or nlminb. Furthermore, the
hessian of −𝓁 can only be computed if the gradient of −𝓁 is also delivered to
constrOptim.

Finally, there are sometimes no constraints on the model parameters (that
is, the full set of real numbers is allowed for each model parameter), as in
Example 7.4.5. In this case, one can again useoptimwith amethod for uncon-
strained optimization; alternatively, one can use nlm.

Categorical Random Variables

Categorical random variables can be simulated with the help of the command
rmultinom(…, size=1, …) for multinomially distributed random
variables. As a result, a binary column vector (that is, a (d + 1) × 1-matrix) is
generated, which corresponds to the binarization of the categorical random
variable (Example A.3.3). This is changed into a numerical coding by the
numbers 0,… , d with the help of matrix multiplication; that is, by adding
c(0:d)%*% before the binarized vector. Given the numerical coding, one can
replace these numbers with certain strings s0,… ,sd describing the categorical
states, and the translation is done the other way round by applying match
together with a vector of these strings. The numerical coding, in turn, is easily
changed back into a binarization, which is the most useful representation
for frequency computations. As an example, the binarization was used for
creating the rate evolution graphs in Example 6.1.2 (by also using apply(…,
cumsum) and then matplot), and for computing the measures of serial
dependence in Example 6.3.1.

Eigenvalues and Sparse Matrices

The eigenvalues computed with eigen are sorted in descending order accord-
ing to their absolute value, so the jth largest eigenvalue and its correspond-
ing eigenvector are obtained by adding $values[j] and $vectors[,j],
respectively.

In contrast to some other computational software solutions, R requires an
additional package for creating sparse matrices and vectors: the R package “ma-
trix” by Bates & Mächler (2016). To use these sparse matrix techniques (as in
Example 8.3.2.1), one has to specify the non-zero entries by creating a list of
their values plus two lists with the coordinates of these entries. Then the matrix
is created by the sparseMatrix command. The common matrix operations
(such as %*%) and commands (such as solve) can be applied to the sparse
matrices too. To facilitate the computation of the dominant eigenvector (the
one belonging to the largest eigenvalue), a further R package might be used,
namely “SQUAREM” by Varadhan (2016), and there the command squarem.
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C.2 List of R Codes

Section 2.0: Counts.r.
Computation and simulation for count models.

Example 2.1.2.1: PINAR1paths.r.
Simulation of Poisson INAR(1) process.

Example 2.1.3.5: NB-INAR1.r.
Computations for NB-INAR(1) model.

Section 2.5: INAR1fit.r.
Fitting INAR(1) models.

Example 2.6.2: PINAR1forecast.r.
Forecasting Poisson INAR(1) process.

Remark 2.6.3: INAR1fit.r.
Forecasting INAR(1) process.

Example 3.1.6: INARpfit.r.
Fitting INAR(p) models.

Remark 3.1.7: PINAR1nonstatpaths.r.
Simulation of extensions of INAR(1) process.

Example 3.2.1: INAR1fit.r.
Fitting NB-RCINAR(1) model.

Example 3.3.4: BAR1fit.r.
Fitting (beta-)binomial AR(1) model.

Example 3.4.2: BINAR1fit.r.
Fitting BINAR(1) models.

Example 4.1.5: INGARCH11fit.r.
Fitting Poisson INGARCH(1, 1) model.

Remark 4.1.7: PINARCH1paths.r.
Simulation of Poisson INARCH(1) process.

Example 4.1.8: INARCH1fit.r.
Fitting Poisson INARCH(1) model.

Example 4.2.4: INGARCH11fit.r.
Fitting INGARCH(1, 1) models.

Example 4.2.6: BINARCH1fit.r.
Fitting binomial INARCH(1) model.

Example 5.1.2: GLARMAsim.r.
Simulation of Poisson GLARMA(0,1) process.

Example 5.1.3: LogLinAutoRsim.r.
Simulation of log-linear Poisson autoregression.

Example 5.1.6: MargRegression.r.
Fitting marginal seasonal log-linear model.

Example 5.1.7: CondRegression.r.
Fitting conditional seasonal log-linear model.

Example 5.2.2: PoissonHMMprop.r.
Computations for Poisson HMM.
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Example 5.2.5: PoissonHMMfit.r.
Fitting Poisson HMM.

Section 5.3: DAR1paths.r.
Simulation of Poisson DAR(1) process.

Example 6.1.1: plot_ordinal_ts.r.
Plotting an ordinal time series.

Example 6.1.2: plot_nominal_ts.r.
Plotting a rate evolution graph.

