NGSphy documentation

v. 20170901
http://github.com/merlyescalona/ngsphy

© 2017 Merly Escalona, Sara Rocha, David Posada

University of Vigo, Spain, http://darwin.uvigo.es

merlyescalona@uvigo.es

1. About NGSphy

NGSphy is a Python open-source tool for the genome-wide simulation of NGS data (read counts
or lllumina reads) obtained from thousands of gene families evolving under a common species
tree, with multiple haploid and/or diploid individuals per species, where sequencing coverage
(depth) heterogeneity can vary among species, individuals and loci, including off-target or
uncaptured loci.

2. Citation

If you use NGSphy, please cite:

e FEscalona, M, Rocha S and Posada D. NGSphy: phylogenomic simulation of
next-generation sequencing data . Submitted.

if running ART cite also:

e Huang W, Li L, Myers JR and Marth, GT. (2012) ART: a next-generation sequencing read
simulator. Bioinformatics 28 (4). 593-594

if using SimPhy cite also:

e Mallo D, De Oliveira Martins L and Posada D. (2016). SimPhy : Phylogenomic Simulation of
Gene, Locus, and Species Trees. Systematic Biology 65(2): 334-344.

If using single gene tree inputs, cite also:

e Fletcher, W and Yang Z. (2009) INDELible: A flexible simulator of biological sequence
evolution. Molecular Biology and Evolution. 26 (8): 1879-88.

e Sukumaran, J and Holder MT. (2010). DendroPy: A Python library for phylogenetic
computing. Bioinformatics 26: 1569-1571.

mailto:merlyescalona@uvigo.es
http://github.com/merlyescalona/ngsphy
http://darwin.uvigo.es/

3. Input/output files

3.1. Input

[Single gene-tree scenario]

e NGSPhy settings file
INDELible control file
Newick file with single gene tree
ancestral sequence file (optional)
reference allele file (optional)

[Species-tree scenario]
e NGSPhy settings file
e SimPhy output
e reference allele file (optional)

3.2. Output files

e NGS reads:
o FASTQ
o ALN
o BAM

e read counts:
o VCF

® sequence alignments:
o FASTA

® coverage variation
o CSV

o |ogfiles

e bash scripts

4. Installation

4.1 Computer requirements

NGSphy has been developed for Linux/MAC environments with Python 2.7.

4.2 NGSphy

To install NGSphy you need to clone its git repository and download the required third-party
software (Section 4.3):

1. Clone NGSphy repository
git clone https://github.com/merlyescalona/ngsphy.git

https://github.com/merlyescalona/ngsphy.git

2. Move to ngsphy/dist folder

cd ngsphy/dist

3. Extract files and install version XXX:
tar -xzvf dist/ngsphy-XxXX.gz

cd ngsphy-XXX

sudo python setup.py install

4.3 Third-party software

4.3.1 ART (for Illumina reads generation)

ART is a set of simulation tools to generate synthetic next-generation sequencing reads. You can
download it from:

http://www.niehs.nih.gov/research/resources/software/biostatistics/art/

Version ChocolateCherryCake or later.

Following installation instructions from ART, you can download the binaries or compile the source
code. If you decide to compile the source code:

1. Extract files from the compressed tgz

cd /path/to/art-download

tar -xvf artsrcmountrainier20160605linuxtgz.tgz

2. Change current directory to the extracted one

cd art_src_MountRainier_Linux/

3. Make sure you have all the dependencies installed and generate the
Makefile

./configure

4. Run the Makefile

make

4.3.2 INDELible (for sequence generation)

INDELIible is an application for sequence simulation. You can download it from:
http://abacus.gene.ucl.ac.uk/software/indelible/
Version 1.03.

In order to get INDELible, you will need to register. It is free software, and is distributed under:
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or any later version. For more information go to http://www.gnu.org/licenses/.

http://www.niehs.nih.gov/research/resources/software/biostatistics/art/
http://www.gnu.org/licenses/
http://abacus.gene.ucl.ac.uk/software/indelible/

Once the software is downloaded:

1. Unpack the archive on Unix-like systems using:

1. Change directory to the download folder.

cd /path/to/indelible-download

2. Extract file from the compressed file.

tar -xvzf INDELibleV1.03.tar.gz

3. Change current directory to INDELible's source code folder
cd /path/to/indelible-download/indelible/src/

2. Include the following line at to the top of MersenneTwister.h file.

#tinclude <unistd.h>

3. Compile INDELible using:

4. Compile the program.
g++ -0 indelible indelible.cpp -1m

4.3.3. Modified INDELible (NGSphy version)

This is version of INDELible we have modified to allow the use a given ancestral sequence at the
root. It can be obtained from cloning its repository:

1. Clone the repository

git clone https://github.com/merlyescalona/indelible.git

2. Change directory to indelible-ngsphy source code folder.
cd indelible-ngsphy/

3. Compile

make

4.3.4. SimPhy (multiple gene trees evolved under a species tree)

SimPhy can be obtained from cloning its repository and installing its dependencies. Detailed,
information on how to install SimPhy here.

1. Clone the repository
git clone https://github.com/adamallo/SimPhy.git

https://github.com/merlyescalona/indelible.git
https://github.com/adamallo/SimPhy/wiki/Manual#4-obtaining-simphy

4.4. Adding NGSphy and third-party software to the path

Once all software has been installed, it must be added to the path.

e First you have to add the lines below to the ~/.bashrc file to keep the changes
permanently.

ARTpath="/path/to/art/executable”
INDELIBLEpath="/path/to/indelible/executable”
INDELIBLENPpath="/path/to/indelible-ngsphy/executable"
NGSPHYpath="/path/to/ngsphy/executable”

export PATH="$ARTpath:$INDELIBLEpath:$INDELIBLENPpath:$NGSPHYpath:$PATH"

e Apply changes

source ~/.bashrc

5. Usage

NGSphy does not have a Graphical User Interface (GUI) and works on the Linux/Mac command
line in a non-interactive fashion.

usage: ngsphy [-s <settings_file_path>]
[-1 <log level>] [-v] [-h]

e Optional arguments:
o -s<settings_file_path>, --settings <settings_file_path>
Path to the settings file
o -lI<log_level>, --log <log_level>
Specified hierarchical log levels that will be shown through the standard output. A
detailed log will be stored in a separate file. Possible values:
DEBUG: shows very detailed information of the program's process.
INFO (default): shows only information about the state of the program.
WARNING: shows only system warnings.
ERROR: shows only execution errors.

e Information arguments:
o -v,--version
Show program's version number and exit.
o -h,--help
Show help message and exit.

