From 4a97e011f57f07014a5ee83baf4c1dd5e7931be4 Mon Sep 17 00:00:00 2001 From: mazsa Date: Fri, 3 Jan 2025 00:53:47 +0100 Subject: [PATCH] dfantisymrel4, antisymrelressn --- set.mm | 138 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 138 insertions(+) diff --git a/set.mm b/set.mm index 745cd88d50..cdabfd3f10 100644 --- a/set.mm +++ b/set.mm @@ -450831,6 +450831,9 @@ orthogonal vectors (i.e. whose inner product is 0) is the sum of the htmldef "ElDisj" as ' ElDisj '; althtmldef "ElDisj" as ' ElDisj '; latexdef "ElDisj" as "\mathrm{ElDisj}"; +htmldef "AntisymRel" as ' AntisymRel '; + althtmldef "AntisymRel" as ' AntisymRel '; + latexdef "AntisymRel" as "\mathrm{AntisymRel}"; /* End of Peter Mazsa's mathbox */ /* Mathbox of Rodolfo Medina */ @@ -580791,6 +580794,8 @@ A collection of theorems for commuting equalities (or relation $) $c ElDisj $. $( Disjoint elementhood predicate $) + $c AntisymRel $. $( Antisymmetric relation predicate $) + $( Extend the definition of a class to include the range Cartesian product class. $) cxrn $a class ( A |X. B ) $. @@ -580919,6 +580924,10 @@ A collection of theorems for commuting equalities (or elements of ` A ` are disjoint.) $) weldisj $a wff ElDisj A $. + $( Extend the definition of a wff to include the antisymmetry relation + predicate. (Read: ` R ` is an antisymmetric relation.) $) + wantisymrel $a wff AntisymRel R $. + $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= @@ -581024,6 +581033,15 @@ A collection of theorems for commuting equalities (or ( wa anbi1i bitri ) ABCGDCGEBDCFHI $. $} + ${ + bianim.1 $e |- ( ph <-> ( ps /\ ch ) ) $. + bianim.2 $e |- ( ch -> ( ps <-> th ) ) $. + $( Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, + 31-Jul-2023.) $) + bianim $p |- ( ph <-> ( th /\ ch ) ) $= + ( wa pm5.32ri bitri ) ABCGDCGECBDFHI $. + $} + $( Substitution of equal classes in binary relation. (Contributed by Peter Mazsa, 14-Jun-2024.) $) eqbrtr $p |- ( ( A = B /\ B R C ) -> A R C ) $= @@ -581082,6 +581100,16 @@ A collection of theorems for commuting equalities (or ( cv wcel wi cin wa elin imbi1i impexp bitri ralbii2 ) ABEZDFZAGZBCDHZCORFZ AGOCFZPIZAGTQGSUAAOCDJKTPALMN $. + ${ + $d A y $. $d x y $. + $( Double restricted universal quantification, special case. (Contributed + by Peter Mazsa, 17-Jun-2020.) $) + r2alan $p |- ( A. x A. y ( ( ( x e. A /\ y e. B ) /\ ph ) -> ps ) <-> + A. x e. A A. y e. B ( ph -> ps ) ) $= + ( cv wcel wa wi wal wral impexp 2albii r2al bitr4i ) CGEHDGFHIZAIBJZDKCKQ + ABJZJZDKCKSDFLCELRTCDQABMNSCDEFOP $. + $} + ${ 3ralbii.1 $e |- ( ph <-> ps ) $. $( Inference adding three restricted universal quantifiers to both sides of @@ -582045,6 +582073,33 @@ relation with an intersection with the same Cartesian product (see also ( ccnv crn cres cdm df-rn reseq2i wrel wceq relcnv dfrel5 mpbi eqtri ) ABZA CZDNNEZDZNOPNAFGNHQNIAJNKLM $. + $( Subset of