Remark 6.1.3: dependence:nominal_ts.r.
Plotting a spectral envelope.

Example 6.2.2: plot_ordinal_ts.r, plot_nominal_ts.r.
Measuring categorical dispersion.

Example 6.3.1: dependence:nominal_ts.r.
Measuring categorical serial dependence.

Example 7.1.1: MTDp.r.
Computations for Markov chains.

Example 7.1.2: MTDp.r.
Computations for MTD models.

Example 7.2.4: modelfit_nominal_ts.r.
Fitting DAR and MTD models.

Example 7.3.2: CatHMMprop.r.
Computations for categorical HMM.

Example 7.3.4: CatHMMfit.r.
Fitting categorical HMM.

Example 7.4.5: CatRegression.r.
Fitting autoregressive logit model.

Example 7.4.6: OrdLogitAR1paths.r.
Computations for ordinal regression model.

Example 7.4.8: OrdLogitAR1paths.r.
Computations and simulation for ordinal autoregressive logit model.

Example 8.2.1.1: c_chart_iid.r.
c chart and ARL computations for i.i.d. data.

Example 8.2.1.2: c_chart_iid_est.r.
c chart with estimated parameters.

Example 8.2.2.3: c_chart_INAR1.r.
c chart and ARL computations for INAR(1) data.

Example 8.3.1.1: CUSUM_iid.r.
CUSUM chart and ARL computations for i.i.d. data.

Example 8.3.2.1: CUSUM_INAR1.r.
CUSUM chart and ARL computations for INAR(1) data.

Example 8.3.3.1: EWMA_iid.r.
ARL computation for EWMA chart for i.i.d. data.
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Example 8.3.3.2: EWMA_INAR1.r.
EWMA chart and ARL computations for INAR(1) data.

Example 9.1.1.2: SampleMon_bin.r.
np chart, CUSUM chart and ARL computations for i.i.d. samples data.

Example 9.1.2.2: SampleMon_cat.r.
Pearson and Gini chart for i.i.d. samples data, ARL simulation.

Example 9.2.1.1: runs_chart_iid.r.
ATS computation for runs chart.

Example 9.2.1.2: BinCUSUM_iid.r.
CUSUM chart and ARL computations for i.i.d. binary data.

Example 9.2.2.1: CatCUSUM_iid.r.
CUSUM chart and ARL computations for i.i.d. categorical data.
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C.3 List of Datasets

Download counts: Downloads.txt.
Source: Weiß (2008a). (Section 2.5, Remark 2.6.3, Examples 3.2.1 and 5.2.5)

Rig counts: OffshoreRigcountsAlaska.txt.
Source: Baker Hughes. (Example 2.6.2)

Counts of gold particles: goldparticle380.txt.
Source: Westgren (1916). (Example 3.1.6)

Price stability counts: PriceStability.txt.
Source: Weiß & Kim (2014). (Example 3.3.4)

Counts of road accidents: Accidents.txt.
Source: Pedeli & Karlis (2011). (Example 3.4.2)

Transactions counts: EricssonB_Jul2.txt.
Source: Brännäs & Quoreshi (2010). (Examples 4.1.5 and 4.2.4)

Strikes counts: Strikes.txt.
Source: U S Bureau of Labor Statistics. (Example 4.1.8)

Counts of hantavirus infections: Hanta.txt.
Source: Robert-Koch-Institut (2016). (Example 4.2.6)

Counts of Legionella infections: LegionnairesDisease_02-08.txt.
Source: Robert-Koch-Institut (2016). (Example 5.1.6)

Counts of cryptosporidiosis infect.: Cryptosporidiosis_02-08.txt.
Source: Robert-Koch-Institut (2016). (Example 5.1.7)

EEG sleep states: InfantEEGsleepstates.txt.
Source: Stoffer et al. (2000). (Examples 6.1.1, 6.2.2 and 6.3.1)

Song of wood pewee: WoodPeweeSong.txt.
Source: Craig (1943), Raftery & Tavaré (1994). (Examples 6.1.2, 6.2.2, 6.3.1)

DNA sequence of bovine leukemia virus: Bovine.txt.
Source: NCBI. (Examples 7.2.4, 7.3.4 and 7.4.5)

IP counts: IPs.txt.
Source: Weiß (2007). (Examples 8.2.2.3, 8.3.2.1 and 8.3.3.2)

Medical diagnoses: FattyLiver.txt, FattyLiver2.txt.
Source: Weiß & Atzmüller (2010). (Examples 9.1.1.2 and 9.2.1.2)
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Probability generating function 12,
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