diff --git a/drivers/net/ethernet/intel/idpf/idpf.h b/drivers/net/ethernet/intel/idpf/idpf.h index 2c18def3c974bf..2aae1c6a16282d 100644 --- a/drivers/net/ethernet/intel/idpf/idpf.h +++ b/drivers/net/ethernet/intel/idpf/idpf.h @@ -13,6 +13,7 @@ struct idpf_vport_max_q; #include #include #include +#include #include "virtchnl2.h" #include "idpf_lan_txrx.h" diff --git a/drivers/net/ethernet/intel/idpf/idpf_lan_txrx.h b/drivers/net/ethernet/intel/idpf/idpf_lan_txrx.h index aac1e7c1a30183..5dd7f5367aaba0 100644 --- a/drivers/net/ethernet/intel/idpf/idpf_lan_txrx.h +++ b/drivers/net/ethernet/intel/idpf/idpf_lan_txrx.h @@ -56,6 +56,64 @@ enum idpf_rss_hash { BIT_ULL(IDPF_HASH_NONF_UNICAST_IPV6_UDP) | \ BIT_ULL(IDPF_HASH_NONF_MULTICAST_IPV6_UDP)) +#define IDPF_TXD_CTX_QW1_MSS_S 50 +#define IDPF_TXD_CTX_QW1_MSS_M GENMASK_ULL(63, 50) +#define IDPF_TXD_CTX_QW1_TSO_LEN_S 30 +#define IDPF_TXD_CTX_QW1_TSO_LEN_M GENMASK_ULL(47, 30) +#define IDPF_TXD_CTX_QW1_CMD_S 4 +#define IDPF_TXD_CTX_QW1_CMD_M GENMASK_ULL(15, 4) +#define IDPF_TXD_CTX_QW1_DTYPE_S 0 +#define IDPF_TXD_CTX_QW1_DTYPE_M GENMASK_ULL(3, 0) +#define IDPF_TXD_QW1_L2TAG1_S 48 +#define IDPF_TXD_QW1_L2TAG1_M GENMASK_ULL(63, 48) +#define IDPF_TXD_QW1_TX_BUF_SZ_S 34 +#define IDPF_TXD_QW1_TX_BUF_SZ_M GENMASK_ULL(47, 34) +#define IDPF_TXD_QW1_OFFSET_S 16 +#define IDPF_TXD_QW1_OFFSET_M GENMASK_ULL(33, 16) +#define IDPF_TXD_QW1_CMD_S 4 +#define IDPF_TXD_QW1_CMD_M GENMASK_ULL(15, 4) +#define IDPF_TXD_QW1_DTYPE_S 0 +#define IDPF_TXD_QW1_DTYPE_M GENMASK_ULL(3, 0) + +enum idpf_tx_desc_dtype_value { + IDPF_TX_DESC_DTYPE_DATA = 0, + IDPF_TX_DESC_DTYPE_CTX = 1, + /* DTYPE 2 is reserved + * DTYPE 3 is free for future use + * DTYPE 4 is reserved + */ + IDPF_TX_DESC_DTYPE_FLEX_TSO_CTX = 5, + /* DTYPE 6 is reserved */ + IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2 = 7, + /* DTYPE 8, 9 are free for future use + * DTYPE 10 is reserved + * DTYPE 11 is free for future use + */ + IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE = 12, + /* DTYPE 13, 14 are free for future use */ + + /* DESC_DONE - HW has completed write-back of descriptor */ + IDPF_TX_DESC_DTYPE_DESC_DONE = 15, +}; + +enum idpf_tx_base_desc_cmd_bits { + IDPF_TX_DESC_CMD_EOP = BIT(0), + IDPF_TX_DESC_CMD_RS = BIT(1), + /* only on VFs else RSVD */ + IDPF_TX_DESC_CMD_ICRC = BIT(2), + IDPF_TX_DESC_CMD_IL2TAG1 = BIT(3), + IDPF_TX_DESC_CMD_RSVD1 = BIT(4), + IDPF_TX_DESC_CMD_IIPT_IPV6 = BIT(5), + IDPF_TX_DESC_CMD_IIPT_IPV4 = BIT(6), + IDPF_TX_DESC_CMD_IIPT_IPV4_CSUM = GENMASK(6, 5), + IDPF_TX_DESC_CMD_RSVD2 = BIT(7), + IDPF_TX_DESC_CMD_L4T_EOFT_TCP = BIT(8), + IDPF_TX_DESC_CMD_L4T_EOFT_SCTP = BIT(9), + IDPF_TX_DESC_CMD_L4T_EOFT_UDP = GENMASK(9, 8), + IDPF_TX_DESC_CMD_RSVD3 = BIT(10), + IDPF_TX_DESC_CMD_RSVD4 = BIT(11), +}; + /* Transmit descriptors */ /* splitq tx buf, singleq tx buf and singleq compl desc */ struct idpf_base_tx_desc { @@ -74,4 +132,89 @@ struct idpf_splitq_tx_compl_desc { u8 rsvd; /* Reserved */ }; /* writeback used with completion queues */ +/* Common cmd field defines for all desc except Flex Flow Scheduler (0x0C) */ +enum idpf_tx_flex_desc_cmd_bits { + IDPF_TX_FLEX_DESC_CMD_EOP = BIT(0), + IDPF_TX_FLEX_DESC_CMD_RS = BIT(1), + IDPF_TX_FLEX_DESC_CMD_RE = BIT(2), + IDPF_TX_FLEX_DESC_CMD_IL2TAG1 = BIT(3), + IDPF_TX_FLEX_DESC_CMD_DUMMY = BIT(4), + IDPF_TX_FLEX_DESC_CMD_CS_EN = BIT(5), + IDPF_TX_FLEX_DESC_CMD_FILT_AU_EN = BIT(6), + IDPF_TX_FLEX_DESC_CMD_FILT_AU_EVICT = BIT(7), +}; + +struct idpf_flex_tx_desc { + __le64 buf_addr; /* Packet buffer address */ + struct { +#define IDPF_FLEX_TXD_QW1_DTYPE_S 0 +#define IDPF_FLEX_TXD_QW1_DTYPE_M GENMASK(4, 0) +#define IDPF_FLEX_TXD_QW1_CMD_S 5 +#define IDPF_FLEX_TXD_QW1_CMD_M GENMASK(15, 5) + __le16 cmd_dtype; + /* DTYPE=IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2 (0x07) */ + struct { + __le16 l2tag1; + __le16 l2tag2; + } l2tags; + __le16 buf_size; + } qw1; +}; + +struct idpf_flex_tx_sched_desc { + __le64 buf_addr; /* Packet buffer address */ + + /* DTYPE = IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE_16B (0x0C) */ + struct { + u8 cmd_dtype; +#define IDPF_TXD_FLEX_FLOW_DTYPE_M GENMASK(4, 0) +#define IDPF_TXD_FLEX_FLOW_CMD_EOP BIT(5) +#define IDPF_TXD_FLEX_FLOW_CMD_CS_EN BIT(6) +#define IDPF_TXD_FLEX_FLOW_CMD_RE BIT(7) + + /* [23:23] Horizon Overflow bit, [22:0] timestamp */ + u8 ts[3]; +#define IDPF_TXD_FLOW_SCH_HORIZON_OVERFLOW_M BIT(7) + + __le16 compl_tag; + __le16 rxr_bufsize; +#define IDPF_TXD_FLEX_FLOW_RXR BIT(14) +#define IDPF_TXD_FLEX_FLOW_BUFSIZE_M GENMASK(13, 0) + } qw1; +}; + +/* Common cmd fields for all flex context descriptors + * Note: these defines already account for the 5 bit dtype in the cmd_dtype + * field + */ +enum idpf_tx_flex_ctx_desc_cmd_bits { + IDPF_TX_FLEX_CTX_DESC_CMD_TSO = BIT(5), + IDPF_TX_FLEX_CTX_DESC_CMD_TSYN_EN = BIT(6), + IDPF_TX_FLEX_CTX_DESC_CMD_L2TAG2 = BIT(7), + IDPF_TX_FLEX_CTX_DESC_CMD_SWTCH_UPLNK = BIT(9), + IDPF_TX_FLEX_CTX_DESC_CMD_SWTCH_LOCAL = BIT(10), + IDPF_TX_FLEX_CTX_DESC_CMD_SWTCH_TARGETVSI = GENMASK(10, 9), +}; + +/* Standard flex descriptor TSO context quad word */ +struct idpf_flex_tx_tso_ctx_qw { + __le32 flex_tlen; +#define IDPF_TXD_FLEX_CTX_TLEN_M GENMASK(17, 0) +#define IDPF_TXD_FLEX_TSO_CTX_FLEX_S 24 + __le16 mss_rt; +#define IDPF_TXD_FLEX_CTX_MSS_RT_M GENMASK(13, 0) + u8 hdr_len; + u8 flex; +}; + +struct idpf_flex_tx_ctx_desc { + /* DTYPE = IDPF_TX_DESC_DTYPE_FLEX_TSO_CTX (0x05) */ + struct { + struct idpf_flex_tx_tso_ctx_qw qw0; + struct { + __le16 cmd_dtype; + u8 flex[6]; + } qw1; + } tso; +}; #endif /* _IDPF_LAN_TXRX_H_ */ diff --git a/drivers/net/ethernet/intel/idpf/idpf_lib.c b/drivers/net/ethernet/intel/idpf/idpf_lib.c index 3e8774359bd37c..c14dc49187cf38 100644 --- a/drivers/net/ethernet/intel/idpf/idpf_lib.c +++ b/drivers/net/ethernet/intel/idpf/idpf_lib.c @@ -1557,6 +1557,7 @@ void idpf_free_dma_mem(struct idpf_hw *hw, struct idpf_dma_mem *mem) static const struct net_device_ops idpf_netdev_ops_splitq = { .ndo_open = idpf_open, .ndo_stop = idpf_stop, + .ndo_start_xmit = idpf_tx_splitq_start, }; static const struct net_device_ops idpf_netdev_ops_singleq = { diff --git a/drivers/net/ethernet/intel/idpf/idpf_txrx.c b/drivers/net/ethernet/intel/idpf/idpf_txrx.c index 1d18c14c5288a0..fa27721d5e72df 100644 --- a/drivers/net/ethernet/intel/idpf/idpf_txrx.c +++ b/drivers/net/ethernet/intel/idpf/idpf_txrx.c @@ -10,7 +10,24 @@ */ static void idpf_tx_buf_rel(struct idpf_queue *tx_q, struct idpf_tx_buf *tx_buf) { + if (tx_buf->skb) { + if (dma_unmap_len(tx_buf, len)) + dma_unmap_single(tx_q->dev, + dma_unmap_addr(tx_buf, dma), + dma_unmap_len(tx_buf, len), + DMA_TO_DEVICE); + dev_kfree_skb_any(tx_buf->skb); + } else if (dma_unmap_len(tx_buf, len)) { + dma_unmap_page(tx_q->dev, + dma_unmap_addr(tx_buf, dma), + dma_unmap_len(tx_buf, len), + DMA_TO_DEVICE); + } + + tx_buf->next_to_watch = NULL; + tx_buf->skb = NULL; tx_buf->compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG; + dma_unmap_len_set(tx_buf, len, 0); } /** @@ -1347,6 +1364,773 @@ int idpf_vport_queues_alloc(struct idpf_vport *vport) return err; } +/** + * idpf_tx_splitq_build_ctb - populate command tag and size for queue + * based scheduling descriptors + * @desc: descriptor to populate + * @params: pointer to tx params struct + * @td_cmd: command to be filled in desc + * @size: size of buffer + */ +void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc, + struct idpf_tx_splitq_params *params, + u16 td_cmd, u16 size) +{ + desc->q.qw1.cmd_dtype = + cpu_to_le16(params->dtype & IDPF_FLEX_TXD_QW1_DTYPE_M); + desc->q.qw1.cmd_dtype |= + cpu_to_le16((td_cmd << IDPF_FLEX_TXD_QW1_CMD_S) & + IDPF_FLEX_TXD_QW1_CMD_M); + desc->q.qw1.buf_size = cpu_to_le16((u16)size); + desc->q.qw1.l2tags.l2tag1 = cpu_to_le16(params->td_tag); +} + +/** + * idpf_tx_splitq_build_flow_desc - populate command tag and size for flow + * scheduling descriptors + * @desc: descriptor to populate + * @params: pointer to tx params struct + * @td_cmd: command to be filled in desc + * @size: size of buffer + */ +void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc, + struct idpf_tx_splitq_params *params, + u16 td_cmd, u16 size) +{ + desc->flow.qw1.cmd_dtype = (u16)params->dtype | td_cmd; + desc->flow.qw1.rxr_bufsize = cpu_to_le16((u16)size); + desc->flow.qw1.compl_tag = cpu_to_le16(params->compl_tag); +} + +/** + * idpf_tx_maybe_stop_common - 1st level check for common Tx stop conditions + * @tx_q: the queue to be checked + * @size: number of descriptors we want to assure is available + * + * Returns 0 if stop is not needed + */ +static int idpf_tx_maybe_stop_common(struct idpf_queue *tx_q, unsigned int size) +{ + struct netdev_queue *nq; + + if (likely(IDPF_DESC_UNUSED(tx_q) >= size)) + return 0; + + u64_stats_update_begin(&tx_q->stats_sync); + u64_stats_inc(&tx_q->q_stats.tx.q_busy); + u64_stats_update_end(&tx_q->stats_sync); + + nq = netdev_get_tx_queue(tx_q->vport->netdev, tx_q->idx); + + return netif_txq_maybe_stop(nq, IDPF_DESC_UNUSED(tx_q), size, size); +} + +/** + * idpf_tx_maybe_stop_splitq - 1st level check for Tx splitq stop conditions + * @tx_q: the queue to be checked + * @descs_needed: number of descriptors required for this packet + * + * Returns 0 if stop is not needed + */ +static int idpf_tx_maybe_stop_splitq(struct idpf_queue *tx_q, + unsigned int descs_needed) +{ + if (idpf_tx_maybe_stop_common(tx_q, descs_needed)) + goto splitq_stop; + + /* If there are too many outstanding completions expected on the + * completion queue, stop the TX queue to give the device some time to + * catch up + */ + if (unlikely(IDPF_TX_COMPLQ_PENDING(tx_q->txq_grp) > + IDPF_TX_COMPLQ_OVERFLOW_THRESH(tx_q->txq_grp->complq))) + goto splitq_stop; + + /* Also check for available book keeping buffers; if we are low, stop + * the queue to wait for more completions + */ + if (unlikely(IDPF_TX_BUF_RSV_LOW(tx_q))) + goto splitq_stop; + + return 0; + +splitq_stop: + u64_stats_update_begin(&tx_q->stats_sync); + u64_stats_inc(&tx_q->q_stats.tx.q_busy); + u64_stats_update_end(&tx_q->stats_sync); + netif_stop_subqueue(tx_q->vport->netdev, tx_q->idx); + + return -EBUSY; +} + +/** + * idpf_tx_buf_hw_update - Store the new tail value + * @tx_q: queue to bump + * @val: new tail index + * @xmit_more: more skb's pending + * + * The naming here is special in that 'hw' signals that this function is about + * to do a register write to update our queue status. We know this can only + * mean tail here as HW should be owning head for TX. + */ +static void idpf_tx_buf_hw_update(struct idpf_queue *tx_q, u32 val, + bool xmit_more) +{ + struct netdev_queue *nq; + + nq = netdev_get_tx_queue(tx_q->vport->netdev, tx_q->idx); + tx_q->next_to_use = val; + + idpf_tx_maybe_stop_common(tx_q, IDPF_TX_DESC_NEEDED); + + /* Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). + */ + wmb(); + + /* notify HW of packet */ + if (netif_xmit_stopped(nq) || !xmit_more) + writel(val, tx_q->tail); +} + +/** + * idpf_tx_desc_count_required - calculate number of Tx descriptors needed + * @skb: send buffer + * + * Returns number of data descriptors needed for this skb. + */ +static unsigned int idpf_tx_desc_count_required(struct sk_buff *skb) +{ + const struct skb_shared_info *shinfo; + unsigned int count = 0, i; + + count += !!skb_headlen(skb); + + if (!skb_is_nonlinear(skb)) + return count; + + shinfo = skb_shinfo(skb); + for (i = 0; i < shinfo->nr_frags; i++) { + unsigned int size; + + size = skb_frag_size(&shinfo->frags[i]); + + /* We only need to use the idpf_size_to_txd_count check if the + * fragment is going to span multiple descriptors, + * i.e. size >= 16K. + */ + if (size >= SZ_16K) + count += idpf_size_to_txd_count(size); + else + count++; + } + + return count; +} + +/** + * idpf_tx_dma_map_error - handle TX DMA map errors + * @txq: queue to send buffer on + * @skb: send buffer + * @first: original first buffer info buffer for packet + * @idx: starting point on ring to unwind + */ +static void idpf_tx_dma_map_error(struct idpf_queue *txq, struct sk_buff *skb, + struct idpf_tx_buf *first, u16 idx) +{ + u64_stats_update_begin(&txq->stats_sync); + u64_stats_inc(&txq->q_stats.tx.dma_map_errs); + u64_stats_update_end(&txq->stats_sync); + + /* clear dma mappings for failed tx_buf map */ + for (;;) { + struct idpf_tx_buf *tx_buf; + + tx_buf = &txq->tx_buf[idx]; + idpf_tx_buf_rel(txq, tx_buf); + if (tx_buf == first) + break; + if (idx == 0) + idx = txq->desc_count; + idx--; + } + + if (skb_is_gso(skb)) { + union idpf_tx_flex_desc *tx_desc; + + /* If we failed a DMA mapping for a TSO packet, we will have + * used one additional descriptor for a context + * descriptor. Reset that here. + */ + tx_desc = IDPF_FLEX_TX_DESC(txq, idx); + memset(tx_desc, 0, sizeof(struct idpf_flex_tx_ctx_desc)); + if (idx == 0) + idx = txq->desc_count; + idx--; + } + + /* Update tail in case netdev_xmit_more was previously true */ + idpf_tx_buf_hw_update(txq, idx, false); +} + +/** + * idpf_tx_splitq_bump_ntu - adjust NTU and generation + * @txq: the tx ring to wrap + * @ntu: ring index to bump + */ +static unsigned int idpf_tx_splitq_bump_ntu(struct idpf_queue *txq, u16 ntu) +{ + ntu++; + + if (ntu == txq->desc_count) { + ntu = 0; + txq->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(txq); + } + + return ntu; +} + +/** + * idpf_tx_splitq_map - Build the Tx flex descriptor + * @tx_q: queue to send buffer on + * @params: pointer to splitq params struct + * @first: first buffer info buffer to use + * + * This function loops over the skb data pointed to by *first + * and gets a physical address for each memory location and programs + * it and the length into the transmit flex descriptor. + */ +static void idpf_tx_splitq_map(struct idpf_queue *tx_q, + struct idpf_tx_splitq_params *params, + struct idpf_tx_buf *first) +{ + union idpf_tx_flex_desc *tx_desc; + unsigned int data_len, size; + struct idpf_tx_buf *tx_buf; + u16 i = tx_q->next_to_use; + struct netdev_queue *nq; + struct sk_buff *skb; + skb_frag_t *frag; + u16 td_cmd = 0; + dma_addr_t dma; + + skb = first->skb; + + td_cmd = params->offload.td_cmd; + + data_len = skb->data_len; + size = skb_headlen(skb); + + tx_desc = IDPF_FLEX_TX_DESC(tx_q, i); + + dma = dma_map_single(tx_q->dev, skb->data, size, DMA_TO_DEVICE); + + tx_buf = first; + + params->compl_tag = + (tx_q->compl_tag_cur_gen << tx_q->compl_tag_gen_s) | i; + + for (frag = &skb_shinfo(skb)->frags[0];; frag++) { + unsigned int