restriction, special case. (Contributed by Peter Mazsa, + 10-Apr-2023.) $) + relssinxpdmrn $p |- ( Rel R -> + ( R C_ ( S i^i ( dom R X. ran R ) ) <-> R C_ S ) ) $= + ( wrel wss cdm crn cxp wa cin relssdmrn biantrud ssin bitr2di ) ACZABDZOAAE + AFGZDZHABPIDNQOAJKABPLM $. + + $( Two ways to say that a relation is a subclass. (Contributed by Peter + Mazsa, 11-Apr-2023.) $) + cnvref4 $p |- ( Rel R -> + ( ( R i^i ( dom R X. ran R ) ) C_ ( S i^i ( dom R X. ran R ) ) <-> + R C_ S ) ) $= + ( wrel cdm crn cxp cin wceq dfrel6 biimpi dmeqd rneqd xpeq12d ineq2d sseq2d + wss wb relxp relin2 relssinxpdmrn mp2b sseq1d bitrid bitr3d ) ACZAADZAEZFZG + ZBUIDZUIEZFZGZPZUIBUHGZPABPZUEUMUOUIUEULUHBUEUJUFUKUGUEUIAUEUIAHAIJZKUEUIAU + QLMNOUNUIBPZUEUPUHCUICUNURQUFUGRAUHSUIBTUAUEUIABUQUBUCUD $. + + ${ + $d R x y $. + $( Two ways to say that a relation is a subclass of the identity relation. + (Contributed by Peter Mazsa, 26-Jun-2019.) $) + cnvref5 $p |- ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x = y ) ) ) $= + ( wrel cid wss cv wbr wi wal ssrel3 wb cvv ideqg elv imbi2i 2albii bitrdi + wceq ) CDCEFAGZBGZCHZTUAEHZIZBJAJUBTUASZIZBJAJABCEKUDUFABUCUEUBUCUELBTUAM + NOPQR $. + $} + ${ $d A x $. $d B x $. $d R x $. $d V x $. $d W x $. $( Two ways of saying that the coset of ` A ` and the coset of ` B ` have @@ -582262,6 +582317,12 @@ relation with an intersection with the same Cartesian product (see also ZBJDCBDAKPBOCLMN $. $} + $( Intersection with a converse, binary relation. (Contributed by Peter + Mazsa, 24-Mar-2024.) $) + brcnvin $p |- ( ( A e. V /\ B e. W ) -> + ( A ( R i^i `' S ) B <-> ( A R B /\ B S A ) ) ) $= + ( ccnv cin wbr wa wcel brin brcnvg anbi2d bitrid ) ABCDGZHIABCIZABPIZJAEKBF + KJZQBADIZJABCPLSRTQABEFDMNO $. $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= @@ -582989,6 +583050,15 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these ABUSUSCRRUNUOUPUQ $. $} + $( Every class ' R ' restricted to the singleton of the class ' A ' (see + ~ ressn2 ) is antisymmetric. (Contributed by Peter Mazsa, + 11-Jun-2024.) $) + antisymressn $p |- + A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) $= + ( cv csn cres wbr wa wceq wi wb cvv brressn el2v simplbi eqtr3 syl2an gen2 + ) AEZBEZDCFGZHZUATUBHZITUAJZKABUCTCJZUACJZUEUDUCUFTUADHZUCUFUHILABCTUADMMNO + PUDUGUATDHZUDUGUIILBACUATDMMNOPTUACQRS $. + $( Any class ' R ' restricted to the singleton of the class ' A ' (see ~ ressn2 ) is transitive, see also ~ trrelressn . (Contributed by Peter Mazsa, 16-Jun-2024.) $) @@ -583954,6 +584024,22 @@ and disjoints ( ~ df-disjs , ~ df-disjALTV ). FLCQUEUGUFABUBUCCSTUA $. $} + $( Alternate definition of the converse reflexive relation predicate. + (Contributed by Peter Mazsa, 25-May-2024.) $) + dfcnvrefrel4 $p |- ( CnvRefRel R <-> ( R C_ _I /\ Rel R ) ) $= + ( wcnvrefrel cdm crn cxp cin cid wss wrel df-cnvrefrel cnvref4 bianim ) ABA + ACADEZFGMFHAIAGHAJAGKL $. + + ${ + $d R x y $. + $( Alternate definition of the converse reflexive relation predicate. + (Contributed by Peter Mazsa, 25-May-2024.) $) + dfcnvrefrel5 $p |- ( CnvRefRel R <-> + ( A. x A. y ( x R y -> x = y ) /\ Rel R ) ) $= + ( wcnvrefrel cid wss wrel cv wbr wceq wi wal dfcnvrefrel4 cnvref5 bianim + ) CDCEFCGAHZBHZCIPQJKBLALCMABCNO $. + $} + ${ $d R r $. $( Element of the class of converse reflexive relations. (Contributed by @@ -586089,6 +586175,58 @@ instead of simply using converse functions (cf. ~ dfdisjALTV ). disjALTVxrnidres $p |- Disj ( R |X. ( _I |` A ) ) $= ( cid wdisjALTV cres cxrn disjALTVid disjimxrnres ax-mp ) CDBCAEFDGABCHI $. +$( +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= + Antisymmetry +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= +$) + + $( Define the antisymmetric relation predicate. (Read: ` R ` is an + antisymmetric relation.) (Contributed by Peter Mazsa, 24-Jun-2024.) $) + df-antisymrel $a |- ( AntisymRel R <-> + ( CnvRefRel ( R i^i `' R ) /\ Rel R ) ) $. + + $( Alternate definition of the antisymmetric relation predicate. + (Contributed by Peter Mazsa, 24-Jun-2024.) $) + dfantisymrel4 $p |- ( AntisymRel R <-> + ( ( R i^i `' R ) C_ _I /\ Rel R ) ) $= + ( wantisymrel ccnv cin wcnvrefrel cid wss df-antisymrel relcnv relin2 ax-mp + wrel dfcnvrefrel4 mpbiran2 bianbi ) ABAACZDZEZALQFGZAHRSQLZPLTAIAPJKQMNO $. + + ${ + $d R x y $. + $( Alternate definition of the antisymmetric relation predicate. + (Contributed by Peter Mazsa, 24-Jun-2024.) $) + dfantisymrel5 $p |- ( AntisymRel R <-> + ( A. x A. y ( ( x R y /\ y R x ) -> x = y ) /\ Rel R ) ) $= + ( wantisymrel ccnv cin wcnvrefrel wrel cv wa wceq wi df-antisymrel relcnv + wbr wal relin2 ax-mp dfcnvrefrel5 cvv mpbiran2 brcnvin el2v imbi1i 2albii + wb bitri bianbi ) CDCCEZFZGZCHAIZBIZCOUMULCOJZULUMKZLZBPAPZCMUKULUMUJOZUO + LZBPAPZUQUKUTUJHZUIHVACNCUIQRABUJSUAUSUPABURUNUOURUNUFABULUMCCTTUBUCUDUEU + GUH $. + $} + + ${ + $d A x y $. $d R x y $. + $( (Contributed by Peter Mazsa, 25-Jun-2024.) $) + antisymrelres $p |- ( AntisymRel ( R |` A ) <-> + A. x e. A A. y e. A ( ( x R y /\ y R x ) -> x = y ) ) $= + ( cres wantisymrel cv wbr wa wceq wi wal wcel wral wrel relres wb cvv elv + brres dfantisymrel5 mpbiran2 anbi12i bitri imbi1i 2albii r2alan 3bitri + an4 ) DCEZFZAGZBGZUJHZUMULUJHZIZULUMJZKZBLALZULCMZUMCMZIULUMDHZUMULDHZIZI + ZUQKZBLALVDUQKBCNACNUKUSUJODCPABUJUAUBURVFABUPVEUQUPUTVBIZVAVCIZIVEUNVGUO + VHUNVGQBCULUMDRTSUOVHQACUMULDRTSUCUTVBVAVCUIUDUEUFVDUQABCCUGUH $. + $} + + ${ + $d A x y $. $d R x y $. + $( (Contributed by Peter Mazsa, 29-Jun-2024.) $) + antisymrelressn $p |- AntisymRel ( R |` { A } ) $= + ( vx vy csn cres wantisymrel cv wbr wa wceq wi antisymressn dfantisymrel5 + wal wrel relres mpbir2an ) BAEZFZGCHZDHZTIUBUATIJUAUBKLDOCOTPCDABMBSQCDTN + R $. + $} + $( (End of Peter Mazsa's mathbox.) $) $( End $[ set-mbox-pm.mm $] $)