Some simple examples:

1. When there is “settings.txt file in the current working directory.

ngsphy

2. Run with an specific settings file ‘my_settings.txt’

ngsphy -s my_settings.txt

6. The settings file

NGSphy requires a settings file “settings.txt” that specifies the different options and parameter
values for the simulations. A settings file with a different name can be specified with the
-s/--settings option. The information in the settings file is organized in 6 optional/required blocks
(default values are underlined):

1.

o ok

[general]: general parameters.

[data]: specifies the type of input data as well as input parameters and files.
[coverage]: parameters that describe the variation of coverage in the dataset
(optional).

[ngs-reads-art]: specifies ART execution parameters (optional)
[ngs-read-counts]: specifies parameters for read counts (optional).
[execution]: describes how the execution of the whole process will be made
(optional).

6.1. [general] block

Stores general parameters for each NGSphy run.

[general]

path=/home/user/
output_folder_name=NGSphy output

ploidy=1
e path
O purpose: path where output folder will be created.
o type: string (path).

e output_folder_name

O

purpose: name of the output folder where NGSphy results will be stored. If the
output folder already exists, the new output folder will get the same base name
with a numerical suffix (outputFolder_n), representing the nth time the program
with that output folder name was ran.

type: string.

value: NGSphy_output

e ploidy

purpose: refers to the ploidy that the resulting individuals will have. So far it is only

possible to generate haploid and diploid individuals.

o type: number (integer).

o values:], 2 (in the closed-interval [1,2]).

6.2. [data] block

Defines the input data for NGSphy, which consists of different modes:

A

Single gene tree

A S
B
C
D
Newick file Control file
(Gene tree) (INDELible)

C

Single gene tree
with anchor sequence

Ancestral sequence

(A AR ARA AR AEA AAAAA] AAR B AR
A S
B
C
Newick file Control file
(Gene tree) (INDELible)

B

Single gene tree
with ancestral sequence

Ancestral sequence
AANAARAARRAAREA A AAAA AR B AR
A I

B

C

D
Newick file Control file

(Gene tree) (INDELible)

D

Gene-tree distribution
(SimPhy’s output)

=

Gene trees inside

. Sequences
species trees

FIGURE 1: Input modes: a) a single gene tree; b) single gene tree with a user-defined ancestral
sequence; ¢) a single gene tree with an anchor sequence and d) gene-tree distributions (SimPhy

output [species-tree simulations))

6.2.1. Input data options

Single gene tree

inputmode=1
gene_tree_file=/home/myuser/my_gene_tree.tree
indelible_control_file='home/myuser/my_control_indelible.txt

sequence

Single gene tree with
user-defined ancestral

inputmode=2
gene_tree_file=/lhome/myuser/my_gene_tree.tree
ancestral_sequence_file=’/home/myuser/my_ancestral.fasta
indelible_control_file='home/myuser/my_control_indelible.txt

sequence

Single gene tree with
user-defined anchor

inputmode=3
gene_tree_file=’/home/myuser/my_gene_tree.tree
anchor_sequence_file=/home/myuser/my_anchor.fasta
anchor_tip_label=1_0_0
indelible_control_file='lhome/myuser/my_control_indelible.txt

SimPhy output

Gene-tree distribution

(species-tree simulations)

inputmode=4
simphy_folder_path=testSimphy
simphy_data_prefix=data
simphy_filter=true

e inputmode

o purpose: identifies the type of input.
o type: number (integer)
o value: values within the closed interval [1,4]

1

2.
3.
4

single gene tree

single gene tree with an ancestral sequence

single gene tree with an anchor sequence

gene-tree distribution (SimPhy output [species-tree simulations))

6.2.1. Single gene tree

e gene_tree_file
o purpose: path of the gene tree in Newick format . There must be a single path and
a single tree in the file. The name of the file, without extension, must be the same

as the name of the tree within the INDELible control file, in the
[NGSPHYPARTITION] option.

o type: string (path)

o format: see specification in Section 6.2.5. (INDELible control file).

e indelible_control_file

o purpose: path for the INDELible control file.

o type: string (path)

o format: see specification in Section 6.2.5. (INDELible control file).

http://evolution.genetics.washington.edu/phylip/newicktree.html

6.2.2. Single gene tree with an user-defined ancestral sequence

These options are related to the INDELible run with a user-defined ancestral sequence:
e gene_tree_file
O purpose: same as in Section 6.2.1. (Single gene tree)
o type: string (path)
e ancestral_sequence_file
o purpose: path to the FASTA file that contains the ancestral sequence.
o type: string (path)
e indelible_control_file
O purpose: Same as Section 6.2.1. (Single gene tree)
o type: string (path)

6.2.3. Single gene tree with an user-defined anchor sequence

These options are related to the INDELible run with a user-defined ancestral sequence:
e gene_tree_file
O purpose: same as in Section 6.2.1. (Single gene tree)
o type: string (path)
e anchor_sequence_file
o purpose: path to the FASTA file that contains the anchor sequence.
o type: string (path)
e anchor_tip_label
o purpose: tip label of the gene tree that corresponds to the tip that will be used as
root.
o type: string
o format: see specification in the Section 6.2.6. (Single gene-tree file labeling)
e indelible_control_file
O purpose: Same as Section 6.2.1. (Single gene tree)
o type: string (path)

6.2.4. Gene-tree distribution (SimPhy output [species-tree simulations])

e simphy_folder_path
o purpose: path to the folder with SimPhy’s output
o type: string (path)
e simphy_data_prefix
o purpose: prefix used in SimPhy's run.
o type: string
e simphy_filter [optional]
o purpose: filter out the replicates that do not satisfy the required ploidy. For the
diploid case the number of gene tree tips per species has to be an even number.
See more in Section 6.2.7. (Individual assignment).
o type: boolean
o value:
m O, false, off: don't filter
m 1, true, on: filter

6.2.4.1. A valid SimPhy ouput

A detailed description of SimPhy's output can be found in https://github.com/adamallo/simphy.
The SimPhy output required by NGSphy has to include:

e <simphy_project_name>.command: a plain text file with the original command line
arguments.

e <simphy_project_name>.db: a SQLite database composed by three (3) linked tables with
different information about species, locus and gene trees.

e <simphy_project_name>.params: a plain text file summarizing the sampled options.

e a set of folders with the multiple sequence alignments and the corresponding trees.

6.2.5. INDELible Control file - NGSphy version

When the input mode is a single gene tree, it is necessary to have a control file to call INDELible.
Here, we use a slightly modified version of the INDELible's control file. To properly set up the
configuration file for INDELible, wusers should refer first to |INDELible’s manual
(http://abacus.gene.ucl.ac.uk/software/indelible/manual/)l. In our version, the file must include the
following blocks:

[TYPE]: 1 block

[SETTINGS]: 1 block (optional)

[MODEL]: 1 block

[NGSPHYPARTITION]: 1 block

[NGSPHYEVOLVE]: 1 block

Including a wrong number of blocks or other type of blocks will result in an error message and
will terminate NGSPhy execution.

