diff --git a/changes-set.txt b/changes-set.txt index 1b1a7bfa7..977191d5a 100644 --- a/changes-set.txt +++ b/changes-set.txt @@ -92,6 +92,7 @@ make a github issue.) DONE: Date Old New Notes + 5-Jan-25 rabss3d [same] moved from TA's mathbox to main set.mm 4-Jan-25 ralimda --- obsolete - use ralimdaa instead 3-Jan-25 srgi srgdilem 2-Jan-25 pr2nelem enpr2 diff --git a/set.mm b/set.mm index efe99fcfc..9cb521000 100644 --- a/set.mm +++ b/set.mm @@ -38330,6 +38330,16 @@ technically classes despite morally (and provably) being sets, like ` 1 ` ( crab cv wcel wa cab df-rab ssab2 eqsstri ) ABCDBECFAGBHCABCIABCJK $. $} + ${ + $d x A $. $d x B $. $d x ph $. + rabss3d.1 $e |- ( ( ph /\ ( x e. A /\ ps ) ) -> x e. B ) $. + $( Subclass law for restricted abstraction. (Contributed by Thierry + Arnoux, 25-Sep-2017.) $) + rabss3d $p |- ( ph -> { x e. A | ps } C_ { x e. B | ps } ) $= + ( crab nfv nfrab1 cv wcel wa simprr jca ex rabid 3imtr4g ssrd ) ACBCDGZBC + EGZACHBCDIBCEIACJZDKZBLZUAEKZBLZUASKUATKAUCUEAUCLUDBFAUBBMNOBCDPBCEPQR $. + $} + ${ $d A x $. ssrab3.1 $e |- B = { x e. A | ph } $. @@ -472279,16 +472289,6 @@ Class abstractions (a.k.a. class builders) ( csn wss wcel c0 wceq wo sssn snnzg neneqd pm2.21d sneqrg jaod imp sylan2b ) ADZBDZEACFZRGHZRSHZIZABHZRBJTUCUDTUAUDUBTUAUDTRGACKLMABCNOPQ $. - ${ - $d x A $. $d x B $. $d x ph $. - rabss3d.1 $e |- ( ( ph /\ ( x e. A /\ ps ) ) -> x e. B ) $. - $( Subclass law for restricted abstraction. (Contributed by Thierry - Arnoux, 25-Sep-2017.) $) - rabss3d $p |- ( ph -> { x e. A | ps } C_ { x e. B | ps } ) $= - ( crab nfv nfrab1 cv wcel wa simprr jca ex rabid 3imtr4g ssrd ) ACBCDGZBC - EGZACHBCDIBCEIACJZDKZBLZUAEKZBLZUASKUATKAUCUEAUCLUDBFAUBBMNOBCDPBCEPQR $. - $} - $( Intersection with an intersection. (Contributed by Thierry Arnoux, 27-Dec-2016.) $) inin $p |- ( A i^i ( A i^i B ) ) = ( A i^i B ) $= @@ -755171,6 +755171,239 @@ that every function in the sequence can have a different (partial) $( End $[ set-mbox-ss.mm $] $) +$( Begin $[ set-mbox-et.mm $] $) +$( Skip $[ set-main.mm $] $) +$( +#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# + Mathbox for Ender Ting +#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# +$) + + +$( +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= + Increasing sequences and subsequences +=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= +$) + + ${ + $( Less-than class is never reflexive. (Contributed by Ender Ting, + 22-Nov-2024.) Prefer to specify theorem domain and then apply ~ ltnri . + (New usage is discouraged.) $) + et-ltneverrefl $p |- -. A < A $= + ( cxr wcel clt wbr wn xrltnr cop opelxp1 con3i ltrelxr sseli nsyl sylnibr + cxp df-br pm2.61i ) ABZCZAADZEZFAGSFZAAHZTCZUAUBUCRROZCZUDUFSAARRIJTUEUCK + LMAATPNQ $. + $} + + ${ + $( Alternative proof that equality is left-Euclidean, using ~ ax7 directly + instead of utility theorems; done for practice. (Contributed by Ender + Ting, 21-Dec-2024.) $) + et-equeucl $p |- ( x = z -> ( y = z -> x = y ) ) $= + ( weq wi equid ax7 com12 ax-mp syl ) ACDZCADZBCDZABDZEAADZKLEAFKOLACAGHIM + LNMCBDZLNEBBDZMPEBFMQPBCBGHILPNCABGHJHJ $. + $} + + ${ + $( The square root of a negative number is not a real number. (Contributed + by Ender Ting, 5-Jan-2025.) $) + et-sqrtnegnre $p |- ( ( A e. RR /\ A < 0 ) -> -. ( sqrt ` A ) e. RR ) $= + ( cr wcel cc0 clt wbr wa cle wi csqrt cfv simpr 0red ltnled biimpd impcom + wn id jcnd ancoms c2 cexp co wceq recn sqsqrtd sqge0 breq2 syl2imc nsyl ) + ABZCZADZEFZGULUMAHZFZIZAJKZUKCZUNULUQQUNULGULUPUNULLULUNUPQZULUNUTULAUMUL + RULMNOPSTULURUAUBUCZAUDZUSUMVAUOFZUPULAAUEUFURUGVBVCUPVAAUMUOUHOUIUJ $. + $} + + ${ + $d B t $. $d T t $. $d k t $. + natlocalincr.1 $e |- A. k e. ( 0 ..^ T ) A. t e. ( 1 ..^ ( T + 1 ) ) ( k < + t -> ( B ` k ) < ( B ` t ) ) $. + $( Global monotonicity on half-open range implies local monotonicity. + (Contributed by Ender Ting, 22-Nov-2024.) $) + natlocalincr $p |- A. k e. ( 0 ..^ T ) ( B ` k ) < ( B ` ( k + 1 ) ) $= + ( cv cfv c1 caddc co clt wbr cc0 cfzo wcel wex wi wral ralimi cz wceq rsp + ovex isseti fzoaddel mpan2 0p1e1 oveq1i eleqtrdi eleq1 syl5ibrcom ralimia + 1z imim1d mp2b cr elfzoelz zre ltp1 3syl breq2 ax-2 syl5com breq2d biimpd + fveq2 a2i rspec eximdv mpi ax5e syl rgen ) DFZBGZVNHIJZBGZKLZDMCNJZVNVSOZ + VRAPZVRVTAFZVPUAZAPWAAVPVNHIUCUDVTWCVRAWCVRQZDVSWCVNWBKLZVOWBBGZKLZQZQZDV + SRZWCWGQZDVSRWDDVSRWHAHCHIJZNJZRZDVSRWBWMOZWHQZDVSRWJEWNWPDVSWHAWMUBSWPWI + DVSVTWCWOWHVTWOWCVPWMOVTVPMHIJZWLNJZWMVTHTOVPWROUMVNMCHUEUFWQHWLNUGUHUIWB + VPWMUJUKUNULUOWIWKDVSVTWCWEQWIWKVTWEWCVNVPKLZVTVNTOVNUPOWSVNMCUQVNURVNUSU + TWBVPVNKVAUKWCWEWGVBVCULWKWDDVSWCWGVRWCWGVRWCWFVQVOKWBVPBVFVDVEVGSUOVHVIV + JVRAVKVLVM $. + $} + + ${ + $d B a b k $. $d T a k t $. $d T a b k $. + natglobalincr.1 $e |- A. k e. ( 0 ..^ T ) ( B ` k ) < ( B ` ( k + 1 ) ) $. + natglobalincr.2 $e |- T e. ZZ $. + $( Local monotonicity on half-open integer range implies global + monotonicity. (Contributed by Ender Ting, 23-Nov-2024.) $) + natglobalincr $p |- A. k e. ( 0 ..