max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED; + + if (dma_mapping_error(tx_q->dev, dma)) + return idpf_tx_dma_map_error(tx_q, skb, first, i); + + tx_buf->compl_tag = params->compl_tag; + + /* record length, and DMA address */ + dma_unmap_len_set(tx_buf, len, size); + dma_unmap_addr_set(tx_buf, dma, dma); + + /* buf_addr is in same location for both desc types */ + tx_desc->q.buf_addr = cpu_to_le64(dma); + + /* The stack can send us fragments that are too large for a + * single descriptor i.e. frag size > 16K-1. We will need to + * split the fragment across multiple descriptors in this case. + * To adhere to HW alignment restrictions, the fragment needs + * to be split such that the first chunk ends on a 4K boundary + * and all subsequent chunks start on a 4K boundary. We still + * want to send as much data as possible though, so our + * intermediate descriptor chunk size will be 12K. + * + * For example, consider a 32K fragment mapped to DMA addr 2600. + * ------------------------------------------------------------ + * | frag_size = 32K | + * ------------------------------------------------------------ + * |2600 |16384 |28672 + * + * 3 descriptors will be used for this fragment. The HW expects + * the descriptors to contain the following: + * ------------------------------------------------------------ + * | size = 13784 | size = 12K | size = 6696 | + * | dma = 2600 | dma = 16384 | dma = 28672 | + * ------------------------------------------------------------ + * + * We need to first adjust the max_data for the first chunk so + * that it ends on a 4K boundary. By negating the value of the + * DMA address and taking only the low order bits, we're + * effectively calculating + * 4K - (DMA addr lower order bits) = + * bytes to next boundary. + * + * Add that to our base aligned max_data (12K) and we have + * our first chunk size. In the example above, + * 13784 = 12K + (4096-2600) + * + * After guaranteeing the first chunk ends on a 4K boundary, we + * will give the intermediate descriptors 12K chunks and + * whatever is left to the final descriptor. This ensures that + * all descriptors used for the remaining chunks of the + * fragment start on a 4K boundary and we use as few + * descriptors as possible. + */ + max_data += -dma & (IDPF_TX_MAX_READ_REQ_SIZE - 1); + while (unlikely(size > IDPF_TX_MAX_DESC_DATA)) { + idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, + max_data); + + tx_desc++; + i++; + + if (i == tx_q->desc_count) { + tx_desc = IDPF_FLEX_TX_DESC(tx_q, 0); + i = 0; + tx_q->compl_tag_cur_gen = + IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q); + } + + /* Since this packet has a buffer that is going to span + * multiple descriptors, it's going to leave holes in + * to the TX buffer ring. To ensure these holes do not + * cause issues in the cleaning routines, we will clear + * them of any stale data and assign them the same + * completion tag as the current packet. Then when the + * packet is being cleaned, the cleaning routines will + * simply pass over these holes and finish cleaning the + * rest of the packet. + */ + memset(&tx_q->tx_buf[i], 0, sizeof(struct idpf_tx_buf)); + tx_q->tx_buf[i].compl_tag = params->compl_tag; + + /* Adjust the DMA offset and the remaining size of the + * fragment. On the first iteration of this loop, + * max_data will be >= 12K and <= 16K-1. On any + * subsequent iteration of this loop, max_data will + * always be 12K. + */ + dma += max_data; + size -= max_data; + + /* Reset max_data since remaining chunks will be 12K + * at most + */ + max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED; + + /* buf_addr is in same location for both desc types */ + tx_desc->q.buf_addr = cpu_to_le64(dma); + } + + if (!data_len) + break; + + idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size); + tx_desc++; + i++; + + if (i == tx_q->desc_count) { + tx_desc = IDPF_FLEX_TX_DESC(tx_q, 0); + i = 0; + tx_q->compl_tag_cur_gen = IDPF_TX_ADJ_COMPL_TAG_GEN(tx_q); + } + + size = skb_frag_size(frag); + data_len -= size; + + dma = skb_frag_dma_map(tx_q->dev, frag, 0, size, + DMA_TO_DEVICE); + + tx_buf = &tx_q->tx_buf[i]; + } + + /* record SW timestamp if HW timestamp is not available */ + skb_tx_timestamp(skb); + + /* write last descriptor with RS and EOP bits */ + td_cmd |= params->eop_cmd; + idpf_tx_splitq_build_desc(tx_desc, params, td_cmd, size); + i = idpf_tx_splitq_bump_ntu(tx_q, i); + + /* set next_to_watch value indicating a packet is present */ + first->next_to_watch = tx_desc; + + tx_q->txq_grp->num_completions_pending++; + + /* record bytecount for BQL */ + nq = netdev_get_tx_queue(tx_q->vport->netdev, tx_q->idx); + netdev_tx_sent_queue(nq, first->bytecount); + + idpf_tx_buf_hw_update(tx_q, i, netdev_xmit_more()); +} + +/** + * idpf_tso - computes