6.2.5.1. Block definitions

e [TYPE] standard INDELible specification.
e [SETTINGS] standard INDELible specification.
e [MODEL] standard INDELible specification.
e [NGSPHYPARTITION] this block defines:
o the gene tree for INDELible (this name has to be the same as the Newick file used
as input (see Section 6.2)
o the substitution model for INDELible. This name must match the name of the
model used in the previous [MODEL] block.
o the sequence length.

For example, we have a gene tree in the Newick file: treel.tree, where sequences will
evolve under model m1, with a length of 500bp.

[NGSPHYPARTITION] treel ml 500

e [NGSPHYEVOLVE] block:
o the prefix for the output flenames

https://github.com/adamallo/simphy
http://abacus.gene.ucl.ac.uk/software/indelible/manual/
http://abacus.gene.ucl.ac.uk/software/indelible/manual/

For example, one sequence alignment for each gene tree, saved in files with 'dataset' as
common prefix. This will generate the following filenames: dataset_1, dataset_2...

[NGSPHYEVOLVE] dataset

6.2.6. Single gene-tree file format and labeling

Single gene trees in Newick format should have specific tip labels. Tips must follow a specific
format in order to be managed by NGSphy. This format indicates species, locus and individual
with the scheme (X_Y_2Z) where:

e X stands for the the species identifier, where X >1
e Y for the locus identifier, where Y >0
e Z for the individual identifier, where Z> 0

The gene tree file must be in Newick format, rooted and with branch lengths. If the gene tree is
not rooted, it will be forced following Dendropy specifications.

For example, if we have 3 species and 2 gene copies per species the labels would be:

((1_0_1:1.0,1.0_0:2.0):1.0, (2_0_1:1.0,2_0_0:1.0)),((3_0_1:2.0,3_0_0:3.0)));

6.2.7. Individual assignment

For haploid individuals, each tip in the gene tree provided will correspond to a single individual.
For diploid individuals the number of gene-tree tips per species must be even. In this case, the
individuals are generated by randomly sampling without replacement two gene copies from a
specific gene-family until all gene tree tips have been assigned to an individual.

For the gene-tree distribution input mode only, the outgroup in the gene trees is called “0_0_0"

and has one gene copy. Therefore, for the generation of diploid individuals, the outgroup will be
homozygous, obtained by the duplication of the sequence of its gene copy.

1

http://evolution.genetics.washington.edu/phylip/newicktree.html
https://pythonhosted.org/DendroPy/primer/treemanips.html#rooting-derooting-and-rerooting

6.3. [coverage] block

Sequencing coverage can be specified at three different levels: experiment, individual and
locus-wide. It is also possible to mimic the variation in coverage expected for targeted
sequencing, including off-target loci and taxon-specific effects.

[coverage]

experiment=F:100

individual=LN:1.2,1

locus=LN:1.3,1

offtarget=0.4, 0.01 # 40% loci are off-target, will have 1% of the coverage
notcaptured=0.5

taxon= 1,0.5;2:0.25

6.3.1. Sampling notation

The parameters that will define the coverage in NGSphy have to be provided using a specific
notation in order to define statistical distributions and dependency between arguments. The
sampling notation is structured as a particular statistical distribution (see code for the statistical
distribution), followed by a colon and a list of comma-separated parameter values:

distribution_code:paraml,param2,

For example:

a) Fixed value=100.

F:100

b) Poisson distribution with mean=100.

P:100

Poisson(lambda=100)

=T
D_ —
[=1
o
E_DI -
(=]
=
8 34
g2 =]
el
=1
S |
= I T T] 1
0 50 100 150 200
Index
c) Negative Binomial, mean=100 and overdispersion=10.
NB:100,10
Negative Binomial (mean=100, overdispersion=10)
o
5 -
=]
3 |
£ S
= =1
@
] =+
3
(=]
[=]
g J
= I T T T T |
0 50 100 150 200 250
Values

13

6.3.2. Statistical distributions

Distribution | Code | Num. parameters | Parameters | Description

Binomial b/B 2 rp trials, probabilities
Exponential e/E 1 S scale

Fixed point f/F 1 \% value

Gamma g/G 2 sh,sc shape,scale

Log. Normal | In/LN 2 mu, sd mean, standard deviation
Negative nb/NB 2 mu, r mean of the underlying Poisson
Binomial distribution, overdispersion
Normal n/N 2 mu, var mean, variance

Poisson p/P 1 I mean

Uniform u/U 1 mu mean

6.3.3. Coverage options

e experiment

O
O

purpose: expected depth of coverage for a specific replicate.
type: fixed value or statistical distribution.

e |ocus [optional]

©)
O

purpose: variation of expected coverage between loci.
type: fixed value or statistical distribution.

e individual [optional]

O
©)

purpose: variation of expected coverage between individuals.
type: fixed value or statistical distribution.

e offtarget [optional]

o purpose: related to targeted-sequencing experiments; percentage of loci that will
be considered off-target (captured and sequenced but not originally targeted);
expected coverage will be 1% of the experiment-wide.

o type: 1 pair (proportionLoci, proportionCoverage)

o value:

m proportionLoci: number (float) in the closed interval [0,1].
m proportionCoverage: number (float) in the closed interval [0,1].

e notcaptured [optional]

o purpose: related to targeted-sequencing experiments; fraction of originally
targeted loci that will not be captured/sequenced.

o type: number (float).

o value: number in the closed interval [0,1].

e taxon [optional]

o purpose: related to targeted-sequencing experiments; decrease in coverage for
particular species. It can be due to the phylogenetic distance between a
reference species (used to design the probes for the targeted loci) and the
individuals from the target-sequencing experiment or to species-specific sample

conditions.
o type: pairs (speciesID,coverageProportion)
o values:

m speciesID: one or more of the existent species in the tree.
m coverageProportion: value in the closed interval [0,1].
o format:

taxon=speciesID1,coverageProportionl; speciesID2,coverageProportion2 ...

6.3.4. Coverage sampling strategy

The experiment-wide coverage is sampled for each replicate from the specified statistical
distribution, and this value becomes the expected coverage for every loci and individual in that
replicate. For example, if experiment=P:100, we might sample a value of 104 for replicate 1, so the
expected coverage would be 104x for that particular experiment.

experiment-wide=P:100

= Expected coverage = 104x

0.03 004

Density
0.02
|

0.00 001

] 50 100 150 200

Index

An individual-wide coverage multiplier is sampled for each individual within a given replicate.
The value indicated in the settings file is in fact a hyper-parameter that controls a specific
hyper-distribution from which a single value is sampled per replicate. For that replicate, this value
will become the shape of a Gamma distribution with mean =1, from which a multiplier is sampled
for each individual.