^ T ) A. t e. ( ( k + 1 ) ... T ) ( B ` k + ) < ( B ` t ) $= + ( cv cfv clt wbr cc0 co wcel cz cle w3a wceq fveq2 cxr syl va vb c1 caddc + cfz wb elfzoelz peano2zd elfz1 sylancl breq2d rspec cop cxp df-br ltrelxr + cfzo sseli sylbi opelxp1 3ad2ant3 opelxp2 0red cr simp1 zre 3syl peano2re + simp21 zred elfzole1 ltp1d wa wi id leltletr mp2and 3ad2ant1 simp22 letrd + 3jca 0zd a1i elfzo mpd3an23 fvoveq1 breq12d vtoclri syl6bir simp3 xrlttrd + simp23 elfzoel2 elfzop1le2 fzindd sylbida rgen2 ) DGZBHZAGZBHZIJZDAKCUQLZ + WRUCUDLZCUELZWRXCMZWTXEMZWTNMXDWTOJWTCOJPZXBXFXDNMCNMZXGXHUFXFWRWRKCUGZUH + ZFWTXDCUIUJXFWSUAGZBHZIJWSXDBHZIJZWSUBGZBHZIJZWSXPUCUDLZBHZIJXBUAUBWTXDCX + LXDQXMXNWSIXLXDBRUKXLXPQXMXQWSIXLXPBRUKXLXSQXMXTWSIXLXSBRUKXLWTQXMXAWSIXL + WTBRUKXODXCEULXFXPNMZXDXPOJZXPCIJZPZXRPZWSXQXTXRXFWSSMZYDXRWSXQUMZSSUNZMZ + YFXRYGIMYIWSXQIUOIYHYGUPURUSZWSXQSSUTTVAXRXFXQSMZYDXRYIYKYJWSXQSSVBTVAYEX + QXTIJZXQXTUMZYHMZXTSMYEKXPOJZYCYLYEKXDXPYEVCYEWRVDMZXDVDMZYEXFWRNMZYPXFYD + XRVEXJWRVFZVGWRVHZTYEXPXFYAYBYCXRVIZVJXFYDKXDOJZXRXFKWROJZWRXDIJZUUBWRKCV + KXFYRUUDXJYRWRYSVLTXFKVDMZYPYQPZUUCUUDVMUUBVNXFYRYPUUFXJYSYPUUEYPYQYPVCYP + VOYTWAVGKWRXDVPTVQVRXFYAYBYCXRVSVTXFYAYBYCXRWLYEYAYOYCVMZYLVNUUAYAUUGXPXC + MZYLYAKNMXIUUHUUGUFYAWBXIYAFWCXPKCWDWEXOYLDXPXCWRXPQWSXQXNXTIWRXPBRWRXPUC + BUDWFWGEWHWITVQZYLYMIMYNXQXTIUOIYHYMUPURUSXQXTSSVBVGXFYDXRWJUUIWKXKWRKCWM + WRKCWNWOWPWQ $. + $} + + $c UpWord $. + + $( Extend class notation to include the set of strictly increasing + sequences. $) + cupword $a class UpWord S $. + + ${ + $d S k w $. + + ${ + $( Strictly increasing sequence is a sequence, adjacent elements of which + increase. (Contributed by Ender Ting, 19-Nov-2024.) $) + df-upword $a |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` + w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } $. + $} + + ${ + $( Empty set is an increasing sequence for every range. (Contributed by + Ender Ting, 19-Nov-2024.) $) + upwordnul $p |- (/) e. UpWord S $= + ( vw vk c0 cv wcel cfv c1 co wbr cc0 chash cmin wceq wi cvv wb ax-mp cz + cle cword caddc clt cfzo wral wa cab cupword wal 0ex elab6g wrd0 eleq1a + fveq2 hash0 eqtrdi oveq1d 0red lem1d eqbrtrd eqeltrdi 1zzd zsubcld fzon + 0z sylancr mpbid rzal syl jca mpgbir df-upword eleqtrri ) DBEZAUAZFZCEZ + VNGVQHUBIVNGUCJZCKVNLGZHMIZUDIZUEZUFZBUGZAUHDWDFZVNDNZWCOZBDPFWEWGBUIQU + JWCBDPUKRWFVPWBDVOFWFVPOAULDVOVNUMRWFWADNZWBWFVTKTJZWHWFVTKHMIKTWFVSKHM + WFVSDLGKVNDLUNUOUPZUQWFKWFURUSUTWFKSFVTSFWIWHQVEWFVSHWFVSKSWJVEVAWFVBVC + KVTVDVFVGVRCWAVHVIVJVKBACVLVM $. + $} + + ${ + $d A w $. + + $( Any increasing sequence is a sequence. (Contributed by Ender Ting, + 19-Nov-2024.) $) + upwordisword $p |- ( A e. UpWord S -> A e. Word S ) $= + ( vw vk cv cword wcel cupword eleq1 cfv c1 caddc clt wbr cc0 chash cmin + co cfzo wral wa df-upword abeq2i simplbi vtoclga ) CEZBFZGZAUGGCABHZUFA + UGIUFUIGUHDEZUFJUJKZLRUFJMNDOUFPJUKQRSRTZUHULUACUICBDUBUCUDUE $. + $} + + ${ + singoutnword.1 $e |- A e. _V $. + $( Singleton with character out of range ` V ` is not a word for that + range. (Contributed by