diff --git a/set.mm b/set.mm index b8f10eae83..70d795e8eb 100644 --- a/set.mm +++ b/set.mm @@ -550481,11 +550481,23 @@ A collection of theorems for commuting equalities (or mpbir ) ABCEAFZBDEGZHIARJZBCDGZEZHIZUCTFZBUAKUDBUAALMTBUANQSUBHAR BCDOPQ $. + $( Substitution of equal classes into binary relation. (Contributed by + Peter Mazsa, 14-Jun-2024.) $) + eqbrtr $p |- ( ( A = B /\ B R C ) -> A R C ) $= + ( wceq wbr breq1 biimpar ) ABEACDFBCDFABCDGH $. + $( Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 22-Jul-2017.) $) eqeltr $p |- ( ( A = B /\ B e. C ) -> A e. C ) $= ( wceq wcel eleq1 biimpar ) ABDACEBCEABCFG $. + $( Substitution of equal classes into binary relation. (Contributed by + Peter Mazsa, 14-Jun-2024.) $) + eqbrb $p |- ( ( A = B /\ A R C ) <-> ( A = B /\ B R C ) ) $= + ( wceq wbr wa simpl eqbrtr jca eqcom anbi1i 3imtr3i impbii ) ABEZ + ACDFZGZOBCDFZGZBAEZPGZTRGQSUATRTPHBACDIJTOPBAKZLTORUBLMSOPORHABCD + IJN $. + $( Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 17-Jul-2019.) $) eqelb $p |- ( ( A = B /\ A e. C ) <-> ( A = B /\ B e. C ) ) $= @@ -550579,6 +550591,12 @@ A collection of theorems for commuting equalities (or ( cv wcel wi wal wa wral pm5.42 albii df-ral 3bitr4ri ) CEDFZABGZ GZCHOAOBIGZGZCHPCDJRCDJQSCOABKLPCDMRCDMN $. + $( (Contributed by Peter Mazsa, 20-Jun-2024.) $) + alim2 $p |- ( A. x ( ph -> ( x e. A -> ps ) ) <-> + A. x e. A ( ph -> ps ) ) $= + ( wi wral cv wcel wal df-ral bi2.04 albii bitr2i ) ABEZCDFCGDHZNE + ZCIAOBEEZCINCDJPQCOABKLM $. + $( (Contributed by Peter Mazsa, 13-May-2024.) $) 2imnang $p |- ( A. x A. y ( ph -> -. ps ) <-> A. x A. y -. ( ph /\ ps ) ) $= ( wn wi wal wa imnang albii ) ABEFDGABHEDGCABDIJ $. @@ -550592,6 +550610,15 @@ A collection of theorems for commuting equalities (or IJZPKCLBLQAJFCLBLPBCDEMQABCNO $. $} + ${ + $d A y $. $d x y $. + $( (Contributed by Peter Mazsa, 17-Jun-2020.) $) + r2alan $p |- ( A. x A. y ( ( ( x e. A /\ y e. B ) /\ ph ) -> ps ) <-> + A. x e. A A. y e. B ( ph -> ps ) ) $= + ( cv wcel wa wi wal wral impexp 2albii r2al bitr4i ) CGEHDGFHIZAI + BJZDKCKQABJZJZDKCKSDFLCELRTCDQABMNSCDEFOP $. + $} + ${ $d A y $. $d B x $. $d x y $. $( (Contributed by Peter Mazsa, 29-May-2019.) $) @@ -550712,6 +550739,20 @@ A collection of theorems for commuting equalities (or IUJ $. $} + ${ + a0orb.1 $e |- ( ph -> F/ x ps ) $. + a0orb.2 $e |- ( ph -> A = { x | ( ps /\ ch ) } ) $. + a0orb.3 $e |- ( ph -> B = { x | ch } ) $. + $( (Contributed by Peter Mazsa, 14-Jun-2024.) $) + a0orb $p |- ( ph -> ( A = B \/ A = (/) ) ) $= + ( wceq c0 wo cab cin cvv wa sylib ineq12 ancoms eqeq2i wnf inv1 + eqcomd dfnf5 jca orim12dan syl ineqcomi 0in orbi12i inab eqeq1d + syl6eqr orbi12d mpbird ) AEFJZEKJZLBDMZCDMZNZFJZUTKJZLZAUTOFNZJ + ZUTKFNZJZLZVCAUSFJZUROJZURKJZLZPVHAVIVLAFUSIUCABDUAVLGBDUDQUEVI + VJVEVKVGVJVIVEUROUSFRSVKVIVGURKUSFRSUFUGVEVAVGVBVDFUTFOFFUBUHTV + FKUTFUITUJQAUPVAUQVBAEUTFAEBCPDMUTHBCDUKUMZULAEUTKVMULUNUO $. + $} + ${ $d A x y $. $d B x y $. $d ps x $. $d ch y $. ceqsex2gv.3 $e |- ( x = A -> ( ph <-> ps ) ) $. @@ -550863,18 +550904,6 @@ A collection of theorems for commuting equalities (or UAUBUMUTBLPBUMUSLBUMUMDUHUSLUCUMDUDUMDUEUIUFBUJUGUKUL $. $} - ${ - $d A u x $. - $( (Contributed by Peter Mazsa, 13-Jun-2024.) $) - n0xpdmqs $p |- ( A =/= (/) -> - ( dom ( A