In exactly the same manner, a locus-wide coverage multiplier is sampled for each locus within a
given replicate. The value indicated in the settings file is again a hyper-parameter that controls a
specific hyper-distribution from which a single value is sampled per replicate. For that replicate,
this value will become the shape of a Gamma distribution with mean =1, from which a multiplier is
sampled for each loci.

For example, imagine we have 2 replicates, 2 loci, 2 individuals and input the following coverage
settings:

[coverage]
experiment-wide: P:100
locus-wide: LN:1.2,1
individual-wide: E:1

First, we sample from a Poisson, with mean=100, to obtain the expected coverage per experiment
(repic, rep2c).

experiment-wide=P:100

-+
e repl c = 102x
(52
o
=]
=
z 3 |
g = rep2 ¢ = 112x
]
5
(=]
(=)
[=T.|
< I I I | 1
0 50 100 150 200

e Coverage variation before locus/individual multipliers:

Index

Replicate Locus Expected coverage
Individual I | Individual Il
1 A 102 102
B 102 102
2 A 12 12
B 12 12

e Afterwards, we sample the locus-wide rate multipliers from the hyper-distribution, in this
case a Log Normal with mean=1.2 and standard deviation =1 (locrepla,locrep2a). This,
give us the shape of the Gamma distribution with mean 1 from which we sample the rate
multipliers, as many as loci (locAm, locBm).

Probabilities

1.0

(Hyper parameter) locus-wide: LN:1.2,1

repl o =7. 164

. 935

i0 15

Values

Density
L

L

00 05 10 15

Density
00 05 10 15
L

0

=]

Replicate 1 - shape: 7.164

locBm = 0.8231

locAm = 1.671

T T
o ~t w

Values

Replicate 2 - shape: 1.935

4 [\Rfm =0.7682
| locAm = 2.126
r T T T

o =t w

Values

e Coverage variation after locus-wide multipliers:
Replicate Locus Rate multiplier Resulting coverage
(per loci)
Individual | Individual Il
1 A 1.671 170.4420 170.4420
B 0.8231 83.9562 83.9562
2 A 2.1260 238.1120 238.1120
B 0.7682 86.0384 86.0384
e Next, we get the individual-wide rate multipliers, sampling from the hyper-distribution, an

Exponential with rate 1 (indwrepla, indwrep2 o). This, give us the shape of the Gamma
distribution with mean 1 from which we sample the rate multipliers, as many as individuals

(indAm, indBm).

(Hyper parameter) individual-wide - E:1 Replicate 1 - shape: 0.7571

o _
2 5 2
T |
g -
A g 24 thd2m = 0.4849
= .
| =1.679
o= r T T 7] :
e @4 indwrep2 o = 0. 9795 = B * @ @ o
a =
% indwrem a=0.7571 Values
o =
=1 Replicate 2 - shape: 0.9795
.
G
=1 2 24
2
g 2 ind1m = 0.7437
ik ind2m = 1.325
= a |
f T T T T 1 =S ' - - | |
0.0 05 1.0 15 20 25 30 = ™ = o = 2
Values Values

Finally, we apply all the multipliers. Coverage variation after locus-wide and individual-wide
multipliers:

Replicate Individuals Rate multiplier Resulting coverage
(per individual)
locus A locus B
1 I 0.4849 82.64733 40.71036
Il 1.679 286.1721 140.9625
2 I 0.7437 177.08389 63.98676
Il 1.325 315.4984 114.0009

Targeted sequencing parameters allow the user to emulate the variation in depth of coverage
that can occur in a targeted-sequencing experiment. This is possible when using gene tree
distributions (SimPhy project) as input data. These parameters identify the on-target/off-target loci
as well as the number of loci that may not be captured. While on-target loci will keep their
expected coverage, the off-target fraction will have a (user-defined) fraction of this. The
not-captured indicates the fraction of targeted loci that will not be captured, and its expected
coverage will be Ox. For example, if we have 2 replicates, 3 loci, and input the following
coverage:

[coverage]
experiment-wide: P:100

off-target=0.33 0.1
notcaptured=0.5 # half of the on-target

If we consider the same coverage sampling as before, P:100:

Replicate | Locus Category Expected Rate Sampled
coverage multiplier coverage

1 A on-target 105 1 105

B on-target, not captured 105 0 0

C off-target 105 0.1 10.5
2 A on-target 92 1 92

B on-target, not captured 92 0 0

C off-target 92 0.1 9.2

Taxon-specific effects allows the user to define of coverage variation for specific taxa. It can be
used for example to emulate a decay in coverage, related to the phylogenetic distance of the a
species to the reference species used to build the target-loci probes (Bragg et al, 2016) (this is

sometimes called phylogenetic decay)

conditions (low amount of DNA, museum specimens, etc.).

For example:

—

| —

\ Reference

or in a more general context for particular sample

[coverage]
experiment: F:60
taxon=1,0.5;

2,0.25

Meaning that, if the expected coverage for the experiment is 60x, individuals from the species
speciesID=1, will have a coverage of 30x (50% of the expected coverage) and the individuals from
the species speciesID=2, will have coverage of 15x (25% of the expected coverage).

6.4. [ngs-reads-art] block

Defines the options for ART. If the user specifies here any input (in,i), output (out,0) or coverage
related options (fcov, f, rcount, ¢), these will be ignored.

6.5. [ngs-read-counts] block

Generates a VCF file per locus per replicate, that contains the variable positions,
haplotype/genotype and likelihoods.

[ngs-read-counts]
read_counts_error
reference_sequences_file

e read_counts_error
O purpose: to emulate sequencing error.
o type: number (float)
o value: value in the left-closed interval [0,1).
e reference_alleles_file
o purpose: identifiers of the sequences used as reference for the variable sites.
o type: string (path)

6.5.1. Reference allele file [optional]

Defines which alleles will be used as references to generate the VCF files. The description of the
allele sequences follow the labeling explained above in Section 6.2.5 (Single gene-tree file
labeling). The content of the file should be formatted as:

REPID, SPID,LOCID, INDID

Where:
e REPID, replicate ID.
SPID, species ID (X value of the sequence description)
LOCID, locus ID (Y value of the sequence description)
INDID, gene tree tip ID (Z value of the sequence description).

IMPORTANT: By default, if the reference allele file is not specified (or badly formatted), the
reference allele will correspond to the sequence named 1_0_0.