Ender Ting, 21-Nov-2024.) $) + singoutnword $p |- ( -. A e. V -> -. <" A "> e. Word V ) $= + ( cs1 cword wcel cc0 cfv cvv wceq s1fv ax-mp c0 wne s1nz fstwrdne mpan2 + eqeltrrid con3i ) ADZBEFZABFUAAGTHZBAIZFUBAJCAUCKLUATMNUBBFAOBTPQRS $. + $} + + ${ + singoutnupword.1 $e |- A e. _V $. + $( Singleton with character out of range ` S ` is not an increasing + sequence for that range. (Contributed by Ender Ting, 22-Nov-2024.) $) + singoutnupword $p |- ( -. A e. S -> -. <" A "> e. UpWord S ) $= + ( wcel wn cs1 cword cupword singoutnword upwordisword nsyl ) ABDEAFZBGD + LBHDABCILBJK $. + $} + + ${ + $d A w $. + upwordsing.1 $e |- A e. S $. + $( Singleton is an increasing sequence for any compatible range. + (Contributed by Ender Ting, 21-Nov-2024.) $) + upwordsing $p |- <" A "> e. UpWord S $= + ( vw vk cs1 cv cword wcel cfv c1 caddc clt wbr cc0 chash cmin cfzo wceq + co wral wa cab cupword wi wal wb s1cl elab6g mp2b eleq1a c0 fveq2 s1len + oveq1d oveq1i 1m1e0 eqtri eqtrdi oveq2d fzo0 syl jca df-upword eleqtrri + rzal mpgbir ) AFDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAUBDUCBUDAFDGBHIEGDGJEG + KLTDGJMNEODGPJKQTRTUAUBDUCIDGAFSDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAUBUEDA + BIAFBHIAFDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAUBDUCIDGAFSDGBHIEGDGJEGKLTDGJ + MNEODGPJKQTRTUAUBUEDUFUGCABUHDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAUBDAFBHUI + UJDGAFSDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAABIAFBHIDGAFSDGBHIUECABUHAFBHDG + UKUJDGAFSODGPJKQTRTULSEGDGJEGKLTDGJMNEODGPJKQTRTUADGAFSODGPJKQTRTOORTUL + DGAFSDGPJKQTOORDGAFSDGPJKQTAFPJKQTODGAFSDGPJAFPJKQDGAFPUMUOAFPJKQTKKQTO + AFPJKKQAUNUPUQURUSUTOVAUSEGDGJEGKLTDGJMNEODGPJKQTRTVFVBVCVGDBEVDVE $. + $} + + ${ + $d S t $. + upwordsseti.1 $e |- S e. _V $. + $( Strictly increasing sequences with a set given for range form a set. + (Contributed by Ender Ting, 21-Nov-2024.) $) + upwordsseti $p |- UpWord S e. _V $= + ( vt cupword cword wrdexi cv upwordisword ssriv ssexi ) ADZAEZABFCKLCGA + HIJ $. + $} + + ${ + $d A b k $. $d S b k $. + tworepnotupword.1 $e |- A e. _V $. + $( Word of two matching characters is never an increasing sequence. + (Contributed by Ender Ting, 22-Nov-2024.) $) + tworepnotupword $p |- -. ( <" A "> ++ <" A "> ) e. UpWord S $= + ( vb vk co wcel wn wceq cfv c1 caddc clt wbr cc0 chash cmin cfzo ax-mp + cz cs1 cconcat cupword ovex cv wral wrex wa wex isseti wi 0z ccat2s1len + c0ex c2 oveq1i 2m1e1 eqtri eqeltri breqtrri fzolb mpbir3an eleq1a fveq2 + 1z 0lt1 oveq1d oveq2d eleq2d syl5ibr et-ltneverrefl fveq1 cvv ccat2s1p1 + eqtrdi 1e0p1 fveq2i ccat2s1p2 eqtr3i breq12d mtbiri fvoveq1 biimpd jcad + con3d syl5com eximdv mpi nfre1 