mss and TSO length to prepare for TSO + * @skb: pointer to skb + * @off: pointer to struct that holds offload parameters + * + * Returns error (negative) if TSO was requested but cannot be applied to the + * given skb, 0 if TSO does not apply to the given skb, or 1 otherwise. + */ +static int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off) +{ + const struct skb_shared_info *shinfo = skb_shinfo(skb); + union { + struct iphdr *v4; + struct ipv6hdr *v6; + unsigned char *hdr; + } ip; + union { + struct tcphdr *tcp; + struct udphdr *udp; + unsigned char *hdr; + } l4; + u32 paylen, l4_start; + int err; + + if (!shinfo->gso_size) + return 0; + + err = skb_cow_head(skb, 0); + if (err < 0) + return err; + + ip.hdr = skb_network_header(skb); + l4.hdr = skb_transport_header(skb); + + /* initialize outer IP header fields */ + if (ip.v4->version == 4) { + ip.v4->tot_len = 0; + ip.v4->check = 0; + } else if (ip.v6->version == 6) { + ip.v6->payload_len = 0; + } + + l4_start = skb_transport_offset(skb); + + /* remove payload length from checksum */ + paylen = skb->len - l4_start; + + switch (shinfo->gso_type & ~SKB_GSO_DODGY) { + case SKB_GSO_TCPV4: + case SKB_GSO_TCPV6: + csum_replace_by_diff(&l4.tcp->check, + (__force __wsum)htonl(paylen)); + off->tso_hdr_len = __tcp_hdrlen(l4.tcp) + l4_start; + break; + case SKB_GSO_UDP_L4: + csum_replace_by_diff(&l4.udp->check, + (__force __wsum)htonl(paylen)); + /* compute length of segmentation header */ + off->tso_hdr_len = sizeof(struct udphdr) + l4_start; + l4.udp->len = htons(shinfo->gso_size + sizeof(struct udphdr)); + break; + default: + return -EINVAL; + } + + off->tso_len = skb->len - off->tso_hdr_len; + off->mss = shinfo->gso_size; + off->tso_segs = shinfo->gso_segs; + + off->tx_flags |= IDPF_TX_FLAGS_TSO; + + return 1; +} + +/** + * __idpf_chk_linearize - Check skb is not using too many buffers + * @skb: send buffer + * @max_bufs: maximum number of buffers + * + * For TSO we need to count the TSO header and segment payload separately. As + * such we need to check cases where we have max_bufs-1 fragments or more as we + * can potentially require max_bufs+1 DMA transactions, 1 for the TSO header, 1 + * for the segment payload in the first descriptor, and another max_buf-1 for + * the fragments. + */ +static bool __idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs) +{ + const struct skb_shared_info *shinfo = skb_shinfo(skb); + const skb_frag_t *frag, *stale; + int nr_frags, sum; + + /* no need to check if number of frags is less than max_bufs - 1 */ + nr_frags = shinfo->nr_frags; + if (nr_frags < (max_bufs - 1)) + return false; + + /* We need to walk through the list and validate that each group + * of max_bufs-2 fragments totals at least gso_size. + */ + nr_frags -= max_bufs - 2; + frag = &shinfo->frags[0]; + + /* Initialize size to the negative value of gso_size minus 1. We use + * this as the worst case scenario in which the frag ahead of us only + * provides one byte which is why we are limited to max_bufs-2 + * descriptors for a single transmit as the header and previous + * fragment are already consuming 2 descriptors. + */ + sum = 1 - shinfo->gso_size; + + /* Add size of frags 0 through 4 to create our initial sum */ + sum += skb_frag_size(frag++); + sum += skb_frag_size(frag++); + sum += skb_frag_size(frag++); + sum += skb_frag_size(frag++); + sum += skb_frag_size(frag++); + + /* Walk through fragments adding latest fragment, testing it, and + * then removing stale fragments from the sum. + */ + for (stale = &shinfo->frags[0];; stale++) { + int stale_size = skb_frag_size(stale); + + sum += skb_frag_size(frag++); + + /* The stale fragment may present us with a smaller + * descriptor than the actual fragment size. To account + * for that we need to remove all the data on the front and + * figure out what the remainder would be in the last + * descriptor associated with the fragment. + */ + if (stale_size > IDPF_TX_MAX_DESC_DATA) { + int align_pad = -(skb_frag_off(stale)) & + (IDPF_TX_MAX_READ_REQ_SIZE - 1); + + sum -= align_pad; + stale_size -= align_pad; + + do { + sum -= IDPF_TX_MAX_DESC_DATA_ALIGNED; + stale_size -= IDPF_TX_MAX_DESC_DATA_ALIGNED; + } while (stale_size > IDPF_TX_MAX_DESC_DATA); + } + + /* if sum is negative we failed to make sufficient progress */ + if (sum < 0) + return true; + + if (!nr_frags--) + break; + + sum -= stale_size; + } + + return false; +} + +/** + * idpf_chk_linearize - Check if skb exceeds max descriptors per packet + * @skb: send buffer + * @max_bufs: maximum scatter gather buffers for single packet + * @count: number of buffers this packet needs + * + * Make sure we don't exceed maximum scatter gather buffers for a single + * packet. We have to do some special checking around the boundary (max_bufs-1) + * if TSO is on since we