X. A ) /. ( A X. A ) ) = { A } ) $= - ( vu vx c0 wne cv cxp cec wceq cdm wrex cab cqs dmxp rexeqdv wcel - csn ecxpg eqeq2d rexbiia syl6bb bitr4d abbidv df-qs df-sn 3eqtr4g - r19.9rzv ) ADEZBFZCFZAAGZHZIZCUKJZKZBLUIAIZBLUNUKMAQUHUOUPBUHUOUP - CAKZUPUHUOUMCAKUQUHUMCUNAAANOUMUPCAUJAPULAUIAAUJRSTUAUPCAUGUBUCCB - UNUKUDBAUEUF $. - $} - $( Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018.) $) brcnvepres $p |- ( ( B e. V /\ C e. W ) -> @@ -551243,6 +551272,36 @@ A collection of theorems for commuting equalities (or rncnv $p |- ran `' A = dom A $= ( cdm ccnv crn dfdm4 eqcomi ) ABACDAEF $. + $( Double union of a relation. (Contributed by Peter Mazsa, 20-Jun-2024.) $) + relfld2 $p |- ( Rel R -> U. U. R = dom ( R u. `' R ) ) $= + ( wrel cuni cdm crn ccnv relfld df-rn uneq2i dmun eqtr4i syl6eq + cun ) ABACCADZAEZMZAAFZMDZAGPNQDZMROSNAHIAQJKL $. + + $( Range of the union of a relation with its converse. (Contributed by + Peter Mazsa, 20-Jun-2024.) $) + rnuncnv $p |- ( Rel R -> ran ( R u. `' R ) = dom ( R u. `' R ) ) $= + ( wrel ccnv cun crn df-rn cnvun dfrel2 biimpi uneq2d uncom syl6eq + cdm wceq syl5eq dmeqd ) ABZAACZDZESCZMSMSFQTSQTRRCZDZSARGQUBRADSQ + UAARQUAANAHIJRAKLOPO $. + + $( Double union of a relation. (Contributed by Peter Mazsa, 20-Jun-2024.) $) + relfld3 $p |- ( Rel R -> U. U. R = ran ( R u. `' R ) ) $= + ( wrel cuni ccnv cun cdm crn relfld2 rnuncnv eqtr4d ) ABACCAADEZF + KGAHAIJ $. + + ${ + $d R x y $. + $( Two ways of saying that a relation is strictly complete. (Contributed + by Peter Mazsa, 19-Jun-2024.) $) + scompl $p |- ( Rel R -> + ( ( dom ( R u. `' R ) X. ran ( R u. `' R ) ) C_ ( R u. `' R ) <-> + A. x e. U. U. R A. y e. U. U. R ( x R y \/ y R x ) ) ) $= + ( wrel cv wbr wo cuni wral ccnv cun crn cdm cxp relfld2 relfld3 + wss raleqdv raleqbidv qfto syl6rbbr ) CDZAEZBEZCFUDUCCFGZBCHHZI + ZAUFIUEBCCJKZLZIZAUHMZIUKUINUHQUBUGUJAUFUKCOUBUEBUFUICPRSABUKUI + CTUA $. + $} + ${ $d R x $. $( Alternate definition of domain. (Contributed by Peter Mazsa, @@ -551501,6 +551560,17 @@ A collection of theorems for commuting equalities (or cnvxpdif $p |- `' ( ( A X. B ) \ C ) = ( ( B X. A ) \ `' C ) $= ( cxp cdif ccnv cnvdif cnvxp difeq1i eqtri ) ABDZCEFKFZCFZEBADZME KCGLNMABHIJ $. + + ${ + $d A x y $. $d B x y $. $d C x y $. + $( Cartesian product is a subset. (Contributed by Peter Mazsa, + 15-Apr-2023.) $) + xpss3 $p |- ( ( A X. B ) C_ C <-> A. x e. A A. y e. B x C y ) $= + ( cv cxp wbr wi wal wcel wa wral brxp imbi1i 2albii wrel wb relxp + wss ssrel3 ax-mp r2al 3bitr4i ) AFZBFZCDGZHZUEUFEHZIZBJAJZUECKUFD + KLZUIIZBJAJUGETZUIBDMACMUJUMABUHULUIUEUFCDNOPUGQUNUKRCDSABUGEUAUB + UIABCDUCUD $. + $} $( (Contributed by Peter Mazsa, 9-Jan-2024.) $) rnxpdmrndif $p |- ran ( ( dom R X. ran R ) \ R ) C_ ran R $= @@ -551861,6 +551931,11 @@ relation with an intersection with the same Cartesian product (see also nel02 $p |- ( A = (/) -> -. B e. A ) $= ( c0 wceq wcel noel eleq2 mtbiri ) ACDBAEBCEBFACBGH $. + $( The Cartesian product with the empty set is empty. (Contributed by Peter + Mazsa, 15-Jun-2024.) $) + 0xp2 $p |- ( A = (/) -> ( A X. B ) = (/) ) $= + ( c0 wceq cxp xpeq1 0xp syl6eq ) ACDABECBECACBFBGH $. + $( Binary relationship of disjoint classes. (Contributed by Peter Mazsa, 9-Apr-2024.) $) disjbr $p |- ( ( A i^i B ) = (/) -> -. ( C A D /\ C B D ) ) $= @@ -552084,6 +552159,47 @@ relation with an intersection with the same Cartesian product (see also UJUFUKUGUEUIAUEUIAIAJKZLUEUIAUQMNOPUNUIBHZUEUPUHCUICUNURQUFUGRAUH SUIBTUDUEUIABUQUAUBUC $. + $( A special case where a mixture of and and or appears to conform to a mixed + associative law. (Contributed by Richard Penner, 26-Feb-2020.) $) + rp-fakeanorassTEMP $p |- ( ( ch -> ph ) <-> + ( ( ( ph /\ ps ) \/ ch ) + <-> ( ph /\ ( ps \/ ch ) ) ) ) $= + ( wi wo wa wb wn pm1.4 ord pm4.83 biimpi sylan2 anim1d orc anim1i jctir olc + ex jca simpl imim12i adantr impbii dfbi2 ordir bicomi bibi1i 3bitr2i ) CADZ + ACEZBCEZFZAULFZDZUNUMDZFZUMUNGABFCEZUNGUJUQUJUOUPUJUKAULUJUKAUKUJCHADZAUKCA + ACIJUJUSFACAKLMSNAUKULACOPQUOUJUPCUMUNACUKULCARCBRTAULUAUBUCUDUMUNUEUMURUNU + RUMABCUFUGUHUI $. + + ${ + $d x A $. $d x B $. $d x C $. + $( A special case where a mixture of intersection and union appears to + conform to a mixed associative law. (Contributed by Richard Penner, + 26-Feb-2020.) $) + rp-fakeinunassTEMP $p |- ( C C_ A <-> + ( ( A i^i B ) u. C ) = ( A i^i ( B u. C ) ) ) $= + ( vx cv wcel wi wal wa wo wss cin cun wceq rp-fakeanorassTEMP albii elun elin + wb bitri dfss2 dfcleq orbi1i anbi2i bibi12i 3bitr4i ) DEZCFZUGAFZGZDHUIUG + BFZIZUHJZUIUKUHJZIZSZDHZCAKABLZCMZABCMZLZNZUJUPDUIUKUHOPDCAUAVBUGUSFZUGVA + FZSZDHUQDUSVAUBVEUPDVCUMVDUOVCUGURFZUHJUMUGURCQVFULUHUGABRUCTVDUIUGUTFZIU + OUGAUTRVGUNUIUGBCQUDTUEPTUF $. + $} + + $( A special case where a mixture of union and intersection appears to + conform to a mixed associative law. (Contributed by Richard Penner, + 29-Feb-2020.) $) + rp-fakeuninassTEMP $p |- ( A C_ C <-> + ( ( A u. B ) i^i C ) = ( A u. ( B i^i C ) ) ) $= + ( wss cin wceq rp-fakeinunassTEMP eqcom incom uncom ineq1i eqtri uneq2i eqeq12i + cun 3bitri ) ACDCBEZAOZCBAOZEZFTRFABOZCEZABCEZOZFCBAGRTHTUBRUDTSCEUBCSISUAC + BAJKLRAQOUDQAJQUCACBIMLNP $. + + $( (Contributed by Peter Mazsa, 20-Jun-2024.) $) + uniinxpdmrn $p |- ( Rel R -> + ( R u. ( S i^i ( dom R X. ran R ) ) ) = + ( ( R u. S ) i^i ( dom R X. ran R ) ) ) $= + ( wrel cun cdm crn cxp wceq relssdmrn rp-fakeuninassTEMP sylib eqcomd + cin wss ) ACZABDAEAFGZMZABPMDZOAPNQRHAIABPJKL $. + $( A condition equivalent to the subrelation of a complement relation. (Contributed by Peter Mazsa, 28-Mar-2023.) $) relssvvdif $p |- ( Rel A -> @@ -552480,6 +552596,17 @@ relation with an intersection with the same Cartesian product (see also FUBBAFDGZUDIZUJUFUBUKUDFZFULUEUMUBUCUKUDABDJKLUBUKUDMNBACDOPUJBUGFZDGUHUIUN DBACMQBUGDRPSUBUEUHTUA $. + ${ + $d A a $. + $( Restriction to singleton is disjoint, see also ~ disjressn2 . + (Contributed by Peter Mazsa, 17-Jun-2024.) $) + disjressn2 $p |- A. u E* a a ( R |` { A } ) u $= + ( cv csn cres wbr wmo wal wrmo rmosn ax-gen wcel wa cvv brres elv + wb mobii df-rmo bitr4i albii mpbir ) DEZAEZCBFZGHZDIZAJUEUFCHZDUG + KZAJUKAUJDBLMUIUKAUIUEUGNUJOZDIUKUHULDUHULSAUGUEUFCPQRTUJDUGUAUBU + CUD $. + $} + ${ brabidga.1 $e |- R = { <. x , y >. | ph } $. $( The law of concretion for a binary relation. Special case of ~ brabga . @@ -553640,7 +553767,7 @@ relation with an intersection with the same Cartesian product (see also $( Binary relation over a range Cartesian product, special case. (Contributed by Peter Mazsa, 