rspe exlimi rexnal sylib cword df-upword + syl abeq2i simprbi nsyl eleq1 mtbid vtocle ) AUAZXCUBFZBUCZGZHDXDXCXCUB + UDDUEZXDIZXGXEGZXFXHEUEZXGJZXJKLFXGJZMNZEOXGPJZKQFZRFZUFZXIXHXMHZEXPUGZ + XQHXHXJXPGZXRUHZEUIZXSXHXJOIZEUIYBEOUNUJXHYCYAEXHYCXTXRYCXTXHXJOXDPJZKQ + FZRFZGZOYFGZYCYGUKYHOTGYETGOYEMNULYEKTYEUOKQFKYDUOKQAAUMUPUQURZVEUSOKYE + MVFYIUTOYEVAVBOYFXJVCSXHXPYFXJXHXOYEORXHXNYDKQXGXDPVDVGVHVIVJXHOXGJZOKL + FZXGJZMNZHYCXRXHYMAAMNAVKXHYJAYLAMXHYJOXDJZAOXGXDVLAVMGZYNAICVMAAVNSVOX + HYLYKXDJZAYKXGXDVLKXDJZYPAKYKXDVPVQYOYQAICVMAAVRSVSVOVTWAYCXMYMYCXMYMYC + XKYJXLYLMXJOXGVDXJOKXGLWBVTWCWEWFWDWGWHYAXSEXREXPWIXREXPWJWKWPXMEXPWLWM + XIXGBWNGZXQYRXQUHDXEDBEWOWQWRWSXGXDXEWTXAXB $. + $} + + ${ + $d S a $. $d T a $. + $( There is a finite number of strictly increasing sequences over finite + alphabet. (Contributed by Ender Ting, 5-Jan-2024.) $) + upwrdfi $p |- ( S e. Fin -> { a e. UpWord S | ( # ` a ) = T } e. Fin ) $= + ( cfn wcel cv chash cfv wceq cword crab cupword wrdnfi wss upwordisword + wtru ad2antrl rabss3d mptru ssfi mpan2 syl ) ADZECFZGHBIZCAJZKZUCEZUECA + LZKZUCEZCBAMUHUJUGNZUKULPZUECUIUFUDUIEUDUFEUMUEUDAOQRSUGUJTUAUB $. + $} + $} + + $( + This theorem will show that a given distribution in RR may be satisfied by + a relatively short sequence of value transfers. + ${ + paysd.1 $e |- ( ph -> A e. Fin ) $. + paysd.2 $e |- ( ph -> B : A --> RR ) $. + paysd.3 $e |- ( ph -> sum_ k e. A ( B ` k ) = 0 ) $. + paysd.4 $e |- ( ph -> C = (/) ) $. + paysd $p |- ( ph -> ( C e. Word ( ( A X. A ) X. RR ) /\ ( # ` C ) <_ ( # + ` A ) ) ) $= ( cxp cr cword wcel chash cfv cle wbr c0 wrd0 a1i eqeltrd + cc0 wceq fveq2 hash0 eqtrdi syl cfn cn0 hashcl nn0ge0d eqbrtrd jca ) + ACBBFGFZHZICJZKZBULKZLZMACNZUKEUPUKIAUJOPQAUMRZUNU + OACUPSZUMUQSEURUMUPULKUQCUPULTUAUBUCAUNABUDIUNUEID BUFUCUGUHUI $. + $} + $) + +$( (End of Ender Ting's mathbox.) $) +$( End $[ set-mbox-et.mm $] $) + + $( Begin $[ set-mbox-ju.mm $] $) $( Skip $[ set-main.mm $] $) $( @@ -791262,191 +791495,4 @@ to Davis and Putnam (1960). (Contributed by David A. Wheeler, $( End $[ set-mbox-kz.mm $] $) -$( Begin $[ set-mbox-et.mm $] $) -$( Skip $[ set-main.mm $] $) -$( -#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# - Mathbox for Ender Ting -#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# -$) - - -$( -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= - Increasing sequences and subsequences -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= -$) - - ${ - $( Less-than class is never reflexive. (Contributed by Ender Ting, - 22-Nov-2024.) Prefer to specify theorem domain and then apply ~ ltnri . - (New usage is discouraged.) $) - et-ltneverrefl $p |- -. A < A $= - ( cxr wcel clt wbr wn xrltnr cop opelxp1 con3i ltrelxr sseli nsyl sylnibr - cxp df-br pm2.61i ) ABZCZAADZEZFAGSFZAAHZTCZUAUBUCRROZCZUDUFSAARRIJTUEUCK - LMAATPNQ $. - $} - - ${ - $d B t $. $d T t $. $d k t $. - natlocalincr.1 $e |- A. k e. ( 0 ..