diff --git a/set.mm b/set.mm index 677cdc5bbe..b94286d13b 100644 --- a/set.mm +++ b/set.mm @@ -551602,6 +551602,40 @@ equivalence of domain elementhood (equivalence is not necessary as DIZPCJDABGZKEQLCHDABCMDQCNO $. $} + $( Two ways to say that a relation is a subclass. (Contributed by Peter + Mazsa, 25-May-2024.) $) + cnvref4 $p |- ( Rel R -> + ( R C_ S <-> R C_ ( S i^i ( dom R X. ran R ) ) ) ) $= + ( wrel wss cdm crn cxp wa cin relssdmrn biantrud ssin syl6bb ) AC + ZABDZOAAEAFGZDZHABPIDNQOAJKABPLM $. + + ${ + $d R x y $. + $( Two ways to say that a relation is a subclass of the identity relation. + (Contributed by Peter Mazsa, 26-Jun-2019.) $) + cnvref5 $p |- ( Rel R -> ( R C_ _I <-> A. x A. y ( x R y -> x = y ) ) ) $= + ( wrel cid wss cv wbr wi wal wceq ssrel3 wb cvv ideqg elv imbi2i + 2albii syl6bb ) CDCEFAGZBGZCHZTUAEHZIZBJAJUBTUAKZIZBJAJABCELUDUFA + BUCUEUBUCUEMBTUANOPQRS $. + $} + + ${ + $d R x $. + $( The domain of the intersection of a reflexive class with its converse + is the intersection of the domain and range of the class. Compare with + ~ dmin and ~ dfrefrel5 . (Contributed by Peter Mazsa, + 25-May-2024.) $) + refdmincnv $p |- ( A. x e. ( dom R i^i ran R ) x R x -> + dom ( R i^i `' R ) = ( dom R i^i ran R ) ) $= + ( cv wbr cdm crn cin wral ccnv wss wa wceq cvv brcnvg el2v anbi2i + wb anidm sylbir sylibr bitri ralbii df-rn ineq2i raleqi wcel brin + bitr4i vex breldm ralimi dfss3 dmin jctil eqss syl6eqr ) ACZUQBDZ + ABEZBFZGZHZBBIZGZEZUSVCEZGZVAVBVEVGJZVGVEJZKVEVGLVBVIVHVBURUQUQVC + DZKZAVGHZVIVLURAVGHVBVKURAVGVKURURKURVJURURVJURQAAUQUQMMBNOPURRUA + UBURAVAVGUTVFUSBUCUDZUEUHVLUQVEUFZAVGHVIVKVNAVGVKUQUQVDDVNUQUQBVC + UGUQUQVDAUIZVOUJSUKAVGVEULTSBVCUMUNVEVGUOTVMUP $. + $} + $( Absorption law for intersection. This is ~ inabs3 in Glauco Siliprandi's Mathbox: when we cut and paste that into main, delete this. (Contributed by Glauco Siliprandi, 17-Aug-2020.) $) @@ -555354,6 +555388,22 @@ and disjoints ( ~ df-disjs , ~ df-disjALTV ). UBPZUFLCQUEUIUFABUBUCCSTUA $. $} + $( Alternate definition of the converse reflexive relation predicate. + (Contributed by Peter Mazsa, 25-May-2024.) $) + dfcnvrefrel4 $p |- ( CnvRefRel R <-> ( R C_ _I /\ Rel R ) ) $= + ( wcnvrefrel cid cdm crn cxp cin wss wrel wa dfcnvrefrel2 cnvref4 + pm5.32ri bitr4i ) ABACADAEFGHZAIZJACHZPJAKPQOACLMN $. + + ${ + $d R x y $. + $( Alternate definition of the converse reflexive relation predicate. + (Contributed by Peter Mazsa, 25-May-2024.) $) + dfcnvrefrel5 $p |- ( CnvRefRel R <-> + ( A. x A. y ( x R y -> x = y ) /\ Rel R ) ) $= + ( wcnvrefrel cid wss wrel cv wbr wceq wi wal dfcnvrefrel4 cnvref5 + bianim ) CDCEFCGAHZBHZCIPQJKBLALCMABCNO $. + $} + ${ $d R r $. $( Element of the class of converse reflexive relations. (Contributed by @@ -556925,6 +556975,22 @@ of negatively transitive relations ( ~ df-negtrrels ) is equivalent to ADBCQADBCSR $. $} + ${ + $d A a u v w $. $d R a u v w $. $d V u v w $. + $( Cosets restricted to singleton is an equivalence relation. + (Contributed by Peter Mazsa, 27-May-2024.) $) + eqvrel1cossressn $p |- ( A e. V -> EqvRel ,~ ( R |` { A } ) ) $= + ( vu vv vw va cv wbr wa wal wrex wb br1cossres el2v breq1 anbi12d + cvv rexsng syl5bb wcel csn cres ccoss wi weqvrel wceq an3 sylibrd + syl6bi alrimivv alrimiv eqvrelcoss3 sylibr ) ACUAZDHZEHZBAUBZUCZU + DZIZUQFHZUTIZJZUPVBUTIZUEZFKEKZDKUTUFUOVGDUOVFEFUOVDAUPBIZAVBBIZJ + ZVEUOVDVHAUQBIZJZVKVIJZJVJUOVAVLVCVMVAGHZUPBIZVNUQBIZJZGURLZUOVLV + AVRMDEGURUPUQBRRNOVQVLGACVNAUGZVOVHVPVKVNAUPBPZVNAUQBPZQSTVCVPVNV + BBIZJZGURLZUOVMVCWDMEFGURUQVBBRRNOWCVMGACVSVPVKWBVIWAVNAVBBPZQSTQ + VHVKVKVIUHUJVEVOWBJZGURLZUOVJVEWGMDFGURUPVBBRRNOWFVJGACVSVOVHWBVI + VTWEQSTUIUKULDEFUSUMUN $. + $} + $( Alternate definition of the coelement equivalence relations class. Other alternate definitions should be based on ~ eqvrelcoss2 , ~ eqvrelcoss3 and ~ eqvrelcoss4 when needed. (Contributed by Peter Mazsa, 22-Nov-2023.) $)