8-Apr-2024.) $) brxrncnvepres $p |- ( B e. V -> ( B ( R |X. ( `' _E |` A ) ) C <-> - ( B e. A /\ E. x E. y e. B ( C = <. x , y >. /\ B R x ) ) ) ) $= + ( B e. A /\ E. x E. y e. B ( C = <. x , y >. /\ B R x ) ) ) ) $= ( cep ccnv cres cxrn wbr wcel cv cop wceq wa wrex wex wrel xrnrel wb relbrcnvg ax-mp brcnvxrncnvepres2 syl5bbr ) DEFHICJZKZLZEDUHIL ZDGMDCMEANZBNOPDUKFLQBDRASQUHTUJUIUBFUGUAEDUHUCUDABCEDFGUEUF $. @@ -554415,10 +554542,10 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these $d A y $. $d B y $. $d R y $. $( (Contributed by Peter Mazsa, 12-Jun-2024.) $) eldmressnALTV $p |- ( B e. V -> - ( B e. dom ( R |` { A } ) <-> ( B = A /\ B e. dom R ) ) ) $= - ( vy wcel csn cres cdm cv wbr wex wceq eldmres elsng eldmg bicomd - wa anbi12d bitrd ) BDFZBCAGZHIFBUBFZBEJCKELZRBAMZBCIFZREUBBCDNUAU - CUEUDUFBADOUAUFUDEBCDPQST $. + ( B e. dom ( R |` { A } ) <-> ( B = A /\ A e. dom R ) ) ) $= + ( vy wcel csn cres cdm wceq wa wbr wex eldmres elsng eldmg bicomd + cv anbi12d bitrd eqelb syl6bb ) BDFZBCAGZHIFZBAJZBCIZFZKZUFAUGFKU + CUEBUDFZBERCLEMZKUIEUDBCDNUCUJUFUKUHBADOUCUHUKEBCDPQSTBAUGUAUB $. $} ${ @@ -554463,23 +554590,54 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these wbr ) BEGZCFGZHZBCDAIZJSZBUCGZBCDSZHZBAKZUFHUAUDUGLTUCBCDFMNUBUEU HUFTUEUHLUABAEOPQR $. + $( (Contributed by Peter Mazsa, 14-Jun-2024.) $) + elecressn $p |- ( ( B e. V /\ C e. W ) -> + ( C e. [ B ] ( R |` { A } ) <-> ( B = A /\ B R C ) ) ) $= + ( wcel wa csn cres cec wbr wceq elecALTV brressn bitrd ) BEGCFGHC + BDAIJZKGBCQLBAMBCDLHBCQEFNABCDEFOP $. + + ${ + $d A a u $. $d R a u $. + $( A class ' R ' restricted to the singleton of the class ' A ' is the + ordered pair class abstraction of the class ' A ' and the sets in + relation ' R ' with ' A ' (and not in relation with the singleton + ' { A } ' ). + + For example, if + ' ( dom ( R |X. ( `' _E |` { A } ) ) /. ( R |X. ( `' _E |` { A } ) ) ) + = { A } ' , then the quotient set (not the singleton of the quotient + set) and the coset elements of the quotient set are in relation + ' ( R |X. ( `' _E |` { A } ) ) ' , cf. ~ eceldmqs3 . That means that + we can use this restriction to characterize the relation between the + quotient set and its elements. (Contributed by Peter Mazsa, + 16-Jun-2024.) $) + ressn2 $p |- ( R |` { A } ) = { <. a , u >. | ( a = A /\ A R u ) } $= + ( csn cres cv wcel wbr wa copab wceq dfres2 wb elsng anbi1i eqbrb + cvv elv bitri opabbii eqtri ) CBEZFDGZUCHZUDAGZCIZJZDAKUDBLZBUFCI + JZDAKDAUCCMUHUJDAUHUIUGJUJUEUIUGUEUINDUDBROSPUDBUFCQTUAUB $. + $} + ${ $d A x $. $d V x $. - $( (Contributed by Peter Mazsa, 12-Jun-2024.) $) + $( Any class ' R ' restricted to the singleton of the set ' A ' (see + ~ ressn2 ) is reflexive, see also ~ refrelressn . (Contributed by Peter + Mazsa, 12-Jun-2024.) $) refressn $p |- ( A e. V -> A. x e. ( dom ( R |` { A } ) i^i ran ( R |` { A } ) ) x ( R |` { A } ) x ) $= - ( wcel cv csn cres wbr cdm crn cin wceq wa wi wb cvv adantr sylbi - elin eldmressnALTV elv simplbi a1i elvd biimpd adantld syl5bi imp - elrnressn eqcomd breq1 syl adantl mpbid jcad brressn el2v syl6ibr - ex ralrimiv ) BDEZAFZVCCBGHZIZAVDJZVDKZLZVBVCVHEZVCBMZVCVCCIZNZVE - VBVIVJVKVIVJOVBVIVCVFEZVCVGEZNZVJVCVFVGTZVMVJVNVMVJVCCJEZVMVJVQNP - ABVCCQUAUBUCZRSUDVBVIVKVBVINBVCCIZVKVBVIVSVIVOVBVSVPVBVNVSVMVBVNV - SVBVNVSPABVCCDQUJUEUFUGUHUIVIVSVKPZVBVIVOVTVPVMVTVNVMBVCMVTVMVCBV - RUKBVCVCCULUMRSUNUOUTUPVEVLPAABVCVCCQQUQURUSVA $. - $} - - $( (Contributed by Peter Mazsa, 11-Jun-2024.) $) + ( wcel cv csn cres wbr cdm crn cin wceq wa wi elin wb cvv sylbi + adantr eldmressnALTV elv simplbi a1i elvd biimpd adantld syl5bi + elrnressn imp eqcomd breq1 adantl mpbid ex jcad brressn syl6ibr + syl el2v ralrimiv ) BDEZAFZVCCBGHZIZAVDJZVDKZLZVBVCVHEZVCBMZVCV + CCIZNZVEVBVIVJVKVIVJOVBVIVCVFEZVCVGEZNZVJVCVFVGPZVMVJVNVMVJBCJE + ZVMVJVQNQABVCCRUAUBUCZTSUDVBVIVKVBVINBVCCIZVKVBVIVSVIVOVBVSVPVB + VNVSVMVBVNVSVBVNVSQABVCCDRUIUEUFUGUHUJVIVSVKQZVBVIVOVTVPVMVTVNV + MBVCMVTVMVCBVRUKBVCVCCULUSTSUMUNUOUPVEVLQAABVCVCCRRUQUTURVA $. + $} + + $( Any class ' R ' restricted to the singleton of the class ' A ' (see + ~ ressn2 ) is antisymmetric. (Contributed by Peter Mazsa, + 11-Jun-2024.) $) antisymressn $p |- A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) $= ( cv csn cres wbr wa wceq wi wb cvv brressn simplbi anim12i eqtr3 @@ -554487,17 +554645,20 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these UHUEUIUDUHUAUBDHZUDUHUJILABCUAUBDMMNROUEUIUBUADHZUEUIUKILBACUBUAD MMNROPUAUBCQST $. - $( For ,~ ( R |` { A } ) , transitivity is implied by ~ eqvrel1cossressn . - (Contributed by Peter Mazsa, 12-Jun-2024.) $) - trimtrressn $p |- ( A. x A. y A. z ( ( x R y /\ y R z ) -> x R z ) -> + $( Any class ' R ' restricted to the singleton of the class ' A ' (see + ~ ressn2 ) is transitive, see also ~ trrelressn . (Contributed by + Peter Mazsa, 16-Jun-2024.) + [dferALTV2 on { A } + pet imply ( dom |` { A } ) /. |` { A } ) ) = { A } ] + $) + trressn $p |- A. x A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> - x ( R |` { A } ) z ) ) $= - ( cv wbr wa wi wal csn cres wceq simplr simprr jca wb cvv brressn - el2v imim2 mpi simpll jca2rTEMP anbi12i imbi12i sylibr 2alimi alimi ) - AFZBFZEGZUKCFZEGZHZUJUMEGZIZCJBJUJUKEDKLZGZUKUMURGZHZUJUMURGZIZCJ - BJAUQVCBCUQUJDMZULHZUKDMZUNHZHZVDUPHZIVCUQVHUPVDUQVHUOIVHUPIVHULU - NVDULVGNVEVFUNOPUOUPVHUAUBVDULVGUCUDVAVHVBVIUSVEUTVGUSVEQABDUJUKE - RRSTUTVGQBCDUKUMERRSTUEVBVIQACDUJUMERRSTUFUGUHUI $. + x ( R |` { A } ) z ) $= + ( cv csn cres wbr wa wi wal wceq an3 eqbrb anbi12i wb cvv brressn + el2v 3imtr4i imbi12i mpbir gen2 ax-gen ) AFZBFZEDGHZIZUGCFZUHIZJZ + UFUJUHIZKZCLBLAUNBCUNUFDMZUFUGEIJZUGDMZUGUJEIJZJZUOUFUJEIJZKUODUG + EIZJZUQDUJEIZJZJUOVCJUSUTUOVAUQVCNUPVBURVDUFDUGEOUGDUJEOPUFDUJEOU + AULUSUMUTUIUPUKURUIUPQABDUFUGERRSTUKURQBCDUGUJERRSTPUMUTQACDUFUJE + RRSTUBUCUDUE $. ${ $d a A u $. $d a A v $. $d a A w $. $d R a $. $d V u $. $d V v $. @@ -554523,10 +554684,25 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these FZSSFZDHSDZSASSIUBHUCSAJSKLSHDUDSSHMSNOPQR $. $( (Contributed by Peter Mazsa, 13-Jun-2024.) $) - 1cossressucressn2 $p |- + 1cossressucressn $p |- ,~ ( ( R |` ( A u. { A } ) ) |` { A } ) = ,~ ( R |` { A } ) $= ( csn cun cres ressucressn2 cosseqi ) BAACZDEHEBHEABFG $. + ${ + $d A u $. $d B u $. $d C u $. $d R u $. $d W u $. $d X u $. + $( (Contributed by Peter Mazsa, 14-Jun-2024.) $) + br1cossressucressn $p |- ( ( A e. V /\ B e. W /\ C e. X ) -> + ( B ( ,~ ( R |` ( A u. { A } ) ) |` { A } ) C <-> + ( B = A /\ + ( E. u e. A ( u R B /\ u R C ) \/ ( A R B /\ A R C ) ) ) ) ) $= + ( wcel w3a csn