
Layout Cache Problems in Visual Editor
I would like to introduce why we need a layout cache mechanism in Visual Editor by several
examples.

Problem: we need to know node sizes before rendering

To make the layout of visual editor accurate, parent node should know the exact size of a child
node, thus it can draw itself properly with edges connected and blocks placed properly.

However, it's not possible to get a DOM element's sizes before it's really mounted.

If we are blind to the size of a node before rendering, all elements in the editor will be narrowed
together:

Solution: measure node sizes by analyzing its data

We use absolute sizes to define element. There is a measureJsonBoundary module for
measuring sizes before rendering and a elementSizes definition to manage all size numbers
such as 200px width, 48px height.

With this pre-render measurer, evert node should be rendered as we expected.

For example:

It's proved to be worked in our old version.

Problem: the size of a node is undetermined

After our new action design in which size of action content could be dynamic, we cannot measure
node sizes correctly anymore.

const sendActivitySize = new Size(200px, 48px);

const choiceInputSize = new size(200px, 48px + data.choices.length * 20px)

const ifConditionSIze = new Size(

 trueBranchWidth + falseBranchWidth,

 Math.max(trueBranchWidth, falseBranchWidth) + 100px

)

af://n0
af://n39
af://n41
af://n40

Imaging we have a 'SendActivity' node, its content is 'Hello Hello Hello Hello' which is super
long. We couldn't determine how many lines we should spare to render it.

If we measure it a wrong size, editor will look like this:

Solution: measure DOM size after node mounted, bubbling
up size changes and request a second rendering

af://n10

Use the react-measure lib to measure exact node size after first render cycle; then notify
parents that the element's size is changed via onResize handler. It will trigger an extra rendering
which causes flickering.

When a parent node receives new child size, it will recalculate its layout:

The whole editor's layout is in a tree structure

Size changes of leaf node will be bubbled up to all parents. So the layout of Visual Editor will
always be updated.

Problem: adding / deleting nodes has flickering issue,
switching between dialogs has flickering issue

Though the layout of visual editor will be always updated via a second rendering, from UX
perspective users feel like the editor is flickering when adding / deleting / navigating between
events.

<Measure onResize={size => onResize(size)}>

 {({ ref }) => <Node ref={ref} />}

</Measure>

const ParentNode = ({ data }) => {

 const [layout, setLayout] = useState(calculateLayout(data));

 const updateLayout = (size, childId) => {

 const newLayout = calculateLayout(data, { childId: size });

 setLayout(newLayout);

 }

 return (

 <div width={layout.width} height={layout.height}>

 {...}

 <ChildNode id={childId} onReisze={size => updateLayout(size,

childId)} />

 </div>

)

}

af://n30

This is because visual editor takes two render cycles to place elements at proper positions:

in the first render cycle, editor mounts node blocks to estimated position with inaccurate
estimated sizes;
in the second render cycle, editor collects the measure results of DOM nodes and then
adjust node blocks to their proper positions.

Flickering issue could be relieved by giving a more accurate estimation of node sizes; however,
considering that we cannot estimate the accurate width of a string, we still need to do small
adjustment after we get real sizes of DOM nodes.

So can we just cache calculated sizes and load them in the first render cycle? Then the 'estimated'
size will always equal to the accurate size.

Solution: cache the calculated layout of unchanged nodes

Considering every node has a $designer filed which contains a unique id, we can optimize the
flickering issue by caching sizes of those unchanged nodes.

The layout cache module is super straightforward:

To consume the cache:

If a node's size has been cached, before rendering, its size could be loaded from the cache
directly instead of use the measureJsonBoundary which is inaccurate.

To maintain the cache:

every time react-measure detected a DOM size change, the new size should be stored to the
cache

class LayoutCache {

 private caches = {}

 public cacheNodeSize(id, size) {

 this.caches[id] = size;

 }

 public loadCache(id) {

 return this.caches[id];

 }

 public uncacheNodeSize(id) {

 delete this.caches[id];

 }

}

const Node = ({ id, data }) => {

 const estimatedSize = loadCache(id) || measureJsonBoundary(data);

 return (

 <div width={estimatedSize.width} height={estimatedSize.height}>

 {something else}

 </div>

);

}

af://n35

every time a node is removed, its cached size should be removed, along with all its parent
nodes' cached sizes (because of as a tree, parent nodes' sizes are always determined by
children)

If we don't remove outdated sizes, the editor will run into an unhappy condition:

<Measure onResize={

 size => {

 // 1. notify its parent to bubble up resize event

 parent.onResize(size, id);

 // 2. maintain the layout cache

 LayoutCache.setSizeCache(id, size);

 }

 }>

 {({ref}) => <Node ref={ref} />}

</Measure>

// class LayoutCache.uncacheNode

function uncacheNode(id) {

 const parentIds = findAllParents(id);

 [...parentIds, id].forEach(x => {

 delete this.caches[x];

 })

}

function deleteNode(id) {

 // 1. maintain layout cache

 uncacheNode(id);

 // 2. manipulate json

 const newData = jsonTracker.deleteNode(id);

 onChange(newData);

}

	Layout Cache Problems in Visual Editor
	Problem: we need to know node sizes before rendering
	Solution: measure node sizes by analyzing its data
	Problem: the size of a node is undetermined
	Solution: measure DOM size after node mounted, bubbling up size changes and request a second rendering
	Problem: adding / deleting nodes has flickering issue, switching between dialogs has flickering issue
	Solution: cache the calculated layout of unchanged nodes

