Skip to content

Conversation

@daniellepintz
Copy link
Contributor

Summary:
Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972

tests/test_uvm_tensor.py::test_uvm_tensor FAILED                         [100%]

=================================== FAILURES ===================================
_______________________________ test_uvm_tensor ________________________________

    pytest.mark.cpu_and_gpu
    def test_uvm_tensor() -> None:
        if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE:
            uvm_tensor = torch.rand(
                (64, 64),
>               out=new_managed_tensor(
                    torch.empty(0, dtype=torch.float32, device="cuda:0"),
                    [64, 64],
                ),
            )

tests/test_uvm_tensor.py:25:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')>
args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {}

    def __call__(self, *args, **kwargs):
        # overloading __call__ to ensure torch.ops.foo.bar()
        # is still callable from JIT
        # We save the function ptr as the `op` attribute on
        # OpOverloadPacket to access it here.
>       return self._op(*args, **kwargs or {})
E       RuntimeError: CUDA error: invalid device ordinal
E       CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
E       For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
E       Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

Differential Revision: D48135206

@codecov
Copy link

codecov bot commented Aug 8, 2023

Codecov Report

Merging #148 (6f01187) into main (77ec968) will decrease coverage by 4.90%.
The diff coverage is 50.00%.

@@            Coverage Diff             @@
##             main     #148      +/-   ##
==========================================
- Coverage   90.58%   85.69%   -4.90%     
==========================================
  Files          59       59              
  Lines        4440     4446       +6     
==========================================
- Hits         4022     3810     -212     
- Misses        418      636     +218     
Files Changed Coverage Δ
tests/test_uvm_tensor.py 61.11% <50.00%> (-5.56%) ⬇️

... and 6 files with indirect coverage changes

📣 We’re building smart automated test selection to slash your CI/CD build times. Learn more

@daniellepintz daniellepintz force-pushed the export-D48135206 branch 2 times, most recently from 0a9b334 to ad399ef Compare August 8, 2023 03:50
@facebook-github-bot facebook-github-bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Aug 8, 2023
daniellepintz added a commit to daniellepintz/torchsnapshot that referenced this pull request Aug 8, 2023
Summary:
Pull Request resolved: meta-pytorch#148

Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972
```
tests/test_uvm_tensor.py::test_uvm_tensor FAILED                         [100%]

=================================== FAILURES ===================================
_______________________________ test_uvm_tensor ________________________________

    pytest.mark.cpu_and_gpu
    def test_uvm_tensor() -> None:
        if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE:
            uvm_tensor = torch.rand(
                (64, 64),
>               out=new_managed_tensor(
                    torch.empty(0, dtype=torch.float32, device="cuda:0"),
                    [64, 64],
                ),
            )

tests/test_uvm_tensor.py:25:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')>
args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {}

    def __call__(self, *args, **kwargs):
        # overloading __call__ to ensure torch.ops.foo.bar()
        # is still callable from JIT
        # We save the function ptr as the `op` attribute on
        # OpOverloadPacket to access it here.
>       return self._op(*args, **kwargs or {})
E       RuntimeError: CUDA error: invalid device ordinal
E       CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
E       For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
E       Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

```

Differential Revision: D48135206

fbshipit-source-id: 77ed51cd66efd98fd485c3bbb0cd20216fb294a9
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D48135206

daniellepintz added a commit to daniellepintz/torchsnapshot that referenced this pull request Aug 8, 2023
Summary:
Pull Request resolved: meta-pytorch#148

Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972
```
tests/test_uvm_tensor.py::test_uvm_tensor FAILED                         [100%]

=================================== FAILURES ===================================
_______________________________ test_uvm_tensor ________________________________

    pytest.mark.cpu_and_gpu
    def test_uvm_tensor() -> None:
        if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE:
            uvm_tensor = torch.rand(
                (64, 64),
>               out=new_managed_tensor(
                    torch.empty(0, dtype=torch.float32, device="cuda:0"),
                    [64, 64],
                ),
            )

tests/test_uvm_tensor.py:25:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')>
args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {}

    def __call__(self, *args, **kwargs):
        # overloading __call__ to ensure torch.ops.foo.bar()
        # is still callable from JIT
        # We save the function ptr as the `op` attribute on
        # OpOverloadPacket to access it here.
>       return self._op(*args, **kwargs or {})
E       RuntimeError: CUDA error: invalid device ordinal
E       CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
E       For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
E       Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

```

Differential Revision: D48135206

fbshipit-source-id: 1b62888ca317d4ce84f8cefc95d8f83fc27da6c4
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D48135206

daniellepintz added a commit to daniellepintz/torchsnapshot that referenced this pull request Aug 8, 2023
Summary:
Pull Request resolved: meta-pytorch#148

Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972
```
tests/test_uvm_tensor.py::test_uvm_tensor FAILED                         [100%]

=================================== FAILURES ===================================
_______________________________ test_uvm_tensor ________________________________

    pytest.mark.cpu_and_gpu
    def test_uvm_tensor() -> None:
        if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE:
            uvm_tensor = torch.rand(
                (64, 64),
>               out=new_managed_tensor(
                    torch.empty(0, dtype=torch.float32, device="cuda:0"),
                    [64, 64],
                ),
            )

tests/test_uvm_tensor.py:25:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')>
args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {}

    def __call__(self, *args, **kwargs):
        # overloading __call__ to ensure torch.ops.foo.bar()
        # is still callable from JIT
        # We save the function ptr as the `op` attribute on
        # OpOverloadPacket to access it here.
>       return self._op(*args, **kwargs or {})
E       RuntimeError: CUDA error: invalid device ordinal
E       CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
E       For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
E       Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

```

Differential Revision: D48135206

fbshipit-source-id: f3e3006c940026f7cfc5176ed611faba21683faf
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D48135206

1 similar comment
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D48135206

daniellepintz added a commit to daniellepintz/torchsnapshot that referenced this pull request Aug 14, 2023
Summary:
Pull Request resolved: meta-pytorch#148

Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972
```
tests/test_uvm_tensor.py::test_uvm_tensor FAILED                         [100%]

=================================== FAILURES ===================================
_______________________________ test_uvm_tensor ________________________________

    pytest.mark.cpu_and_gpu
    def test_uvm_tensor() -> None:
        if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE:
            uvm_tensor = torch.rand(
                (64, 64),
>               out=new_managed_tensor(
                    torch.empty(0, dtype=torch.float32, device="cuda:0"),
                    [64, 64],
                ),
            )

tests/test_uvm_tensor.py:25:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')>
args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {}

    def __call__(self, *args, **kwargs):
        # overloading __call__ to ensure torch.ops.foo.bar()
        # is still callable from JIT
        # We save the function ptr as the `op` attribute on
        # OpOverloadPacket to access it here.
>       return self._op(*args, **kwargs or {})
E       RuntimeError: CUDA error: invalid device ordinal
E       CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
E       For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
E       Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

```

Differential Revision: D48135206

fbshipit-source-id: 46cbe45ebc8e135740b9d752abc2c1a2a1042cc9
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D48135206

daniellepintz added a commit to daniellepintz/torchsnapshot that referenced this pull request Aug 14, 2023
Summary:
Pull Request resolved: meta-pytorch#148

Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972
```
tests/test_uvm_tensor.py::test_uvm_tensor FAILED                         [100%]

=================================== FAILURES ===================================
_______________________________ test_uvm_tensor ________________________________

    pytest.mark.cpu_and_gpu
    def test_uvm_tensor() -> None:
        if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE:
            uvm_tensor = torch.rand(
                (64, 64),
>               out=new_managed_tensor(
                    torch.empty(0, dtype=torch.float32, device="cuda:0"),
                    [64, 64],
                ),
            )

tests/test_uvm_tensor.py:25:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')>
args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {}

    def __call__(self, *args, **kwargs):
        # overloading __call__ to ensure torch.ops.foo.bar()
        # is still callable from JIT
        # We save the function ptr as the `op` attribute on
        # OpOverloadPacket to access it here.
>       return self._op(*args, **kwargs or {})
E       RuntimeError: CUDA error: invalid device ordinal
E       CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
E       For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
E       Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

```

Differential Revision: D48135206

fbshipit-source-id: 15d5cb361416a0e890278ced430d00d4b9dfb6f2
Summary:
Pull Request resolved: meta-pytorch#148

Attempt to fix torchsnapshot CI: https://github.com/pytorch/torchsnapshot/actions/runs/5766115388/job/15694536972
```
tests/test_uvm_tensor.py::test_uvm_tensor FAILED                         [100%]

=================================== FAILURES ===================================
_______________________________ test_uvm_tensor ________________________________

    pytest.mark.cpu_and_gpu
    def test_uvm_tensor() -> None:
        if torch.cuda.is_available() and _UVM_TENSOR_AVAILABLE:
            uvm_tensor = torch.rand(
                (64, 64),
>               out=new_managed_tensor(
                    torch.empty(0, dtype=torch.float32, device="cuda:0"),
                    [64, 64],
                ),
            )

tests/test_uvm_tensor.py:25:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <OpOverloadPacket(op='fbgemm.new_managed_tensor')>
args = (tensor([], device='cuda:0'), [64, 64]), kwargs = {}

    def __call__(self, *args, **kwargs):
        # overloading __call__ to ensure torch.ops.foo.bar()
        # is still callable from JIT
        # We save the function ptr as the `op` attribute on
        # OpOverloadPacket to access it here.
>       return self._op(*args, **kwargs or {})
E       RuntimeError: CUDA error: invalid device ordinal
E       CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
E       For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
E       Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.

```

Differential Revision: D48135206

fbshipit-source-id: 5f75bb830e3cb9057b5803fe09d83e391c60a365
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D48135206

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. fb-exported

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants