Lemma 0.1.

$$\begin{split} \alpha_i &:= \begin{pmatrix} j &\mapsto j & \text{if } 1 \leq j \leq i-1, \\ j &\mapsto m & \text{if } j=i \\ j &\mapsto j-1 & \text{if } i+1 \leq j \leq m. \end{pmatrix} \\ &= \begin{pmatrix} 1 & \dots & i-1 & i & i+1 & \dots & m \\ 1 & \dots & i-1 & m & i & \dots & m-1 \end{pmatrix} = (m \ m-1 \ \dots \ i+1 \ i), \\ \beta_i &:= \begin{pmatrix} j &\mapsto m-i+j & \text{if } 1 \leq j \leq i-1, \\ j &\mapsto j-i+1 & \text{if } i \leq j \leq m-1, \\ m &\mapsto m & & & & \end{pmatrix} \\ &= \begin{pmatrix} 1 & \dots & i-1 & i & \dots & m-1 & m \\ m-i+1 & \dots & m-1 & 1 & \dots & m-i & m \end{pmatrix}, \\ \delta_i &:= (\alpha_i)^{-1} \circ \beta_i \circ \alpha_i. \end{split}$$

where

$$\delta_i = \begin{pmatrix} j & \mapsto & m-i+j+\chi(m-i+j,i) & \text{if} & 1 \leq j \leq i-1, \\ j & \mapsto & j & & \text{if} & j=i \\ j & \mapsto & j-i+\chi(j-i,i) & & \text{if} & i+1 \leq j \leq m. \end{pmatrix}.$$

Proof. Show that α_i is a permutation. We assert that the inverse is

$$\gamma_i = \begin{pmatrix} j & \mapsto & j & \text{if } 1 \leq j \leq i-1, \\ j & \mapsto & i & \text{if } j = m \\ j & \mapsto & j+1 & \text{if } i \leq j \leq m-1. \end{pmatrix}.$$

Then for $1 \leq j \leq i - 1$ we have

$$\alpha_i(\gamma_i(j)) = \alpha_i(j) = j$$

and similarly

$$\gamma_i(\alpha_i(j)) = \gamma(j) = j$$

For j = m we have

$$\alpha_i(\gamma_i(m)) = \alpha_i(i) = m$$

,and also

$$\gamma_i(\alpha_i(m)) = \gamma_i(m-1) = m.$$

For j = i we have

$$\alpha_i(\gamma_i(i)) = \alpha_i(i+1) = (i+1-1) = i$$

$$\gamma_i(\alpha_i(j) = \gamma_i(\alpha_i(i)) = \gamma_i(m) = i = j$$

For $j \in \{i+1,\ldots,m-1\} \iff j+1 \in \{i+2,\ldots,m\} \implies \{i+1\} \cup \{i+2,\ldots,m\} \implies j+1 \in \{i+1,\ldots,m\}$ we have

$$\alpha_i(\gamma_i(j)) = \alpha_i(j+1) = j+1 - i = j$$

At last, we have with $j \leq m - 1 \implies j \leq m$

$$\gamma_i(\alpha_i(j)) = \gamma_i(j-1).$$

Now $j \in \{i+1, \dots, m-1\} \implies j-1 \in \{i+1-1, \dots, m-1-1\}$ $\implies j-1 \in \{i+1-1, \dots, m-1-1\} \cup \{m-1\} \implies j-1 \in \{i+1-1, \dots, m-1\}.$ Thus

$$\gamma_i(j-1) = j - 1 + 1 = j.$$

Thus we have shown

$$j \in \{1 \dots, i-1\} \implies \gamma_i(\alpha_i(j)) = j \land \alpha_i(\gamma_i(j)) = j$$
$$j = i \implies \gamma_i(\alpha_i(j)) = j \land \alpha_i(\gamma_i(j)) = j$$
$$j \in \{i+1 \dots, m-1\} \implies \gamma_i(\alpha_i(j)) = j \land \alpha_i(\gamma_i(j)) = j$$
$$j = m \implies \gamma_i(\alpha_i(j)) = j \land \alpha_i(\gamma_i(j)) = j$$

$$j \in S \iff j \in \{1 \dots, i-1\} \lor j = i \lor j \in \{i+1, \dots, m-1\} \lor j = m$$

Therefore

$$j \in S \implies \gamma(\alpha(j)) = j \land \alpha(\gamma(j)) = j$$

which shows that α is bijective (one-to-one and onto). Now we assert that the following is the inverse of β_i

$$\varepsilon_i = \left(\begin{array}{cccc} j & \mapsto & i+j-1 & \text{if} & 1 \leq j \leq m-i, \\ j & \mapsto & i-m+j & \text{if} & m-i+1 \leq j \leq m-1, \\ j & \mapsto & m & \text{if} & j=m. \end{array}\right).$$

We now distinguish two cases: i - 1 < m - i and $i - 1 \ge m - i$. Let us consider first case (I): i - 1 < m - i.

$$j \in S \iff j \in \{1 \dots, i-1\} \lor j \in \{i, \dots, m-i\} \lor j \in \{m-i+1, \dots, m-1\} \lor j = m$$

and

Let $j \in \{1, \dots, i-1\}$, we have $j \le i-1 < m-i \implies j < m-i$ then

$$\beta_i(\varepsilon_i(j)) = \beta_i(i+j-1) = (i+j-1) - i + 1 = j$$

and

$$\varepsilon_i(\beta_i(j)) = \varepsilon_i(m-i+j)$$

Now because of $j \in \{1, ..., i-1\}$ we have $m - i + j \in \{m - i + 1, ..., m - i + i - 1\} = \{m - i + 1, ..., m - 1\}$, we can conclude that

$$\varepsilon_i(m-i+j) = i - j + (m-i+j) = j.$$

Thus we have

$$i-1 < m-i \land j \in \{0, \dots, i-1\} \implies \beta_i(\varepsilon_i(j)) = j \land \varepsilon_i(\beta_i(j)) = j$$

Lemma 0.2. Let $m \in \mathbb{N}$, $S = \{1, ..., m\}$. Then for each $j \in S$ we define a permutation with, where χ is the indicator function.

$$\chi : \mathbb{R} \times \mathbb{R} \to \{0, 1\} \text{ with } \chi(a, b) = 1 \iff a \ge b.$$

For each $i \in S\delta(i) \in S_m$, where S_m is the symmetric group.

Proof. For now, let us just show $\delta_i : S \to S$. When $1 \leq j \leq i - 1$, we can consider two cases:

(C1) $m - i + j \ge i \iff \chi(m - i + j, i) = 1$ and (C2) $m - i + j < i \iff \chi(m - i + j, i) = 0$. The $1 \le j \le i - 1$ and m - i + j < i