20

https://www.niehs.nih.gov/research/resources/software/biostatistics/art/

6.5.1.1. Example

The simplest case will be when the input is a single tree and all individuals have the same
number of loci. So, let’'s suppose we want to run NGSphy, with single gene tree inputmode
(inputmode=1). The gene tree is the following (as in Section 6.2.6.) :

Also, we want to generate read counts, with no errors, and we want to use the gene-tree tip with
label “2_0_1" as the reference allele. And so, the reference allele file should contain:

1,2,0,1

6.6. [execution] block

This section define how NGSphy is executed. If the user has access to a computational cluster,
the ART commands can be converted into jobs for SGE or SLURM schedulers (see Section 6.6.2).
If desired, ART calls can be made by NGSphy transparently to the user (sequentially or in parallel
- multi-threading).

[execution]
environment=bash
runART=0n
running_times=off
threads=4

6.6.1. Options

e environment
o purpose: specify in which environment the ART runs are going to be executed

(more details below)
o type: enumerate (possible environments)

o values:
m bash: generates a bash file with all the commands used to call ART.

m sge: generates the necessary files to run a job array in a cluster
environment running Sun Grid Engine. Includes: seed file, job script and a
possible script to launch ART jobs.

21

m slurm: generates the necessary files to run a job array in a cluster
environment running Simple Linux Utility for Resource Management.
Includes: seed file, job script and a possible script to launch ART jobs.

e threads
o purpose: number of threads to execute NGSphy.
o type: number (integer)
o value:1
e runART
o purpose: indicate whether the user actually wants to generate NGS reads This will
only run on local, under bash environment
o type: boolean
o values:
m 1, true, on: run ART.
m O, false, off: don't run ART, bash scripts will be generated.
e runnintg_times:
O purpose: obtain the running times file for the NGS mode processes (read counts
or ART).
o type: boolean
m values:
e 0, false, off: don’t generate file
e 1, true, on: generate file

IMPORTANT: the generation of this file increases the execution time of the program.

NOTES

e |f the execution block is missing, a bash script will be generated and ART instances will
not be run.

e |[f the option environment is missing, a bash script will be generated (default behavior) and
ART instances will not be run, unless runART option is set.

e If the option runART is missing, ART instances will not be run.

e If the value chosen for the option run is wrong and bash is the value of environment, then
ART instances will not be run.

e |[f the value chosen for the option environment is wrong, behavior will be as if there was
no execution section, bash script will be generated and ART instances will not be run.

6.6.2. Cluster execution options (SGE,SLURM)

NGSphy can generate job templates for execution in computational clusters running Sun Grid
Engine (Gentzsch 2001, Oracle Corp.) or Simple Linux Utility for Resource Management (Yoo et al.
2003, https://slurm.schedmd.com/).

In this case, NGSphy generates two files, project. XXX.sh (job script) and project.seedfile.txt (the
seed-file for job arrays)

22

https://slurm.schedmd.com/

Where:

o XXX will be ‘'sge’ or 'slurm” according to the selected execution environment.
e project: if using any of the single gene tree input modes, will be NGSphy. For the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.

To execute this one would type a different command depending on job scheduler (SGE or
SLURM)

e SGE:

gsub -t 1-100 project.sge.sh

e SLURM:

sbatch --array 1-100 project.slurm.sh

Here there are some arbitrary examples of the files generated:

e SEED FILE

<input_file> <output_file>

e SGE job script:

#1/bin/bash

SGE submission options

#$ -l num_proc=1 # number of processors to use

#$ -1 h_rt=00:10:00 # Set 10 mins - Average amount of time for up to 1000bp
#$ -t 1-{0} # Number of jobs/files that will be treated

#$ -N art.sims # A name for the job

inputfile=$(awk 'NR==$SGE_TASK_ID{{print $1}}' $SEEDFILE)
outputfile=$(awk 'NR==$SGE_TASK_ID{{print $2}}) $SEEDFILE)\n

art_illumina -ss GA2 -amp -p -sam -na -i $inputfile -1 50 -f 10 -o $outputfile

23

e SLURM job script

#!/bin/sh

#SBATCH -n 1

#SBATCH --cpus-per-task 1
#SBATCH -t 00:10:00
#SBATCH --mem 4G
#SBATCH --array=1-1000

inputfile=$(awk 'NR==$SLURM_ARRAY_TASK_ID{{print $1)}' $SEEDFILE)
outputfile=$(awk 'NR==$SLURM_ARRAY_TASK_ID{{print $2}}' $SEEDFILE)

art_illumina -ss GA2 -amp -p -sam -na -i $inputfile -1 50 -f 10 -o $outputfile

IMPORTANT: Take into account that the job script files generated by NGSphy are general
templates, and that in most cases they will be have to be modified according the the particular
cluster environments. It is strongly encouraged to consult the cluster administrator for proper
execution.

6.6.3. Running times file

Generated to keep track of the timings for each ART call or each NGS read counts process. File
name follows the format:

project.info

where, project will be NGSphy, if using any of the single gene tree input modes. Whereas, for the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.

Content of the file is formatted as follows:

indexREP,indexL0OC, indID, inputFile, cpuTime, seed,outputFilePrefix

indexREP: replicate identifier.

specieslD: species identifier.

locuslID: locus identifier.

indID: individual identifier.

inputFile: path of the input file, corresponding to the individual FASTA file.

cpuTime: processing time

seed: if the NGS mode needs a seed for the generation of random numbers, it will be
here.

e outputFilePrefix: prefix of the file generated.

24

7. Output

The output of NGSphy will depend on the NGS mode selected (ngs-read-counts or ngs-reads-art).
In both cases, the user will get a detailed log file and a folder structure as:

.output

| alignments

.FASTA *.CSV *.CsV - e -
STn

.I coverage .l tables . scripts . individuals . reads

STn

I ST | 5T1

@ o @ - @

Folder structure include:

1.

2.

P

alignments: for single gene tree modes, stores the alignments and files generated for the
INDELible run.
coverage: stores tables describing the coverage for each locus and individual, one per
replicate.
individuals: stores the FASTA files with the individual sequences. Structured along the
hierarchy replicate > locus > individuals.
ind_labels: stores the correspondence between sequences and individuals.
reads: for lllumina reads, stores the ALN/BAM and/or FASTQ files generated by ART. For
read counts, stores all the VCF files. Structured as hierarchy:

a. replicate > locus > ALN/BAM/FASTQ/VCEF files
ref_alleles: stores the sequences of the references alleles used for the simulation of read
counts.
scripts: stores all the bash scripts generated.