cres wbr wceq wa wrex wb 3adant1 anbi2d breq1 cun + ccoss cv wo brressn br1cossres anbi12d rexunsn 3ad2ant1 3bitrd ) + BFIZCGIZDHIZJCDEBBKZUAZLUBZUNLMZCBNZCDUPMZOZURAUCZCEMZVADEMZOZAUO + PZOZURVDABPBCEMZBDEMZOZUDZOZULUMUQUTQUKBCDUPGHUERULUMUTVFQUKULUMO + USVEURAUOCDEGHUFSRUKULVFVKQUMUKVEVJURVDVIABBFVABNVBVGVCVHVABCETVA + BDETUGUHSUIUJ $. + $} + ${ $d A x $. $d B x $. $d C x $. $d R x $. $d V x $. $d W x $. $( (Contributed by Peter Mazsa, 31-Dec-2018.) $) @@ -554546,24 +554722,39 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these wa wb ) DFGZAHZDEIUABHZEIRACJZBDECKLMZTUBUDGUCSBACDUBEFNOPQ $. $} + ${ + $d A y $. $d B y $. $d R y $. $d W y $. + $( (Contributed by Peter Mazsa, 14-Jun-2024.) $) + ecressn $p |- ( ( A e. V /\ B e. W ) -> + ( [ B ] ( R |` { A } ) = [ A ] R \/ + [ B ] ( R |` { A } ) = (/) ) ) $= + ( vy wcel wa wceq cv wbr csn cres cec nfvd cab wb cvv elecressn + elvd eqbrb syl6bb abbi2dv adantl dfec2 adantr a0orb ) ADGZBEGZH + ZBAIZAFJZCKZFBCALMNZACNZUJUKFOUIUNUKUMHZFPIUHUIUPFUNUIULUNGZUKB + ULCKHZUPUIUQURQFABULCERSTBAULCUAUBUCUDUHUOUMFPIUIFACDUEUFUG $. + $} + ${ $d A x y $. $d B x y $. $d R x y $. $d V y $. $d W x y $. $( (Contributed by Peter Mazsa, 1-Jun-2024.) $) ec1cossressn $p |- ( ( A e. V /\ B e. W ) -> ( [ B ] ,~ ( R |` { A } ) = [ A ] R \/ [ B ] ,~ ( R |` { A } ) = (/) ) ) $= - ( vy vx wcel wa cec wceq c0 wo wbr cab cv cin cvv ineq12 ancoms - csn ccoss dfec2 eqcomd adantr ab0orv orim12dan mpan2 syl ineqcomi - cres inv1 eqeq2i 0in orbi12i sylib wrex ec1cossres anbi12d rexsng - breq1 abbidv sylan9eqr inab syl6eqr eqeq1d orbi12d mpbird ) ADHZB - EHZIZBCAUAZUKUBJZACJZKZVMLKZMABCNZFOZAFPZCNZFOZQZVNKZWBLKZMZVKWBR - VNQZKZWBLVNQZKZMZWEVKWAVNKZWJVIWKVJVIVNWAFACDUCUDUEWKVRRKZVRLKZMW - JVQFUFWKWLWGWMWIWLWKWGVRRWAVNSTWMWKWIVRLWAVNSTUGUHUIWGWCWIWDWFVNW - BVNRVNVNULUJUMWHLWBVNUNUMUOUPVKVOWCVPWDVKVMWBVNVKVMVQVTIZFOZWBVJV - IVMGPZBCNZWPVSCNZIZGVLUQZFOWOGFVLBCEURVIWTWNFWSWNGADWPAKWQVQWRVTW - PABCVAWPAVSCVAUSUTVBVCVQVTFVDVEZVFVKVMWBLXAVFVGVH $. + ( vy vx wcel wa wbr csn cres ccoss cec nfvd wrex cab wceq breq1 + cv ec1cossres anbi12d rexsng abbidv sylan9eqr dfec2 adantr + a0orb ) ADHZBEHZIZABCJZAFTZCJZFBCAKZLMNZACNZUKULFOUJUIUPGTZBCJZ + URUMCJZIZGUOPZFQULUNIZFQGFUOBCEUAUIVBVCFVAVCGADURARUSULUTUNURAB + CSURAUMCSUBUCUDUEUIUQUNFQRUJFACDUFUGUH $. $} + $( (Contributed by Peter Mazsa, 14-Jun-2024.) $) + ecressn2 $p |- ( A e. V -> + ( B e. dom ( R |` { A } ) -> [ B ] ( R |` { A } ) = [ A ] R ) ) $= + ( wcel csn cres cdm cec wceq wa c0 wo ecressn wn wi ecdmn0 biimpi + wne adantl df-ne sylib orel2 syl mpd ex ) ADEZBCAFGZHZEZBUHIZACIJ + ZUGUJKZULUKLJZMZULABCDUINUMUNOZUOULPUMUKLSZUPUJUQUGUJUQBUHQRTUKLU + AUBUNULUCUDUEUF $. + $( (Contributed by Peter Mazsa, 9-Jun-2024.) $) ec1cossressn2 $p |- ( A e. V -> ( B e. dom ,~ ( R |` { A } ) -> [ B ] ,~ ( R |` { A } ) = [ A ] R ) ) $= @@ -554572,6 +554763,21 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these ZEZBUIRZACRJZUHUKKZUMULLJZMZUMABCDUJNUNUOOZUPUMPUNULLSZUQUKURUHUK URBUIQTUAULLUBUCUOUMUDUEUFUG $. + ${ + $d A u x $. + $( erimsn cf. ~ 0nep0 . (Contributed by Peter Mazsa, 15-Jun-2024.) $) + n0xpdmqs $p |- + ( ( A =/= (/) -> ( dom ( A X. A ) /. ( A X. A ) ) = { A } ) /\ + ( A = (/) -> ( dom ( A X. A ) /. ( A X. A ) ) = A ) ) $= + ( vu vx c0 wne cxp cdm cqs csn