diff --git a/examples/hmm.py b/examples/hmm.py index 6ed561c2..ab7ec2e7 100644 --- a/examples/hmm.py +++ b/examples/hmm.py @@ -9,7 +9,8 @@ import os matplotlib.rcParams['font.size'] = 8 -import pyhsmm +from pyhsmm import models +from pyhsmm.basic import distributions from pyhsmm.util.text import progprint_xrange print(''' @@ -43,8 +44,8 @@ 'nu_0':obs_dim+2} ### HDP-HMM without the sticky bias -obs_distns = [pyhsmm.distributions.Gaussian(**obs_hypparams) for state in range(Nmax)] -posteriormodel = pyhsmm.models.WeakLimitHDPHMM(alpha=6.,gamma=6., +obs_distns = [distributions.Gaussian(**obs_hypparams) for state in range(Nmax)] +posteriormodel = models.WeakLimitHDPHMM(alpha=6.,gamma=6., init_state_concentration=1., obs_distns=obs_distns) posteriormodel.add_data(data) @@ -56,8 +57,8 @@ plt.gcf().suptitle('HDP-HMM sampled model after 100 iterations') ### HDP-HMM with "sticky" initialization -obs_distns = [pyhsmm.distributions.Gaussian(**obs_hypparams) for state in range(Nmax)] -posteriormodel = pyhsmm.models.WeakLimitHDPHMM(alpha=6.,gamma=6., +obs_distns = [distributions.Gaussian(**obs_hypparams) for state in range(Nmax)] +posteriormodel = models.WeakLimitHDPHMM(alpha=6.,gamma=6., init_state_concentration=1., obs_distns=obs_distns) @@ -77,8 +78,8 @@ ### Sticky-HDP-HMM -obs_distns = [pyhsmm.distributions.Gaussian(**obs_hypparams) for state in range(Nmax)] -posteriormodel = pyhsmm.models.WeakLimitStickyHDPHMM( +obs_distns = [distributions.Gaussian(**obs_hypparams) for state in range(Nmax)] +posteriormodel = models.WeakLimitStickyHDPHMM( kappa=50.,alpha=6.,gamma=6.,init_state_concentration=1., obs_distns=obs_distns) posteriormodel.add_data(data) @@ -90,4 +91,3 @@ plt.gcf().suptitle('Sticky HDP-HMM sampled model after 100 iterations') plt.show() -