7.1. Alignments

Stores the simulated alignments in FASTA format (if indels are simulated, there will be a TRUE
file with the true alignment), together with INDELible/ INDELible-ngsphy control file, ancestral
sequence, and gene trees.

25

alignments/
| _ngsphy.tree # if inputmode = 3
| __NGSphy.indelible.times # if running_times=1
|1
| __control.txt
| _ancestral.fasta # if inputmode in [2,3]
| __ngsphydata_1.fasta
| __ngsphydata_1 TRUE.fasta
| LOG.txt # default indelible file
| tree.txt # default indelible file

NOTE: During the simulation process, the way it is implemented, the anchor sequence in the
alignment produced by INDELible might include indels.

7.2. Coverage

This folder will contain comma-separated file (CSV) files with the coverage distribution of each
individual per replicate. Each file stores a matrix of shape (humber of individuals X humber of loci)
where each cell corresponds to the depth of coverage of the loci for the specific individual.
Format of the filename is:

project.repID.csv

Where:
e project: if using any of the single gene tree input modes, it will be NGSphy. For the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.
e replID: number of the replicate.

Folder structure will look like this:

coverage/
| _ SimOhyOutput.1l.csv
| _ SimOhyOutput.2.csv
| SimOhyOutput.3.csv

7.3. Ind_labels

These will store the correspondence between the original sequences and the generated
individuals. Each table is a CSV file named as follows:

project.repID.individuals.csv

26

Where:
e project: if using any of the single gene tree input modes, it will be NGSphy. For the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.
e replD: number of the replicate.

Folder structure will look like this:

ind_labels/
| NGSphy.1.individuals.csv

7.3.1. Haploid individuals

This folder will contain tables with the correspondence between the individual identifier and the
corresponding sequence identifier. CSV file format:

REPID, indID, speciesID,locusID,genelD
1, ©, 0o, 0o, o
1, 1, 1, o, 1
1, 2, 1, o, 2

Where:
e REPID: identifier of the replicate to which the gene trees and sequences belong.
indID: identifier of the haploid individual.
specieslD: identifier of the species
locusID: identifier of the locus
genelD: identifier of the gene tree tip.

7.3.2. Diploid individuals

These tables will contain the correspondence between each individual and its two sequences.
CSV file format:

REPID, indID, speciesID,locusID,mateID1,mateID2
i, 1, 1, o, 3, ©

1, 2, 1, 0, 4, 1
i, 3, 1, 0, 2, 5
1, 4, 3, 0, 4, ©
Where:

e REPID: identifier of the replicate.

indID: identifier of the generated diploid individual.

specieslD: identifier of the species.

locusID: identifier of the locus.

matelD(1&2): identifier of the gene tree tip used for the 1(2) sequence of the individual.

27

7.4. Individuals

This folder will store the diploid individual sequence files (i.e., 2 sequences for each locus),
hierarchically organized within replicates and loci. For example:

individuals/
|__1/
|_1/
| _prefix_1 1 indl.fasta
| _prefix_1 1 ind2.fasta
| prefix 1 1 ind3.fasta
|_2/
| _prefix_1 2 indl.fasta
| _prefix_1 2 ind2.fasta
| prefix_ 1 2 ind3.fasta
|__2/
| 1/
| _prefix_ 2 1 indl.fasta
| prefix 2 1 ind2.fasta
| _prefix 2 1 ind3.fasta
| 2/
| _prefix_2 2 indl.fasta
| prefix 2 2 ind2.fasta
| prefix 2 2 ind3.fasta

7.5. Ref_alelles

This folder contains the FASTA files with the reference allele sequences used in the VCF file with
the read counts. Folder is structured per replicate. There is a reference allele file per locus. Each
file contains a single sequence. The format of each file name:

project REF_repID locID.fasta

Where:
e project: if using any of the single gene tree input modes, it will be NGSphy. For the
gene-tree distribution input mode, it will be the name of the SimPhy output folder.
e replD: replicate identifier.
e loclD: locus identifier.

Folder structure will look like this:

ref _alleles/
| 1/
| _NGSphy REF_1 1.fasta

28

| _NGSphy REF_1 2.fasta
|__2/

| __NGSphy REF_2 1.fasta

| _NGSphy REF_2 2.fasta

7.6. Scripts

This folder will store all the scripts for ART execution, according to the options in the execution
block. If we decide to run NGSphy for any cluster environment, we will have the job script and
the seed file. If we choose bash as environment and we do not want to execute the ART
commands within NGSphy, we would have a single bash script.

SGE SLURM

reads/ reads/

| __project.sge.sh | _project.slurm.sh

| _project.seedfile.txt | _project.seedfile.txt
bash

reads/

| __project.sh

Where, project will be NGSphy, if using any of the single gene tree input modes. Whereas, for
the gene-tree distribution input mode, it will be the name of the SimPhy output folder.

7.7. NGS mode

Data will be structured per replicate.

7.7.1. NGS reads ART

This folder will store the output of ART. It follows the same folder structure of the individuals
folder, but instead of having FASTA files, it will contain the FASTQ files [and alignment and
mapping files (ALN and SAM) if requested] generated by ART.

reads/
|_1/
|_1/
| _prefix_1 1 indl_R1.fq
| _prefix_1 1 indl _R2.fq
| _prefix_1 1 ind2 R1.fq

29

|_2/

|
|
|
|
|2/

1/

2/

| _prefix_1_1 ind2_R2.

__prefix_1 2 ind1_R1.
__prefix_1 2 ind1l_R2.
__prefix_ 1 2 ind2 R1.
__prefix_1 2 ind2 R2.

| _prefix_ 2 1 indl R1.
| _prefix 2 1 indl R2.
| _prefix_ 2 1 ind2_R1.
| _prefix_2 1 ind2_R2.

| prefix 2 2 indl R1.
| _prefix_2 2 indl_R2.
| _prefix_2 2 ind2_R1.
| _prefix_2 2 ind2_R2.

fq

fq
fq
fq
fq

fq
fq
fq
fq

fq
fq
fq
fq

7.7.2. NGS read counts

This folder will store the output obtained from the read count simulation. This folder is structured
in 2 sub-folders (with and without sequencing errors), each structured per replicate, and
containing as many VCF files as loci.