need count the TSO header and payload separately. + * E.g.: a packet with 7 fragments can require 9 DMA transactions; 1 for TSO + * header, 1 for segment payload, and then 7 for the fragments. + */ +static bool idpf_chk_linearize(struct sk_buff *skb, unsigned int max_bufs, + unsigned int count) +{ + if (likely(count < max_bufs)) + return false; + if (skb_is_gso(skb)) + return __idpf_chk_linearize(skb, max_bufs); + + return count > max_bufs; +} + +/** + * idpf_tx_splitq_get_ctx_desc - grab next desc and update buffer ring + * @txq: queue to put context descriptor on + * + * Since the TX buffer rings mimics the descriptor ring, update the tx buffer + * ring entry to reflect that this index is a context descriptor + */ +static struct idpf_flex_tx_ctx_desc * +idpf_tx_splitq_get_ctx_desc(struct idpf_queue *txq) +{ + struct idpf_flex_tx_ctx_desc *desc; + int i = txq->next_to_use; + + memset(&txq->tx_buf[i], 0, sizeof(struct idpf_tx_buf)); + txq->tx_buf[i].compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG; + + /* grab the next descriptor */ + desc = IDPF_FLEX_TX_CTX_DESC(txq, i); + txq->next_to_use = idpf_tx_splitq_bump_ntu(txq, i); + + return desc; +} + +/** + * idpf_tx_drop_skb - free the SKB and bump tail if necessary + * @tx_q: queue to send buffer on + * @skb: pointer to skb + */ +static netdev_tx_t idpf_tx_drop_skb(struct idpf_queue *tx_q, + struct sk_buff *skb) +{ + u64_stats_update_begin(&tx_q->stats_sync); + u64_stats_inc(&tx_q->q_stats.tx.skb_drops); + u64_stats_update_end(&tx_q->stats_sync); + + idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false); + + dev_kfree_skb(skb); + + return NETDEV_TX_OK; +} + +/** + * idpf_tx_splitq_frame - Sends buffer on Tx ring using flex descriptors + * @skb: send buffer + * @tx_q: queue to send buffer on + * + * Returns NETDEV_TX_OK if sent, else an error code + */ +static netdev_tx_t idpf_tx_splitq_frame(struct sk_buff *skb, + struct idpf_queue *tx_q) +{ + struct idpf_tx_splitq_params tx_params = { }; + struct idpf_tx_buf *first; + unsigned int count; + int tso; + + count = idpf_tx_desc_count_required(skb); + if (idpf_chk_linearize(skb, tx_q->tx_max_bufs, count)) { + if (__skb_linearize(skb)) + return idpf_tx_drop_skb(tx_q, skb); + + count = idpf_size_to_txd_count(skb->len); + u64_stats_update_begin(&tx_q->stats_sync); + u64_stats_inc(&tx_q->q_stats.tx.linearize); + u64_stats_update_end(&tx_q->stats_sync); + } + + tso = idpf_tso(skb, &tx_params.offload); + if (unlikely(tso < 0)) + return idpf_tx_drop_skb(tx_q, skb); + + /* Check for splitq specific TX resources */ + count += (IDPF_TX_DESCS_PER_CACHE_LINE + tso); + if (idpf_tx_maybe_stop_splitq(tx_q, count)) { + idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false); + + return NETDEV_TX_BUSY; + } + + if (tso) { + /* If tso is needed, set up context desc */ + struct idpf_flex_tx_ctx_desc *ctx_desc = + idpf_tx_splitq_get_ctx_desc(tx_q); + + ctx_desc->tso.qw1.cmd_dtype = + cpu_to_le16(IDPF_TX_DESC_DTYPE_FLEX_TSO_CTX | + IDPF_TX_FLEX_CTX_DESC_CMD_TSO); + ctx_desc->tso.qw0.flex_tlen = + cpu_to_le32(tx_params.offload.tso_len & + IDPF_TXD_FLEX_CTX_TLEN_M); + ctx_desc->tso.qw0.mss_rt = + cpu_to_le16(tx_params.offload.mss & + IDPF_TXD_FLEX_CTX_MSS_RT_M); + ctx_desc->tso.qw0.hdr_len = tx_params.offload.tso_hdr_len; + + u64_stats_update_begin(&tx_q->stats_sync); + u64_stats_inc(&tx_q->q_stats.tx.lso_pkts); + u64_stats_update_end(&tx_q->stats_sync); + } + + /* record the location of the first descriptor for this packet */ + first = &tx_q->tx_buf[tx_q->next_to_use]; + first->skb = skb; + + if (tso) { + first->gso_segs = tx_params.offload.tso_segs; + first->bytecount = skb->len + + ((first->gso_segs - 1) * tx_params.offload.tso_hdr_len); + } else { + first->gso_segs = 1; + first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); + } + + if (test_bit(__IDPF_Q_FLOW_SCH_EN, tx_q->flags)) { + tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE; + tx_params.eop_cmd = IDPF_TXD_FLEX_FLOW_CMD_EOP; + /* Set the RE bit to catch any packets that may have not been + * stashed during RS completion cleaning. MIN_GAP is set to + * MIN_RING size to ensure it will be set at least once each + * time around the ring. + */ + if (!(tx_q->next_to_use % IDPF_TX_SPLITQ_RE_MIN_GAP)) { + tx_params.eop_cmd |= IDPF_TXD_FLEX_FLOW_CMD_RE; + tx_q->txq_grp->num_completions_pending++; + } + + if (skb->ip_summed == CHECKSUM_PARTIAL) + tx_params.offload.td_cmd |= IDPF_TXD_FLEX_FLOW_CMD_CS_EN; + + } else { + tx_params.dtype = IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2; + tx_params.eop_cmd = IDPF_TXD_LAST_DESC_CMD; + + if (skb->ip_summed == CHECKSUM_PARTIAL) + tx_params.offload.td_cmd |= IDPF_TX_FLEX_DESC_CMD_CS_EN; + } + + idpf_tx_splitq_map(tx_q, &tx_params, first); + + return NETDEV_TX_OK; +} + +/** + * idpf_tx_splitq_start - Selects the right Tx queue to send buffer + * @skb: send buffer + * @netdev: network interface device structure + * + * Returns NETDEV_TX_OK if sent, else an error code + */ +netdev_tx_t idpf_tx_splitq_start(struct sk_buff *skb, + struct net_device *netdev) +{ + struct idpf_vport *vport = idpf_netdev_to_vport(netdev); + struct idpf_queue *tx_q; + + if (unlikely(skb_get_queue_mapping(skb) >= vport->num_txq)) { + dev_kfree_skb_any(skb); + + return NETDEV_TX_OK; + } + + tx_q = vport->txqs[skb_get_queue_mapping(skb)]; + + /* hardware can't handle really short frames, hardware padding works + * beyond this point + */ + if (skb_put_padto(skb, tx_q->tx_min_pkt_len)) { + idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false); + + return NETDEV_TX_OK; + } + + return idpf_tx_splitq_frame(skb, tx_q); +} + /** * idpf_vport_intr_clean_queues - MSIX mode Interrupt Handler * @irq: interrupt number diff --git a/drivers/net/ethernet/intel/idpf/idpf_txrx.h b/drivers/net/ethernet/intel/idpf/idpf_txrx.h index c5ae4938fe14d0..5f84be573cf232 100644 --- a/drivers/net/ethernet/intel/idpf/idpf_txrx.h +++ b/drivers/net/ethernet/intel/idpf/idpf_txrx.h @@ -5,6 +5,8 @@ #define _IDPF_TXRX_H_ #include +#include +#include #define IDPF_LARGE_MAX_Q 256 #define IDPF_MAX_Q 16 @@ -67,18 +69,62 @@ #define IDPF_PACKET_HDR_PAD \ (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN * 2) +/* Minimum number of descriptors between 2 descriptors with the RE bit set; + * only relevant in flow scheduling mode + */ +#define IDPF_TX_SPLITQ_RE_MIN_GAP 64 + #define IDPF_SINGLEQ_RX_BUF_DESC(rxq, i) \ (&(((struct virtchnl2_singleq_rx_buf_desc *)((rxq)->desc_ring))[i])) #define IDPF_SPLITQ_RX_BUF_DESC(rxq, i) \ (&(((struct virtchnl2_splitq_rx_buf_desc *)((rxq)->desc_ring))[i])) +#define IDPF_FLEX_TX_DESC(txq, i) \ + (&(((union idpf_tx_flex_desc *)((txq)->desc_ring))[i])) +#define IDPF_FLEX_TX_CTX_DESC(txq, i) \ + (&(((struct idpf_flex_tx_ctx_desc *)((txq)->desc_ring))[i])) + +#define IDPF_DESC_UNUSED(txq) \ + ((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \ + (txq)->next_to_clean - (txq)->next_to_use - 1) + +#define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->buf_stack.top) +#define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \ + (txq)->desc_count >> 2) + +#define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1) +/* Determine the absolute number of completions pending, i.e. the number of + * completions that are expected to arrive on the TX completion queue. + */ +#define IDPF_TX_COMPLQ_PENDING(txq) \ + (((txq)->num_completions_pending >= (txq)->complq->num_completions ? \ + 0 : U64_MAX) + \ + (txq)->num_completions_pending - (txq)->complq->num_completions) + #define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16 #define IDPF_SPLITQ_TX_INVAL_COMPL_TAG -1 +/* Adjust the generation for the completion tag and wrap if necessary */ +#define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \ + ((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \ + 0 : (txq)->compl_tag_cur_gen) -#define IDPF_TX_MIN_PKT_LEN 17 +#define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS) + +#define IDPF_TX_FLAGS_TSO BIT(0) + +union idpf_tx_flex_desc { + struct idpf_flex_tx_desc q; /* queue based scheduling */ + struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */ +}; /** * struct idpf_tx_buf + * @next_to_watch: Next descriptor to clean + * @skb: Pointer to the skb + * @dma: DMA address + * @len: DMA length + * @bytecount: Number of bytes + * @gso_segs: Number of GSO segments * @compl_tag: Splitq only, unique identifier for a buffer. Used to compare * with completion tag returned in buffer completion event. * Because the completion tag is expected to be the same in all @@ -94,6 +140,13 @@ * this buffer entry should be skipped. */ struct idpf_tx_buf { + void *next_to_watch; + struct sk_buff *skb; + DEFINE_DMA_UNMAP_ADDR(dma); + DEFINE_DMA_UNMAP_LEN(len); + unsigned int bytecount; + unsigned short gso_segs; + union { int compl_tag; @@ -117,6 +170,64 @@ struct idpf_buf_lifo { struct idpf_tx_stash **bufs; }; +/** + * struct idpf_tx_offload_params - Offload parameters for a given packet + * @tx_flags: Feature flags enabled for this packet + * @tso_len: Total length of payload to segment + * @mss: Segment size + * @tso_segs: Number of segments to be sent + * @tso_hdr_len: Length of headers to be duplicated + * @td_cmd: Command field to be inserted into descriptor + */ +struct idpf_tx_offload_params { + u32 tx_flags; + + u32 tso_len; + u16 mss; + u16 tso_segs; + u16 tso_hdr_len; + + u16 td_cmd; +}; + +/** + * struct idpf_tx_splitq_params + * @dtype: General descriptor info + * @eop_cmd: Type of EOP + * @compl_tag: Associated tag for completion + * @td_tag: Descriptor tunneling tag + * @offload: Offload parameters + */ +struct idpf_tx_splitq_params { + enum idpf_tx_desc_dtype_value dtype; + u16 eop_cmd; + union { + u16 compl_tag; + u16 td_tag; + }; + + struct idpf_tx_offload_params offload; +}; + +#define IDPF_TX_MIN_PKT_LEN 17 +#define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1 +#define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \ + sizeof(struct idpf_flex_tx_desc)) +#define IDPF_TX_DESCS_FOR_CTX 1 +/* TX descriptors needed, worst case */ +#define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \ + IDPF_TX_DESCS_PER_CACHE_LINE + \ + IDPF_TX_DESCS_FOR_SKB_DATA_PTR) + +/* The size limit for a transmit buffer in a descriptor is (16K - 1). + * In order to align with the read requests we will align the value to + * the nearest 4K which represents our maximum read request size. + */ +#define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K +#define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1) +#define IDPF_TX_MAX_DESC_DATA_ALIGNED \ + ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE) + #define IDPF_RX_DMA_ATTR \ (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) @@ -344,6 +455,23 @@ struct idpf_q_vector { char *name; }; +struct idpf_rx_queue_stats { + /* stub */ +}; + +struct idpf_tx_queue_stats { + u64_stats_t lso_pkts; + u64_stats_t linearize; + u64_stats_t q_busy; + u64_stats_t skb_drops; + u64_stats_t dma_map_errs; +}; + +union idpf_queue_stats { + struct idpf_rx_queue_stats rx; + struct idpf_tx_queue_stats tx; +}; + #define IDPF_ITR_DYNAMIC 1 #define IDPF_ITR_20K 0x0032 #define IDPF_ITR_TX_DEF IDPF_ITR_20K @@ -382,6 +510,8 @@ struct idpf_q_vector { * @next_to_alloc: RX buffer to allocate at. Used only for RX. In splitq model * only relevant to RX queue. * @flags: See enum idpf_queue_flags_t + * @q_stats: See union idpf_queue_stats + * @stats_sync: See struct u64_stats_sync * @rx_hsplit_en: RX headsplit enable * @rx_hbuf_size: Header buffer size * @rx_buf_size: Buffer size @@ -395,6 +525,10 @@ struct idpf_q_vector { * @desc_ring: Descriptor ring memory * @tx_max_bufs: Max buffers that can be transmitted with scatter-gather * @tx_min_pkt_len: Min supported packet length + * @num_completions: Only relevant for TX completion queue. It tracks the + * number of completions received to compare against the + * number of completions pending, as accumulated by the + * TX queues. * @buf_stack: Stack of empty buffers to store buffer info for out of order * buffer completions. See struct idpf_buf_lifo. * @compl_tag_bufid_m: Completion tag buffer id mask @@ -450,6 +584,9 @@ struct idpf_queue { u16 next_to_alloc; DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS); + union idpf_queue_stats q_stats; + struct u64_stats_sync stats_sync; + bool rx_hsplit_en; u16 rx_hbuf_size; u16 rx_buf_size; @@ -465,6 +602,8 @@ struct idpf_queue { u16 tx_max_bufs; u8 tx_min_pkt_len; + u32 num_completions; + struct idpf_buf_lifo buf_stack; u16 compl_tag_bufid_m; @@ -587,6 +726,42 @@ struct idpf_txq_group { u32 num_completions_pending; }; +/** + * idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag + * @size: transmit request size in bytes + * + * In the case where a large frag (>= 16K) needs to be split across multiple + * descriptors, we need to assume that we can have no more than 12K of data + * per descriptor due to hardware alignment restrictions (4K alignment). + */ +static inline u32 idpf_size_to_txd_count(unsigned int size) +{ + return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED); +} + +void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc, + struct idpf_tx_splitq_params *params, + u16 td_cmd, u16 size); +void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc, + struct idpf_tx_splitq_params *params, + u16 td_cmd, u16 size); +/** + * idpf_tx_splitq_build_desc - determine which type of data descriptor to build + * @desc: descriptor to populate + * @params: pointer to tx params struct + * @td_cmd: command to be filled in desc + * @size: size of buffer + */ +static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc, + struct idpf_tx_splitq_params *params, + u16 td_cmd, u16 size) +{ + if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2) + idpf_tx_splitq_build_ctb(desc, params, td_cmd, size); + else + idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size); +} + /** * idpf_alloc_page - Allocate a new RX buffer from the page pool * @pool: page_pool to allocate from @@ -634,6 +809,8 @@ void idpf_deinit_rss(struct idpf_vport *vport); int idpf_rx_bufs_init_all(struct idpf_vport *vport); bool idpf_init_rx_buf_hw_alloc(struct idpf_queue *rxq, struct idpf_rx_buf *buf); void idpf_rx_buf_hw_update(struct idpf_queue *rxq, u32 val); +netdev_tx_t idpf_tx_splitq_start(struct sk_buff *skb, + struct net_device *netdev); bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_queue *rxq, u16 cleaned_count);