wceq wi cec wrex dmxp rexeqdv wcel + cv cab ecxpg syl6eq eqeq2d rexbiia syl6bb r19.9rzv bitr4d 3eqtr4g + abbidv df-qs df-sn 0xp2 dmeqd dm0 qseq1d 0qs eqeq2 mpbird pm3.2i + ) ADEZAAFZGZUSHZAIZJKADJZVAAJZKURBQZCQZUSLZJZCUTMZBRVEAJZBRVAVBUR + VIVJBURVIVJCAMZVJURVIVHCAMVKURVHCUTAAANOVHVJCAVFAPVGAVEAAVFSUAUBU + CVJCAUDUEUGCBUTUSUHBAUIUFVCVDVADJVCVADUSHDVCUTDUSVCUTDGDVCUSDAAUJ + UKULTUMUSUNTADVAUOUPUQ $. + $} + ${ $d A u y $. $d B u y $. $d V u y $. $( (Contributed by Peter Mazsa, 3-Jun-2024.) $) @@ -555097,6 +555303,32 @@ range of a range Cartesian product ( ~ dfcoss4 ), but neither of these HURVFVHUQVHUQRBCUMUNUPDSSUDTUEURVFRACUMUPDSSUFTUGQVDVJVFBVCULUHUIUJUK $. $} + ${ + brresiALT.1 $e |- C e. _V $. + $( TEMP (Contributed by Peter Mazsa, 27-Feb-2019.) $) + brresiALT $p |- ( B ( R |` A ) C <-> ( B e. A /\ B R C ) ) $= + ( cvv wcel cres wbr wa wb brres ax-mp ) CFGBCDAHI + BAGBCDIJKEABCDFLM $. + $} + + ${ + $d A y $. $d x y $. + alresanim.1 $e |- B e. _V $. + alresanim.2 $e |- C e. _V $. + alresanim.3 $e |- D e. _V $. + $( TEMP (Contributed by Peter Mazsa, 20-Feb-2019.) $) + alresanim $p |- + ( A. x A. y ( ( x ( R |` A ) B /\ y ( S |` A ) C ) -> + x ( T |` A ) D ) <-> + A. x e. A A. y e. A ( ( x R B /\ y S C ) -> x T D ) ) $= + ( cv cres wbr wa wi wal wcel brresiALT wral anbi12i an4 imbi12i + bitri anass anandi imbi2i imdistan pm5.3 3bitr4i bitr4i 2albii + r2al ) AMZDGCNOZBMZEHCNOZPZUOFICNOZQZBRARUOCSZUQCSZPZUODGOZUQEH + OZPZUOFIOZQZQZBRARVIBCUAACUAVAVJABVAVDVGPZVBVHPZQZVJUSVKUTVLUSV + BVEPZVCVFPZPVKUPVNURVOCUODGJTCUQEHKTUBVBVEVCVFUCUECUOFILTUDVKVD + VHPZQVKVDVLPZQVJVMVPVQVKVPVBVCVHPPVQVBVCVHUFVBVCVHUGUEUHVDVGVHU + IVDVGVLUJUKULUMVIABCCUNUL $. + $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= @@ -555607,6 +555839,15 @@ when we switch from (general) sets to relations in ~ dfrefrels2 , ( ccoss wrefrel cid cdm crn cxp cin wss wrel wa refrelcoss2 dfrefrel2 mpbir ) ABZCDOEOFGHOIOJKALOMN $. + ${ + $d A x $. $d R x $. $d V x $. + $( Any class ' R ' restricted to the singleton of the set ' A ' (see + ~ ressn2 ) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024.) $) + refrelressn $p |- ( A e. V -> RefRel ( R |` { A } ) ) $= + ( vx wcel cv csn cres wbr cdm crn cin wral wrefrel refressn wrel + relres dfrefrel5 mpbiran2 sylibr ) ACEDFZUABAGZHZIDUCJUCKLMZUCNZD + ABCOUEUDUCPBUBQDUCRST $. + $} $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= @@ -555948,6 +556189,41 @@ element of the class of irreflexive relations ( ~ df-irrefrels ) is syl6bbr ) ABZACZDAEZAFZGZHAIZUGAJZKZUDUHUCALNDUIHMOUIDHMOZUHUJDUI MPDUGAQUJUKUIBUEUFARUISTUAUB $. + ${ + $d R x $. + $( Alternate definition of the irreflexive relation predicate. (Contributed + by Peter Mazsa, 21-Jun-2024.) $) + dfirrefrel12 $p |- ( IrRefRel R <-> + ( A. x e. U. U. R -. x R x /\ Rel R ) ) $= + ( wirrefrel cv wbr wn cdm crn cun wral wrel wa dfirrefrel9 relfld + cuni raleqdv pm5.32ri bitr4i ) BCADZSBEFZABGBHIZJZBKZLTABOOZJZUCL + ABMUCUEUBUCTAUDUABNPQR $. + $} + + ${ + $d R x $. + $( Alternate definition of the irreflexive relation predicate. (Contributed + by Peter Mazsa, 21-Jun-2024.) $) + dfirrefrel14 $p |- ( IrRefRel R <-> ( { x | x R x } = (/) /\ Rel R ) ) $= + ( wirrefrel cv wbr wn wal wrel wa cab wceq dfirrefrel5 ab0 anbi1i + c0 bitr4i ) BCADZQBEZFAGZBHZIRAJOKZTIABLUASTRAMNP $. + $} + + ${ + $d R x $. + $( (Contributed by Peter Mazsa, 24-Jan-2019.) $) + dffix4 $p |- Fix R = { x | x R x } $= + ( cv cfix wcel cab wbr abid2 vex elfix abbii eqtr3i ) ACZBDZEZAFN + MMBGZAFANHOPAMBAIJKL $. + $} + + $( Alternate definition of the reflexive relation predicate. (Contributed + by Peter Mazsa, 21-Jun-2024.) $) + dfirrefrel13 $p |- ( IrRefRel R <-> ( Fix R = (/) /\ Rel R ) ) $= + ( wirrefrel cid cin c0 wceq wrel wa dfirrefrel4 cdm relin1 reldm0 + cfix wb syl df-fix eqeq1i syl6bbr pm5.32ri bitri ) ABACDZEFZAGZHA + MZEFZUCHAIUCUBUEUCUBUAJZEFZUEUCUAGUBUGNACKUALOUDUFEAPQRST $. + $( Implication of irreflexive, or irreflexive, relation. (Contributed by Peter Mazsa, 29-Mar-2024.) $) irrefimrefrel2 $p |- ( IrRefRel R -> RefRel ( ( dom R X. ran R ) \ R ) ) $= @@ -556105,7 +556381,7 @@ element of the class of irreflexive relations ( ~ df-irrefrels ) is $( Irreflexive relation implies reflexive incomparability relation. (Contributed by Peter Mazsa, 10-May-2024.) $) irrefimrefincomparel2 $p |- ( R e. V -> - ( IrRefRel R -> RefRel InCompaRelTo R ) ) $= + ( IrRefRel R -> RefRel InCompaRelTo R ) ) $= ( wcel cid cdm crn cxp cin cvv cdif wss wrel wa ccnv cun wirrefrel cincomparelto wrefrel irrefimrefincomparel dfirrefrel2 dfincomparelto2 wceq wb refreleq ax-mp dfrefrel2 bitri 3imtr4g ) ABCDAEAFGHIIGZAJ @@ -556740,6 +557016,17 @@ class of symmetric relations as well (like the elements of the class of trreleq $p |- ( R = S -> ( TrRel R <-> TrRel S ) ) $= ( wceq ccom wrel wa wtrrel coideq id sseq12d releq anbi12d dftrrel2 3bitr4g wss ) ABCZAADZAOZAEZFBBDZBOZBEZFAGBGPRUASUBPQTABABHPIJABKLAMBMN $. + + ${ + $d A x y z $. $d R x y z $. + $( Any class ' R ' restricted to the singleton of the class ' A ' (see + ~ ressn2 ) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024.) $) + trrelressn $p |- TrRel ( R |` { A } ) $= + ( vx vy vz csn cres wtrrel cv wbr wal wrel trressn relres pm3.2i + wa wi dftrrel3 mpbir ) BAFZGZHCIZDIZUAJUCEIZUAJPUBUDUAJQEKDKCKZUA + LZPUEUFCDEABMBTNOCDEUARS $. + $} + $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= @@ -557902,7 +558189,7 @@ complement class of the coelements on the domain is equal to the (relative) IBCJZOKPDKIADELODPMN $. $( Equivalence relation on a singleton implies that the Cartesian square of - the element of the singleton is equal to the relation. (Contributed by + the element of the singleton is equal to the relation. (Contributed by Peter Mazsa, 13-Jun-2024.) $) erimsn $p |- ( ( A e. V /\ R e. W ) -> ( R ErALTV { A } -> ( A X. A ) = R ) ) $= @@ -558605,6 +558892,22 @@ instead of simply using converse functions (cf. ~ dfdisjALTV ). disjALTVxrnidres $p |- Disj ( R |X. ( _I |` A ) ) $= ( cid wdisjALTV cres cxrn disjALTVid disjimxrnres ax-mp ) CDBCAEFDGABCHI $. + ${ + $d A a u $. $d R a u $. + $( Restriction to singleton is disjoint, cf. ~ ressn2 . (Contributed by + Peter Mazsa, 17-Jun-2024.) $) + disjressn $p |- Disj ( R |` { A } ) $= + ( va vu csn cres wdisjALTV cv wbr wmo disjressn2 wrel dfdisjALTV4 + wal relres mpbiran2 mpbir ) BAEZFZGZCHDHSICJDNZDABCKTUASLBRODCSMP + Q $. + $} + +$( +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= + Antisymmetry +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= +$) + $( (End of Peter Mazsa's mathbox.) $)