Sub-folders will be:

e no_error: VCF files with the simulated read counts without sequencing error.
e with_error: VCF files with the simulated read counts with the introduced sequencing

error.

reads
| _no_error/
|_1/
| __prefix_1_1 TRUE
| _prefix_1 2 TRUE.
| _prefix_1 3 TRUE
|_2/
| __prefix_2_1 TRUE
| _prefix_2 2 TRUE.
| _prefix_2 3 TRUE
| __with_error/
|_1/
| _prefix_1 1.VCF
| _prefix_1 2.VCF
| _prefix_1 3.VCF
|_2/

.VCF

VCF

.VCF

.VCF

VCF

.VCF

30

| _prefix_2 1.VCF
| prefix_ 2 2.VCF
| _prefix_2 3.VCF

7.8. Other files

7.8.1. Running times file

Stores information related to the time used in each ART run or read-count thread per locus. This
file will contain input/output files for each process and its corresponding individual, locus
(gene-tree) and replicate (REPID). See more on Section 6.6.3

Example of the file

1,1,0,output/individuals/1/01/test_wrapper_1 01 data_0.fasta, 0.013984,
1479977980,output/reads/1/01/test_wrapper_1 01 data_© R
1,1,1,output/individuals/1/01/test _wrapper_1 01 data_1l1.fasta, 0.014757,
1479977980, 0utput/reads/1/01/test_wrapper_1 01 data 1 R
1,1,2,output/individuals/1/01/test_wrapper_1 01 data_2.fasta, ©.013589,
1479977980,output/reads/1/01/test_wrapper_1 01 data_2 R
1,1,3,output/individuals/1/01/test _wrapper_1 01 data_3.fasta, 0.013404,
1479977980, output/reads/1/01/test_wrapper_1 01 data 3 R
1,1,4,output/individuals/1/01/test_wrapper_1 01 data_4.fasta, 0.013775,
1479977980,output/reads/1/01/test_wrapper_1 01 data_4 R

7.8.2. Debug file

For each NGSphy run is optional to get a debug log file. If the “-I/--log” option in the command
line is set to DEBUG, the file will be generated in the current working directory and under the
name:

NGSPHY.YYYYMMDD-HH:mm:SS . log

YYYY: year
MM: month
DD: day

HH: hours
mm: minutes
ss: seconds

This file stores information of the program execution, at a very detailed level. A debug log file will
look like this:

13/08/2017 11:21:19 AM - ERROR (__main__lhandlingCmdArguments:82): Something

31

happened while parsing the arguments.
Please verify. Exiting.

8. Additional information

8.1. Motivation

Advances in sequencing technologies have now made very common that datasets for
phylogenomic inference consist of large numbers of loci from multiple species and individuals.
The use of next-generation sequencing (NGS) for phylogenomics implies a complex
computational pipeline where multiple technical and methodological decisions are necessary that
might influence the final tree obtained, from coverage to assembly, mapping, variant calling
and/or phasing. In order to assess the influence of these variables, here we introduce NGSphy,
an open-source tool for the genome-wide simulation of lllumina reads obtained from thousands
of gene families evolving under a common species tree, with multiple haploid and/or diploid
individuals per species, where sequencing coverage (depth) heterogeneity can be modelized
across individuals and loci, including off-target loci and phylogenetic decay. Moreover, parameter
values for the different replicates can be sampled from user-defined statistical distributions.

Mapping / pr;ﬂ':,:s
Assembly
Sequence Individual - - References
simulation generation
Wariant Programs
Calling Filters
wws ww g
e E =
mm— = Orthology S
(= =~ -] Coverage inference g
- i SE/PE/MP
it Individuals # Loci) o
species Size Haploids/diploid Read length
individuals Programs
Gene tree Methods
| inference Programs
: _//—
D e e e o - -4 Spedies tree Methods
_\\; Inference Programs

FIGURE 11: A possible analysis pipeline for multilocus, multispecies datasets with multiple
individuals with the final goal of exploring the sensitivity of species tree inferences to NGS
parameterization variation.

8.2. What can be done with NGSphy? The detailed scenarios

With NGSphy you can generate:
e haploid individuals from gene-tree distributions
e diploid individuals from gene-tree distributions

32

® genome sequences of haploid individuals from a single gene tree
e genome sequences of diploid individuals from a single gene tree
e genome sequences of haploid individuals from a single gene tree and an user-defined
ancestral sequence
e genome sequences of diploid individuals from a single gene tree and an user-defined
ancestral sequence
e genome sequences of haploid individuals from a single gene tree, an user-defined
ancestral sequence and an anchor tip.
e genome sequences of diploid individuals from a single gene tree, an user-defined
ancestral sequence and an anchor tip.
NGS lllumina reads of haploid individuals
NGS lllumina reads of diploid individuals
NGS read counts of haploid individuals
NGS read counts of diploid individuals
For the NGS data generation, variation of coverage due to the following:
o variation across individuals and/or loci
o targeted-sequencing effects
m on/off target loci
m on-target loci not captured
m taxon-specific variation

8.3. Third-party software involved

8.3.1. ART

e Huang W, Li L, Myers JR, and Marth, GT (2012) ART: a next-generation sequencing read
simulator. Bioinformatics 28 (4): 593-594

ART (http://www.niehs.nih.gov/research/resources/software/biostatistics/art/) is a set of simulation
tools to generate synthetic next-generation sequencing reads. ART simulates sequencing reads
by mimicking real sequencing process with empirical error models or quality profiles summarized
from large recalibrated sequencing data. ART can also simulate reads using user own read error
model or quality profiles. ART supports simulation of single-end, paired-end/mate-pair reads of
three major commercial next-generation sequencing platforms: lllumina’s Solexa, Roche’s 454
and Applied Biosystems’ SOLiID. ART can be used to test or benchmark a variety of method or
tools for next-generation sequencing data analysis, including read alignment, de novo assembly,
SNP and structural variation discovery. ART outputs reads in the FASTQ format, and alignments in
the ALN format. ART can also generate alignments in the SAM alignment or UCSC BED file
format.

8.3.2. INDELible

e William Fletcher and Ziheng Yang (2009) INDELible: A flexible simulator of biological
sequence evolution. Molecular Biology and Evolution. 26 (8): 1879-88.
doi:10.1093/molbev/msp098

33

http://www.niehs.nih.gov/research/resources/software/biostatistics/art/

INDELible (http://abacus.gene.ucl.ac.uk/software/indelible/) is an application for biological
sequence simulation that combines many features. Using a length-dependent model of indel
formation it can simulate evolution of multi-partitioned nucleotide, amino-acid, or codon data sets
through the processes of insertion, deletion, and substitution in continuous time.

Nucleotide simulations may use the general unrestricted model or the general time reversible
model and its derivatives, and amino-acid simulations can be conducted using fifteen different
empirical rate matrices. Substitution rate heterogeneity can be modelled via the continuous and
discrete gamma distributions, with or without a proportion of invariant sites. INDELible can also
simulate under non-homogenous and non-stationary conditions where evolutionary models are
permitted to change across a phylogeny. Unique among indel simulation programs, INDELible
offers the ability to simulate using codon models that exhibit nonsynonymous/synonymous rate
ratio heterogeneity among sites and/or lineages.