^ T ) A. t e. ( 1 ..^ ( T + 1 ) ) ( k < - t -> ( B ` k ) < ( B ` t ) ) $. - $( Global monotonicity on half-open range implies local monotonicity. - (Contributed by Ender Ting, 22-Nov-2024.) $) - natlocalincr $p |- A. k e. ( 0 ..^ T ) ( B ` k ) < ( B ` ( k + 1 ) ) $= - ( cv cfv c1 caddc co clt wbr cc0 cfzo wcel wex wi wral ralimi cz wceq rsp - ovex isseti fzoaddel mpan2 0p1e1 oveq1i eleqtrdi eleq1 syl5ibrcom ralimia - 1z imim1d mp2b cr elfzoelz zre ltp1 3syl breq2 ax-2 syl5com breq2d biimpd - fveq2 a2i rspec eximdv mpi ax5e syl rgen ) DFZBGZVNHIJZBGZKLZDMCNJZVNVSOZ - VRAPZVRVTAFZVPUAZAPWAAVPVNHIUCUDVTWCVRAWCVRQZDVSWCVNWBKLZVOWBBGZKLZQZQZDV - SRZWCWGQZDVSRWDDVSRWHAHCHIJZNJZRZDVSRWBWMOZWHQZDVSRWJEWNWPDVSWHAWMUBSWPWI - DVSVTWCWOWHVTWOWCVPWMOVTVPMHIJZWLNJZWMVTHTOVPWROUMVNMCHUEUFWQHWLNUGUHUIWB - VPWMUJUKUNULUOWIWKDVSVTWCWEQWIWKVTWEWCVNVPKLZVTVNTOVNUPOWSVNMCUQVNURVNUSU - TWBVPVNKVAUKWCWEWGVBVCULWKWDDVSWCWGVRWCWGVRWCWFVQVOKWBVPBVFVDVEVGSUOVHVIV - JVRAVKVLVM $. - $} - - ${ - $d B a b k $. $d T a k t $. $d T a b k $. - natglobalincr.1 $e |- A. k e. ( 0 ..^ T ) ( B ` k ) < ( B ` ( k + 1 ) ) $. - natglobalincr.2 $e |- T e. ZZ $. - $( Local monotonicity on half-open integer range implies global - monotonicity. (Contributed by Ender Ting, 23-Nov-2024.) $) - natglobalincr $p |- A. k e. ( 0 ..^ T ) A. t e. ( ( k + 1 ) ... T ) ( B ` k - ) < ( B ` t ) $= - ( cv cfv clt wbr cc0 co wcel cz cle w3a wceq fveq2 cxr syl va vb c1 caddc - cfz wb elfzoelz peano2zd elfz1 sylancl breq2d rspec cop cxp df-br ltrelxr - cfzo sseli sylbi opelxp1 3ad2ant3 opelxp2 0red cr simp1 zre 3syl peano2re - simp21 zred elfzole1 ltp1d wa wi id leltletr mp2and 3ad2ant1 simp22 letrd - 3jca 0zd a1i elfzo mpd3an23 fvoveq1 breq12d vtoclri syl6bir simp3 xrlttrd - simp23 elfzoel2 elfzop1le2 fzindd sylbida rgen2 ) DGZBHZAGZBHZIJZDAKCUQLZ - WRUCUDLZCUELZWRXCMZWTXEMZWTNMXDWTOJWTCOJPZXBXFXDNMCNMZXGXHUFXFWRWRKCUGZUH - ZFWTXDCUIUJXFWSUAGZBHZIJWSXDBHZIJZWSUBGZBHZIJZWSXPUCUDLZBHZIJXBUAUBWTXDCX - LXDQXMXNWSIXLXDBRUKXLXPQXMXQWSIXLXPBRUKXLXSQXMXTWSIXLXSBRUKXLWTQXMXAWSIXL - WTBRUKXODXCEULXFXPNMZXDXPOJZXPCIJZPZXRPZWSXQXTXRXFWSSMZYDXRWSXQUMZSSUNZMZ - YFXRYGIMYIWSXQIUOIYHYGUPURUSZWSXQSSUTTVAXRXFXQSMZYDXRYIYKYJWSXQSSVBTVAYEX - QXTIJZXQXTUMZYHMZXTSMYEKXPOJZYCYLYEKXDXPYEVCYEWRVDMZXDVDMZYEXFWRNMZYPXFYD - XRVEXJWRVFZVGWRVHZTYEXPXFYAYBYCXRVIZVJXFYDKXDOJZXRXFKWROJZWRXDIJZUUBWRKCV - KXFYRUUDXJYRWRYSVLTXFKVDMZYPYQPZUUCUUDVMUUBVNXFYRYPUUFXJYSYPUUEYPYQYPVCYP - VOYTWAVGKWRXDVPTVQVRXFYAYBYCXRVSVTXFYAYBYCXRWLYEYAYOYCVMZYLVNUUAYAUUGXPXC - MZYLYAKNMXIUUHUUGUFYAWBXIYAFWCXPKCWDWEXOYLDXPXCWRXPQWSXQXNXTIWRXPBRWRXPUC - BUDWFWGEWHWITVQZYLYMIMYNXQXTIUOIYHYMUPURUSXQXTSSVBVGXFYDXRWJUUIWKXKWRKCWM - WRKCWNWOWPWQ $. - $} - - $c UpWord $. - - $( Extend class notation to include the set of strictly increasing - sequences. $) - cupword $a class UpWord S $. - - ${ - $d S k w $. - - ${ - $( Strictly increasing sequence is a sequence, adjacent elements of which - increase. (Contributed by Ender Ting, 19-Nov-2024.) $) - df-upword $a |- UpWord S = { w | ( w e. Word S /\ A. k e. ( 0 ..^ ( ( # ` - w ) - 1 ) ) ( w ` k ) < ( w ` ( k + 1 ) ) ) } $. - $} - - ${ - $( Empty set is an increasing sequence for every range. (Contributed by - Ender Ting, 19-Nov-2024.) $) - upwordnul $p |- (/) e. UpWord S $= - ( vw vk c0 cv wcel cfv c1 co wbr cc0 chash cmin wceq wi cvv wb ax-mp cz - cle cword caddc clt cfzo wral wa cab cupword wal 0ex elab6g wrd0 eleq1a - fveq2 hash0 eqtrdi oveq1d 0red lem1d eqbrtrd eqeltrdi 1zzd zsubcld fzon - 0z sylancr mpbid rzal syl jca mpgbir df-upword eleqtrri ) DBEZAUAZFZCEZ - VNGVQHUBIVNGUCJZCKVNLGZHMIZUDIZUEZUFZBUGZAUHDWDFZVNDNZWCOZBDPFWEWGBUIQU - JWCBDPUKRWFVPWBDVOFWFVPOAULDVOVNUMRWFWADNZWBWFVTKTJZWHWFVTKHMIKTWFVSKHM - WFVSDLGKVNDLUNUOUPZUQWFKWFURUSUTWFKSFVTSFWIWHQVEWFVSHWFVSKSWJVEVAWFVBVC - KVTVDVFVGVRCWAVHVIVJVKBACVLVM $. - $} - - ${ - $d A w $. - - $( Any increasing sequence is a sequence. (Contributed by Ender Ting, - 19-Nov-2024.) $) - upwordisword $p |- ( A e. UpWord S -> A e. Word S ) $= - ( vw vk cv cword wcel cupword eleq1 cfv c1 caddc clt wbr cc0 chash cmin - co cfzo wral wa df-upword abeq2i simplbi vtoclga ) CEZBFZGZAUGGCABHZUFA - UGIUFUIGUHDEZUFJUJKZLRUFJMNDOUFPJUKQRSRTZUHULUACUICBDUBUCUDUE $. - $} - - ${ - singoutnword.1 $e |- A e. _V $. - $( Singleton with character out of range ` V ` is not a word for that - range. (Contributed by Ender Ting, 21-Nov-2024.) $) - singoutnword $p |- ( -. A e. V -> -. <" A "> e. Word V ) $= - ( cs1 cword wcel cc0 cfv cvv wceq s1fv ax-mp c0 wne s1nz fstwrdne mpan2 - eqeltrrid con3i ) ADZBEFZABFUAAGTHZBAIZFUBAJCAUCKLUATMNUBBFAOBTPQRS $. - $} - - ${ - singoutnupword.1 $e |- A e. _V $. - $( Singleton with character out of range ` S ` is not an increasing - sequence for that range. (Contributed by Ender Ting, 22-Nov-2024.) $) - singoutnupword $p |- ( -. A e. S -> -. <" A "> e. UpWord S ) $= - ( wcel wn cs1 cword cupword singoutnword upwordisword nsyl ) ABDEAFZBGD - LBHDABCILBJK $. - $} - - ${ - $d A w $. - upwordsing.1 $e |- A e. S $. - $( Singleton is an increasing sequence for any compatible range. - (Contributed by Ender Ting, 21-Nov-2024.) $) - upwordsing $p |- <" A "> e. UpWord S $= - ( vw vk cs1 cv cword wcel cfv c1 caddc clt wbr cc0 chash cmin cfzo wceq - co wral wa cab cupword wi wal wb s1cl elab6g mp2b eleq1a c0 fveq2 s1len - oveq1d oveq1i 1m1e0 eqtri eqtrdi oveq2d fzo0 syl jca df-upword eleqtrri - rzal mpgbir ) AFDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAUBDUCBUDAFDGBHIEGDGJEG - KLTDGJMNEODGPJKQTRTUAUBDUCIDGAFSDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAUBUEDA - BIAFBHIAFDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAUBDUCIDGAFSDGBHIEGDGJEGKLTDGJ - MNEODGPJKQTRTUAUBUEDUFUGCABUHDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAUBDAFBHUI - UJDGAFSDGBHIEGDGJEGKLTDGJMNEODGPJKQTRTUAABIAFBHIDGAFSDGBHIUECABUHAFBHDG - UKUJDGAFSODGPJKQTRTULSEGDGJEGKLTDGJMNEODGPJKQTRTUADGAFSODGPJKQTRTOORTUL - DGAFSDGPJKQTOORDGAFSDGPJKQTAFPJKQTODGAFSDGPJAFPJKQDGAFPUMUOAFPJKQTKKQTO - AFPJKKQAUNUPUQURUSUTOVAUSEGDGJEGKLTDGJMNEODGPJKQTRTVFVBVCVGDBEVDVE $. - $} - - ${ - $d S t $. - upwordsseti.1 $e |- S e. _V $. - $( Strictly increasing sequences with a set given for range form a set. - (Contributed by Ender Ting, 21-Nov-2024.) $) - upwordsseti $p |- UpWord S e. _V $= - ( vt cupword cword wrdexi cv upwordisword ssriv ssexi ) ADZAEZABFCKLCGA - HIJ $. - $} - - ${ - $d A b k $. $d S b k $. - tworepnotupword.1 $e |- A e. _V $. - $( Word of two matching characters is never an increasing sequence. - (Contributed by Ender Ting, 22-Nov-2024.) $) - tworepnotupword $p |- -. ( <" A "> ++ <" A "> ) e. UpWord S $= - ( vb vk co wcel wn wceq cfv c1 caddc clt wbr cc0 chash cmin cfzo ax-mp - cz cs1 cconcat cupword ovex cv wral wrex wa wex isseti wi 0z ccat2s1len - c0ex c2 oveq1i 2m1e1 eqtri eqeltri breqtrri fzolb mpbir3an eleq1a fveq2 - 1z 0lt1 oveq1d oveq2d eleq2d syl5ibr et-ltneverrefl fveq1 cvv ccat2s1p1 - eqtrdi 1e0p1 fveq2i ccat2s1p2 eqtr3i breq12d mtbiri fvoveq1 biimpd jcad - con3d syl5com eximdv mpi nfre1 rspe exlimi rexnal sylib cword df-upword - syl abeq2i simprbi nsyl eleq1 mtbid vtocle ) AUAZXCUBFZBUCZGZHDXDXCXCUB - UDDUEZXDIZXGXEGZXFXHEUEZXGJZXJKLFXGJZMNZEOXGPJZKQFZRFZUFZXIXHXMHZEXPUGZ - XQHXHXJXPGZXRUHZEUIZXSXHXJOIZEUIYBEOUNUJXHYCYAEXHYCXTXRYCXTXHXJOXDPJZKQ - FZRFZGZOYFGZYCYGUKYHOTGYETGOYEMNULYEKTYEUOKQFKYDUOKQAAUMUPUQURZVEUSOKYE - MVFYIUTOYEVAVBOYFXJVCSXHXPYFXJXHXOYEORXHXNYDKQXGXDPVDVGVHVIVJXHOXGJZOKL - FZXGJZMNZHYCXRXHYMAAMNAVKXHYJAYLAMXHYJOXDJZAOXGXDVLAVMGZYNAICVMAAVNSVOX - HYLYKXDJZAYKXGXDVLKXDJZYPAKYKXDVPVQYOYQAICVMAAVRSVSVOVTWAYCXMYMYCXMYMYC - XKYJXLYLMXJOXGVDXJOKXGLWBVTWCWEWFWDWGWHYAXSEXREXPWIXREXPWJWKWPXMEXPWLWM - XIXGBWNGZXQYRXQUHDXEDBEWOWQWRWSXGXDXEWTXAXB $. - $} - $} - -$( (End of Ender Ting's mathbox.) $) -$( End $[ set-mbox-et.mm $] $) - $( End $[ set-mbox.mm $] $)