8.3.3. SimPhy

e Diego Mallo, Leonardo De Oliveira Martins and David Posada (2015). SimPhy :
Phylogenomic Simulation of Gene, Locus, and Species Trees. Systematic Biology.,
November, syv082. doi:10.1093/sysbio/syv082

SimPhy (https://github.com/adamallo/simphy) is a program for the simulation of gene family
evolution under incomplete lineage sorting (ILS), gene duplication and loss (GDL), replacing
horizontal gene transfer (HGT) and gene conversion (GC). SimPhy simulates species, locus and
gene trees with different levels of rate heterogeneity, and uses INDELible to evolve
nucleotide/codon/aminoacid sequences along the gene trees. The input for SimPhy are the
simulation parameter values, which can be fixed or sampled from user-defined statistical
distributions. The output consists of sequence alignments and a relational database that facilitate
posterior analyses.

34

https://github.com/adamallo/simphy
http://abacus.gene.ucl.ac.uk/software/indelible/

8.4. NGSphy workflow

START

1 NGSphy
L

Single gene tree
settings file

with anchor sequence
Ancestral sequence

Input A
mode gE
C

Control file
(INDELible)

Newick file
(Gene tree)

Single gene tree

o O

Newick file Control file
(Gene tree) (INDELible)

Single gene tree
with ancestral sequence

Ancestral sequence

o S o mm s

=l

Newick file Control file
(Gene tree) (INDELible)

Gene-tree distribution
(SimPhy’s output)
1 | ==

==
==

Gene trees inside

. Sequences
species trees

NGSphy, verifies all the content of the project, the settings files involved and/or the existence of
the corresponding third-party applications in order to run. If the input data corresponds to the
single gene tree an user-defined ancestral sequence, first the tree is rooted to the selected
gene-tree tip. The next step (for any single gene tree input mode) is to evolve the tree under the
specific evolution mode to obtain the expected genome sequences. Then (any input mode), the

Read
counts
Rerooting
NGS
mode
5 A
=t » %
’ llumina
reads
sgs:;’::;:s Coverage
ati
(INDELible) variation
= amm A
-
e —
= D
YES
Individuals NGS?

B A e A &
mEm |2-B umm 1B ¢
mEm |3-C

— m [2-C o
WEW |4-D i Eg @
haploids diploids

generation of individuals, whether haploid or diploid:

e For haploid individuals, resulting genome sequences are separated into single FASTA
files and identified. In addition, a file is generated with the correspondence between the
individual generated and the description of the sequence it belongs to.

e For diploid individuals, there is a process of verification that the project content includes
species-trees with an even number of individuals per taxa. Sequences are then "paired",
individuals being generated by randomly sampling without replacement two sequences

Read counts

ART

NO

END

within the same gene family and species. Output will include a table for each replicate
with the identifiers for the sequences paired and the individuals generated.

Afterwards, the coverage variation matrices will be computed according to the parameters
introduced and finally the sequencing data generated, consist on either lllumina reads or read
counts (VCF files).

e For the lllumina reads, program calls out ART, the NGS simulator, with the parameters
established in the settings file and generates reads from the previously generated
individuals. Resulting files depend on the settings introduced, and they are files related to
the execution of the ART processes (scripts and text files), and the output of such
processes (ALN, BAM and/or FASTQ files).

e [orread counts, two scenarios are simultaneously computed, with and without errors.

8.5. Read count simulation

The read count approach is based on the assumption (Ritz et al., 2011) that the sequencing
process is uniform in generating short reads from the target genome, and that the number of
reads mapped to a region is expected to be proportional to the number of times the region
appears in a DNA sample (Ji and Chen, 2015). Read counts are produced under a user-defined
error rate. First, the variable sites (regarding the reference sequences) are identified. Then,
coverage for each position is sampled from a Negative Binomial distribution whose mean and
overdispersion parameter are the sampled coverage for the specific locus and individual. For
diploid individuals, coverage is further splitted among chromosomes with equal probability.
Genotype likelihoods for every site are computed as in GATK (McKenna et al 2010) (see also
Korneliussen et al. 2014). The output is a set of VCF files, one per locus.

9. Getting help

Most common issues, doubts and questions should be solved by reading this manual. If that is
not the case or you find any bug, you can post an issue to this repository for reproducibility
purposes, with the following files attached:

e the settings file

e <simphy_project_name>.command file or the indelible_control.txt file.

10. Development and testing

This software has been developed for Linux/Mac environments and specifically tested under:

e Linux Kernel:

4.8.0-58-generic #63~16.04.1-Ubuntu SMP Mon Jun 26 18:08:51 UTC 2017 x86_64
x86 64 x86 64 GNU/Linux

36

Distribution:

Ubuntu 16.04.2 LTS

Hardware:

Dual core Intel Core i5-3427U (-HT-MCP-) cache: 3072 KB
8GB RAM

References

Bragg JG, Potter S, Bi K and Moritz, C. (2016). Exon capture phylogenomics: efficacy across scales of divergence. Molecular
ecology resources, 16(5), 1059-1068.

Fletcher W and Yang Z. (2009) INDELible: A flexible simulator of biological sequence evolution. Molecular Biology and
Evolution. 26 (8): 1879-88.

Gentzsch W. (2001). Sun grid engine: Towards creating a compute power grid. In Cluster Computing and the Grid, 2001.
Proceedings. First IEEE/ACM International Symposium on (pp. 35-36). IEEE.

Huang W, Li L, Myers JR and Marth, GT. (2012) ART: a next-generation sequencing read simulator. Bioinformatics 28 (4):
593-594

Ji Tand Chen J. (2015) Modeling the next generation sequencing read count data for DNA copy number variant study. Stat.
Appl. Genet. Mol. Biol. 2015; 14(4): 361-374.

Korneliussen TS, Albrechtsen A and Nielsen R. (2014) ANGSD: Analysis of Next Generation Sequencing Data. BMC
Bioinformatics 15:356.

Mallo D, De Oliveira Martins L and Posada D. (2016). SimPhy : Phylogenomic Simulation of Gene, Locus, and Species Trees.
Systematic Biology 65(2): 334-344.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M and
DePristo MA. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome research, 20(9), 1297-1303.

Ritz A, Paris PL, Ittmann MM, Collins C and Raphael BJ. (2011). Detection of recurrent rearrangement breakpoints from copy
number data. BMC Bioinformatics, 12(1), 114.

Yoo AB, Jette MA and Grondona M. (2003). Slurm: Simple linux utility for resource management. In Workshop on Job
Scheduling Strategies for Parallel Processing (pp. 44-60). Springer, Berlin, Heidelberg.

37

